γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pathogen and Fruit
2.3. Preparation of γ-CDCL
2.4. In Vitro and In Vivo Antifungal Activity of γ-CDCL
2.5. Characterization
2.6. Inhibitory Mechanism of γ-CDCL against P. digitatum
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. Cell Wall Integrity
2.6.3. Membrane Integrity Assays
2.6.4. Reactive Oxygen Species (ROS) Levels
2.6.5. Mitochondrial Membrane Potential (MMP) Levels
2.7. Statistical Analysis
3. Results
3.1. In Vitro and In Vivo Antifungal Effect of γ-CDCL
3.2. Characterization of the γ-CDCL
3.3. Inhibitory Mechanism of γ-CDCL against P. digitatum
3.3.1. The Mycelia Surface Morphology of P. digitatum
3.3.2. Cell Wall Integrity
3.3.3. Plasma Membrane Permeability Analysis
3.3.4. ROS Levels
3.3.5. The Effect of γ-CDCL on the MMP of P. digitatum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz, M.A.; Pereyra, M.M.; Santander, F.F.S.; Perez, M.F.; Córdoba, J.M.; Alhussein, M.; Karlovsky, P.; Dib, J.R. Protection of Citrus Fruits from Postharvest Infection with Penicillium digitatum and Degradation of Patulin by Biocontrol Yeast Clavispora lusitaniae 146. Microorganisms 2020, 8, 1477. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Torres, P. Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. J. Fungi 2021, 7, 783. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xia, M.; He, P.; Yang, Q.; Wu, Y.; He, P.; Ahmed, A.; Li, X.; Wang, Y.; Munir, S.; et al. Developing Penicillium digitatum Management Strategies on Post-Harvest Citrus Fruits with Metabolic Components and Colonization of Bacillus subtilis L1–21. J. Fungi 2022, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, J.; Feng, D.; Ma, Z.; Li, H. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Appl. Microbiol. Biotechnol. 2011, 91, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.; Luo, C.; Fu, Y.; Zhu, F. Fungicidal Actions and Resistance Mechanisms of Prochloraz to Penicillium digitatum. Plant Dis. 2021, 105, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Luo, C.; Fu, Y.; Zhu, F. Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum. Pestic. Biochem. Physiol. 2022, 184, 105130. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Y.; Chen, C.; Wan, C. Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Wang, H.; Xu, F.; Cheng, S. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 2013, 77, 94–101. [Google Scholar] [CrossRef]
- Tao, N.; Jia, L.; Zhou, H.; He, X. Effect of octanal on the mycelial growth of Penicillium italicum and P. digitatum. World J. Microbiol. Biotechnol. 2014, 30, 1169–1175. [Google Scholar] [CrossRef]
- Ou Yang, Q.; Duan, X.; Li, L.; Tao, N. Cinnamaldehyde Exerts Its Antifungal Activity by Disrupting the Cell Wall Integrity of Geotrichum citri-aurantii. Front. Microbiol. 2019, 10, 55. [Google Scholar] [CrossRef]
