FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Sequence Analysis of FaSmi1 in F. asiaticum
2.3. Generation of FaSmi1 Deletion Mutants
2.4. Complementation of FaSmi1 Deletion Mutants
2.5. Protoplast Preparation and Transformation of F. asiaticum
2.6. Mycelial Growth, Conidiation and Stress Sensitivity Assay
2.7. Quantitative RT-PCR (qRT-PCR)
2.8. Virulence Assay on Flowering Wheat Heads
2.9. In Vitro DON Production Assay
3. Results
3.1. Identification of FaSmi1 in F. asiaticum
3.2. Deletion and Complementation of FaSmi1 in F. asiaticum
3.3. Involvement of FaSmi1 in Hyphal Growth and Asexual Development of F. asiaticum
3.4. Involvement of FaSmi1 in Cell Wall Integrity
3.5. Involvement of FaSmi1 in Osmotic and Oxidative Stresses Sensitivity
3.6. Effect of FaSmi1 on the Virulence and DON Production of F. asiaticum
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health Part B 2005, 8, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Blandino, M.; Minelli, L.; Reyneri, A. Strategies for the chemical control of Fusarium head blight: Effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. Eur. J. Agron. 2006, 25, 193–201. [Google Scholar] [CrossRef]
- Zheng, Z.; Hou, Y.; Cai, Y.; Zhang, Y.; Li, Y.; Zhou, M. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Sci. Rep. 2015, 5, srep08248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, W.; Shao, W.; Wang, J.; Lv, C.; Ma, H.; Ch, C. Molecular, biological and physiological characterizations of resistance to phenamacril in Fusarium graminearum. Plant Pathol. 2017, 66, 1404–1412. [Google Scholar] [CrossRef]
- Martin-Yken, H.; François, J.M.; Zerbib, D. Knr4: A disordered hub protein at the heart of fungal cell wall signalling. Cell. Microbiol. 2016, 18, 1217–1227. [Google Scholar] [CrossRef]
- Dagkessamanskaia, A.; El Azzouzi, K.; Kikuchi, Y.; Timmers, T.; Ohya, Y.; François, J.M.; Martin-Yken, H. Knr4 N-terminal domain controls its localization and function during sexual differentiation and vegetative growth. Yeast 2010, 27, 563–574. [Google Scholar] [CrossRef]
- Goehring, A.S.; Mitchell, D.A.; Tong, A.H.Y.; Keniry, M.E.; Boone, C.; Sprague, G.F., Jr. Synthetic lethal analysis implicates Ste20p, a p21-activated protein kinase, in polarisome activation. Mol. Biol. Cell 2003, 14, 1501–1516. [Google Scholar] [CrossRef]
- Costanzo, M.; Baryshnikova, A.; Bellay, J.; Kim, Y.; Spear, E.D.; Sevier, C.S.; Ding, H.; Koh, J.L.Y.; Toufighi, K.; Mostafavi, S.; et al. The genetic landscape of a cell. Science 2010, 327, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Martin-Yken, H.; Dagkessamanskaia, A.; Basmaji, F.; Lagorce, A.; Francois, J. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae. Mol. Microbiol. 2003, 49, 23–35. [Google Scholar] [CrossRef]
- Lagorce, A.; Hauser, N.C.; Labourdette, D.; Rodriguez, C.; Martin-Yken, H.; Arroyo, J.; Hoheisel, J.D.; François, J. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 20345–20357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penacho, V.; Blondin, B.; Valero, E.; Gonzalez, R. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Biotechnol. Prog. 2012, 28, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-U.; Hayles, J.; Kim, D.; Wood, V.; Park, H.-O.; Won, M.; Yoo, H.S.; Duhig, T.; Nam, M.; Palmer, G.; et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 2010, 28, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.C.; Bardes, E.S.; Ohya, Y.; Lew, D.J. A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat. Cell Biol. 2001, 3, 417–420. [Google Scholar] [CrossRef]
- Mizunuma, M.; Hirata, D.; Miyaoka, R.; Miyakawa, T. GSK-3 kinase Mck1 and calcineurin coordinately mediate Hsl1 down-regulation by Ca2+ in budding yeast. EMBO J. 2001, 20, 1074–1085. [Google Scholar] [CrossRef] [Green Version]
- Miyakawa, T.; Mizunuma, M. Physiological roles of calcineurin in Saccharomyces cerevisiae with special emphasis on its roles in G2/M cell-cycle regulation. Biosci. Biotechnol. Biochem. 2007, 0702080296. [Google Scholar]
- Hong, S.; Huh, W.-K. Loss of Smi1, a protein involved in cell wall synthesis, extends replicative life span by enhancing rDNA stability in Saccharomyces cerevisiae. J. Biol. Chem. 2021, 296, 100258. [Google Scholar] [CrossRef]
- Ohmine, Y.; Satoh, Y.; Kiyokawa, K.; Yamamoto, S.; Moriguchi, K.; Suzuki, K. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA. BMC Microbiol. 2016, 16, 58. [Google Scholar] [CrossRef] [Green Version]
- Correll, J.; Klittich, C.; Leslie, J. Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology 1987, 77, 1640–1646. [Google Scholar] [CrossRef]
- Marui, J.; Matsushita-Morita, M.; Tada, S.; Hattori, R.; Suzuki, S.; Amano, H.; Ishida, H.; Yamagata, Y.; Takeuchi, M.; Kusumoto, K. Comparison of expression and enzymatic properties of Aspergillus oryzae lysine aminopeptidases ApsA and ApsB. World J. Microbiol. Biotechnol. 2012, 28, 2643–2650. [Google Scholar] [CrossRef]