- Yue, Q.; Shao, X.; Wei, Y.; Jiang, S.; Xu, F.; Wang, H.; Gao, H. Optimized preparation of tea tree oil complexation and their antifungal activity against Botrytis cinerea. Postharvest Biol. Technol. 2020, 162, 111114. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, J.; Wei, Y.; Han, P.; Dai, K.; Zou, X.; Jiang, S.; Xu, F.; Wang, H.; Sun, J.; et al. Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola. Postharvest Biol. Technol. 2021, 175, 111474. [Google Scholar] [CrossRef]
- Xing, F.; Hua, H.; Selvaraj, J.N.; Zhao, Y.; Zhou, L.; Liu, X.; Liu, Y. Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control 2014, 46, 343–350. [Google Scholar] [CrossRef]
- Li, C.; Chen, W.; Siva, S.; Cui, H.; Lin, L. Electrospun phospholipid nanofibers encapsulated with cinnamaldehyde/HP-β-CD inclusion complex as a novel food packaging material. Food Packag. Shelf Life 2021, 28, 100647. [Google Scholar] [CrossRef]
- Liu, Y.; Sameen, D.E.; Ahmed, S.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. Recent advances in cyclodextrin-based films for food packaging. Food Chem. 2022, 370, 131026. [Google Scholar] [CrossRef]
- Santos, E.H.; Kamimura, J.A.; Hill, L.E.; Gomes, C.L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT 2015, 60, 583–592. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym. 2015, 118, 156–164. [Google Scholar] [CrossRef]
- Xiao, Z.; Hou, W.; Kang, Y.; Niu, Y.; Kou, X. Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll. 2019, 97, 105202. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, T.; Wei, Y.; Cao, Z.; Xu, Y.; Wei, J.; Xu, F.; Wang, H.; Shao, X. Preparation and characterization of tea tree oil/hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocoll. 2021, 121, 107037. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, R.; Sun, X.; Yu, X.; Xiao, Y.; Wang, L.; Hu, W.; Zhong, T. The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: Characterization, storage stability, antibacterial and antioxidant activity. Food Control 2022, 132, 108561. [Google Scholar] [CrossRef]
- Nguyen, T.V.A.; Yoshii, H. Release behavior of allyl sulfide from cyclodextrin inclusion complex of allyl sulfide under different storage conditions. Biosci. Biotechnol. Biochem. 2018, 82, 848–855. [Google Scholar] [CrossRef]
- Suharyani, I.; Muchtaridi, M.; Mohammed, A.F.A.; Elamin, K.M.; Wathoni, N.; Abdassah, M. α-Mangostin/γ-Cyclodextrin Inclusion Complex: Formation and Thermodynamic Study. Polymers 2021, 13, 2890. [Google Scholar] [CrossRef]
- Yoshikiyo, K.; Yoshioka, Y.; Narumiya, Y.; Oe, S.; Kawahara, H.; Kurata, K.; Shimizu, H.; Yamamoto, T. Thermal stability and bioavailability of inclusion complexes of perilla oil with γ-cyclodextrin. Food Chem. 2019, 294, 56–59. [Google Scholar] [CrossRef]
- Liu, J.; Wu, H.; Ao, X.; Hao, H.; Bi, J.; Hou, H.; Zhang, G. Characterization of the Inclusion Complexes of Isothiocyanates with γ-Cyclodextrin for Improvement of Antibacterial Activities against Staphylococcus aureus. Foods 2021, 11, 60. [Google Scholar] [CrossRef]
- Uekaji, Y.; Terao, K. Bioavailability enhancement of hydrophobic nutraceuticals using γ-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2019, 93, 3–15. [Google Scholar] [CrossRef]
- Jansook, P.; Maw, P.D.; Soe, H.M.S.H.; Chuangchunsong, R.; Saiborisuth, K.; Payonitikarn, N.; Autthateinchai, R.; Pruksakorn, P. Development of amphotericin B nanosuspensions for fungal keratitis therapy: Effect of self-assembled γ-cyclodextrin. J. Pharm. Investig. 2020, 50, 513–525. [Google Scholar] [CrossRef]
- Leclercq, L.; Lubart, Q.; Dewilde, A.; Aubry, J.-M.; Nardello-Rataj, V. Supramolecular effects on the antifungal activity of cyclodextrin/di-n-decyldimethylammonium chloride mixtures. Eur. J. Pharm. Sci. 2012, 46, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem. 2016, 196, 324–330. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, Y.; Yang, Z.; Niu, R.; Gao, K.; Yang, B.; Liao, X.; Zhang, J. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity. Mater. Sci. Eng. C 2016, 69, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Ouyang, Q.; You, K.; Qian, J.; Tao, N. An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. Postharvest Biol. Technol. 2018, 138, 31–36. [Google Scholar] [CrossRef]
- Zhang, Y.; OuYang, Q.; Duan, B.; Reymick, O.O.; Chen, Y.; Tan, Y.; Zhu, X.; Su, D.; Li, G.; Tao, N. Trans-2-hexenal/β-cyclodextrin effectively reduces green mold in citrus fruit. Postharvest Biol. Technol. 2022, 187, 111871. [Google Scholar] [CrossRef]
- Xin, Z.; OuYang, Q.; Wan, C.; Che, J.; Li, L.; Chen, J.; Tao, N. Isolation of antofine from Cynanchum atratum BUNGE (Asclepiadaceae) and its antifungal activity against Penicillium digitatum. Postharvest Biol. Technol. 2019, 157, 110961. [Google Scholar] [CrossRef]
- Lemoine, M.L.; Chaves, A.R.; Martínez, G.A. Influence of combined hot air and UV-C treatment on the antioxidant system of minimally processed broccoli (Brassica oleracea L. var. Italica). LWT-Food Sci. Technol. 2010, 43, 1313–1319. [Google Scholar] [CrossRef]
- Duan, X.; OuYang, Q.; Jing, G.; Tao, N. Effect of sodium dehydroacetate on the development of sour rot on Satsuma mandarin. Food Control 2016, 65, 8–13. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Yang, Y.; Ouyang, Q.; Li, L.; Shao, X.; Che, J.; Tao, N. Inhibitory effects of glutaraldehyde on Geotrichum citri-aurantii and its possible mechanism. J. Appl. Microbiol. 2019, 127, 1148–1156. [Google Scholar] [CrossRef]
- OuYang, Q.; Tao, N.; Zhang, M. A Damaged Oxidative Phosphorylation Mechanism Is Involved in the Antifungal Activity of Citral against Penicillium digitatum. Front. Microbiol. 2018, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, R.; Lu, N.; Ma, S.; Yan, Y.; Li, W. A quick isolation method for mutants with high lipid yield in oleaginous yeast. World J. Microbiol. Biotechnol. 2009, 25, 921–925. [Google Scholar] [CrossRef]
- Tao, N.; OuYang, Q.; Jia, L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 2014, 41, 116–121. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Wei, Y.; Zou, X.; Jiang, S.; Xu, F.; Wang, H.; Shao, X. Terpinen-4-ol Enhances Disease Resistance of Postharvest Strawberry Fruit More Effectively than Tea Tree Oil by Activating the Phenylpropanoid Metabolism Pathway. J. Agric. Food Chem. 2020, 68, 6739–6747. [Google Scholar] [CrossRef]