- Bai, G.-H.; Shaner, G. Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis. 1996, 80, 975–979. [Google Scholar] [CrossRef]
- Gardiner, D.M.; Kazan, K.; Manners, J.M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet. Biol. 2009, 46, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Gao, T.; Zhang, Y.; Hou, Y.; Wang, J.; Zhou, M. FgFim, a key protein regulating resistance to the fungicide JS 399-19, asexual and sexual development, stress responses and virulence in F usarium graminearum. Mol. Plant Pathol. 2014, 15, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-H.; Hamari, Z.; Han, K.-H.; Seo, J.-A.; Reyes-Domínguez, Y.; Scazzocchio, C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 2004, 41, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Gao, T.; Hou, Y.; Zhou, M. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. FEMS Microbiol. Lett. 2013, 349, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Xu, J.; Yu, J.; Bi, C.; Chen, C.; Zhou, M. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Manag. Sci. 2011, 67, 191–198. [Google Scholar] [CrossRef]
- Gale, L.R.; Chen, L.-F.; Hernick, C.; Takamura, K.; Kistler, H. Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 2002, 92, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.; Dagkessamanskaia, A.; Satchanska, G.; Dallies, N.; François, J. KNR4, a suppressor of Saccharomyces cerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes. Microbiology 1999, 145, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Mann, P.; Brown, N.H.; Tran, L.E.; Shaw, K.J.; Hare, R.S.; DiDomenico, B. Cloning and characterization of KNR4, a yeast gene involved in (1, 3)-beta-glucan synthesis. Mol. Cell. Biol. 1994, 14, 1017–1025. [Google Scholar]
- Martin-Yken, H.; Dagkessamanskaia, A.; Talibi, D.; Francois, J. KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. Curr. Genet. 2002, 41, 323–332. [Google Scholar] [CrossRef]
- Basmaji, F.; Martin-Yken, H.; Durand, F.; Dagkessamanskaia, A.; Pichereaux, C.; Rossignol, M.; Francois, J. The ‘interactome’of the Knr4/Smi1, a protein implicated in coordinating cell wall synthesis with bud emergence in Saccharomyces cerevisiae. Mol. Genet. Genom. 2006, 275, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.V.; Goodyear, E.G.; Zhang, S.; Kudryashova, E.; Wu, J.-Q. Involvement of Smi1 in cell wall integrity and glucan synthase Bgs4 localization during fission yeast cytokinesis. Mol. Biol. Cell 2022, 33, ar17. [Google Scholar] [CrossRef] [PubMed]
- Montibus, M.; Pinson-Gadais, L.; Richard-Forget, F.; Barreau, C.; Ponts, N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit. Rev. Microbiol. 2015, 41, 295–308. [Google Scholar] [CrossRef]
- Merhej, J.; Richard-Forget, F.; Barreau, C. Regulation of trichothecene biosynthesis in Fusarium: Recent advances and new insights. Appl. Microbiol. Biotechnol. 2011, 91, 519–528. [Google Scholar] [CrossRef]
- Nasmith, C.G.; Walkowiak, S.; Wang, L.; Leung, W.W.; Gong, Y.; Johnston, A.; Harris, L.J.; Guttman, D.S.; Subramaniam, R. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog. 2011, 7, e1002266. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Kistler, H.C.; Ma, Z. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annu. Rev. Phytopathol. 2019, 57, 15–39. [Google Scholar] [CrossRef]
Strains | Growth Rate on Three Media (mm/day) a | Conidiation b (×105 mL) | Percentage of Diseased Spikelets c | ||
---|---|---|---|---|---|
PSA | CM | MM | |||
2021 | 26.9 ± 0.3 A | 23.9 ± 0.7 A | 20.4 ± 0.3 A | 1.6 ± 0.1 A | 25.2 ± 3.5 A |
ΔFaSmi1 | 7.0 ± 0.2 B | 5.9 ± 0.2 B | 3.4 ± 0.6 B | 0.3 ± 0.3 B | 5.0 ± 2.4 B |
ΔFaSmi1C | 27.9 ± 0.2 A | 25.1 ± 0.7 A | 21.1 ± 0.3 A | 1.5 ± 0.2 A | 24.4 ± 4.3 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, W.; Shao, W.; Tan, S.; Shi, D.; Ma, H.; Chen, C. FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum. J. Fungi 2022, 8, 1189. https://doi.org/10.3390/jof8111189
Zhang Y, Chen W, Shao W, Tan S, Shi D, Ma H, Chen C. FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum. Journal of Fungi. 2022; 8(11):1189. https://doi.org/10.3390/jof8111189
Chicago/Turabian StyleZhang, Yu, Wenchan Chen, Wenyong Shao, Shishan Tan, Dongya Shi, Hongyu Ma, and Changjun Chen. 2022. "FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum" Journal of Fungi 8, no. 11: 1189. https://doi.org/10.3390/jof8111189
APA StyleZhang, Y., Chen, W., Shao, W., Tan, S., Shi, D., Ma, H., & Chen, C. (2022). FaSmi1 Is Essential for the Vegetative Development, Asexual Reproduction, DON Production and Virulence of Fusarium asiaticum. Journal of Fungi, 8(11), 1189. https://doi.org/10.3390/jof8111189