- OuYang, Q.; Okwong, R.O.; Chen, Y.; Tao, N. Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruit. Postharvest Biol. Technol. 2020, 162, 111095. [Google Scholar] [CrossRef]
- Niu, H.; Chen, W.; Chen, W.; Yun, Y.; Zhong, Q.; Fu, X.; Chen, H.; Liu, G. Preparation and Characterization of a Modified-β-Cyclodextrin/β-Carotene Inclusion Complex and Its Application in Pickering Emulsions. J. Agric. Food Chem. 2019, 67, 12875–12884. [Google Scholar] [CrossRef] [PubMed]
- Ndayishimiye, J.; Kumeria, T.; Popat, A.; Blaskovich, M.A.; Falconer, J.R. Understanding the relationship between solubility and permeability of γ-cyclodextrin-based systems embedded with poorly aqueous soluble benznidazole. Int. J. Pharm. 2022, 616, 121487. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Lee, W.; Shin, H.-J.; Yoon, S.-I.; Kim, Y.-T.; Kim, Y.-J.; Lee, K.; Lee, S. Characterization of cyclodextrin complexes of camostat mesylate by ESI mass spectrometry and NMR spectroscopy. J. Mol. Struct. 2009, 938, 192–197. [Google Scholar] [CrossRef]
- Jahed, V.; Zarrabi, A.; Bordbar, A.-K.; Hafezi, M.S. NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem. 2014, 165, 241–246. [Google Scholar] [CrossRef]
- Utama, I.M.S.; Wills, R.B.H.; Ben-Yehoshua, S.; Kuek, C. In Vitro Efficacy of Plant Volatiles for Inhibiting the Growth of Fruit and Vegetable Decay Microorganisms. J. Agric. Food Chem. 2002, 50, 6371–6377. [Google Scholar] [CrossRef]
- Harrington, B.J.; Hageage, J.G.J. Calcofluor White: A Review of its Uses and Applications in Clinical Mycology and Parasitology. Lab. Med. 2003, 34, 361–367. [Google Scholar] [CrossRef]
- Tan, X.; Long, C.; Meng, K.; Shen, X.; Wang, Z.; Li, L.; Tao, N. Transcriptome sequencing reveals an inhibitory mechanism of Penicillium digitatum by sodium dehydroacetate on citrus fruit. Postharvest Biol. Technol. 2022, 188, 111898. [Google Scholar] [CrossRef]
- Tawakoli, P.N.; Al-Ahmad, A.; Hoth-Hannig, W.; Hannig, M.; Hannig, C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin. Oral Investig. 2013, 17, 841–850. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, G.; Li, B.; Tian, S. Effect of Cinnamic Acid for Controlling Gray Mold on Table Grape and Its Possible Mechanisms of Action. Curr. Microbiol. 2015, 71, 396–402. [Google Scholar] [CrossRef]
- Reymick, O.O.; Liu, D.; Cheng, Y.; Ouyang, Q.; Tao, N. Cuminaldehyde-induced oxidative stress inhibits growth of Penicillium digitatum in citrus. Postharvest Biol. Technol. 2022, 192, 111991. [Google Scholar] [CrossRef]
- Heaton, N.S.; Randall, G. Multifaceted roles for lipids in viral infection. Trends Microbiol. 2011, 19, 368–375. [Google Scholar] [CrossRef]
- Zheng, S.; Jing, G.; Wang, X.; Ouyang, Q.; Jia, L.; Tao, N. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chem. 2015, 178, 76–81. [Google Scholar] [CrossRef]
- Nayak, D.; Kumari, M.; Rajachandar, S.; Ashe, S.; Thathapudi, N.C.; Nayak, B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS Appl. Mater. Interfaces 2016, 8, 28538–28553. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Wu, X.; Jiang, M.; Jin, H.; Tao, K.; Hou, T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest Manag. Sci. 2021, 77, 3469–3483. [Google Scholar] [CrossRef]
- Sun, W.; Ni, Z.; Li, R.; Chang, X.; Li, W.; Yang, M.; Zhou, Z. Flurochloridone induces Sertoli cell apoptosis through ROS-dependent mitochondrial pathway. Ecotoxicol. Environ. Saf. 2021, 216, 112183. [Google Scholar] [CrossRef]
Quality Index | Treatment | 0d | 1d | 3d | 5d |
---|---|---|---|---|---|
WL (%) | Control | 0.00 ± 0.00 a | 0.75 ± 0.11 ab | 2.95 ± 0.42 ab | 4.81 ± 0.52 a |
Prochloraz | 0.00 ± 0.00 a | 0.83 ± 0.11 a | 3.30 ± 0.51 a | 4.61 ± 0.64 a | |
4 × MFC | 0.00 ± 0.00 a | 0.63 ± 0.10 b | 2.28 ± 0.42 b | 4.11 ± 0.40 a | |
8 × MFC | 0.00 ± 0.00 a | 0.69 ± 0.15 ab | 2.68 ±0.63 ab | 4.36 ± 1.14 a | |
CI | Control | 2.94 ± 0.72 a | 2.84 ± 0.39 a | 4.07 ± 0.81 a | 4.24 ± 0.82 a |
Prochloraz | 2.77 ± 0.62 b | 2.87 ± 0.75 a | 4.02 ± 1.02 a | 4.10 ± 0.61 a | |
4 × MFC | 2.89 ± 0.66 ab | 3.88 ± 0.58 a | 4.14 ± 0.90 a | 4.95 ± 0.52 a | |
8 × MFC | 2.95 ± 0.66 ab | 2.85 ± 0.64 a | 3.92 ± 0.43 a | 4.20 ± 0.75 a | |
Firmness (N) | Control | 1.51 ± 0.09 a | 1.40 ± 0.04 a | 1.30 ± 0.02 a | 1.25 ± 0.02 a |
Prochloraz | 1.48 ± 0.12 a | 1.36 ± 0.03 a | 1.31 ± 0.01 a | 1.30 ± 0.02 b | |
4 × MFC | 1.54 ± 0.04 a | 1.42 ± 0.05 a | 1.31 ± 0.02 a | 1.32 ± 0.01 b | |
8 × MFC | 1.51 ± 0.02 a | 1.36 ± 0.01 a | 1.39 ± 0.02 b | 1.32 ± 0.01 b | |
Control | 13.12 ± 0.73 a | 14.28 ± 2.63 a | 16.80 ± 3.23 a | 18.09 ± 2.56 a | |
Vc (mg kg−1) | Prochloraz | 14.47 ± 1.80 a | 15.12 ± 0.58 a | 18.54 ± 2.50 a | 19.19 ± 0.78 a |
4 × MFC | 13.25 ± 0.30 a | 14.73 ± 2.47 a | 15.89 ± 1.66 a | 19.13 ± 2.33 a | |
8 × MFC | 13.63 ± 2.07 a | 15.83 ± 2.65 a | 18.41 ± 1.97 a | 18.87 ± 3.70 a | |
pH | Control | 2.67 ± 0.06 a | 3.11 ± 0.12 a | 3.26 ± 0.13 a | 3.29 ± 0.01 a |
Prochloraz | 2.74 ± 0.03 a | 3.06 ± 0.20 a | 3.19 ± 0.11 a | 3.27 ± 0.03 a | |
4 × MFC | 2.96 ± 0.18 b | 3.08 ± 0.17 a | 3.21 ± 0.06 a | 3.29 ± 0.18 a | |
8 × MFC | 2.98 ± 0.01 b | 3.03 ± 0.03 a | 3.13 ± 0.03 a | 3.28 ± 0.02 a | |
Control | 9.37 ± 0.25 a | 9.40 ± 0.44 ab | 10.24 ± 0.05 ab | 10.99 ± 0.02 a | |
TSS | Prochloraz | 9.45 ± 0.07 a | 9.20 ± 0.40 b | 9.71 ± 0.12 b | 10.81 ± 0.05 a |
4 × MFC | 9.20 ± 1.18 a | 10.30 ± 0.10 a | 10.43 ± 0.83 ab | 10.89 ± 0.19 a | |
8 × MFC | 9.33 ± 0.06 a | 10.33 ± 0.93 a | 10.61 ± 0.29 a | 11.05 ± 0.30 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tan, Y.; Reymick, O.O.; Ouyang, Q.; Tao, N. γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum. J. Fungi 2022, 8, 1199. https://doi.org/10.3390/jof8111199
Zhang Y, Tan Y, Reymick OO, Ouyang Q, Tao N. γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum. Journal of Fungi. 2022; 8(11):1199. https://doi.org/10.3390/jof8111199
Chicago/Turabian StyleZhang, Yonghua, Yuanzhen Tan, Okwong Oketch Reymick, Qiuli Ouyang, and Nengguo Tao. 2022. "γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum" Journal of Fungi 8, no. 11: 1199. https://doi.org/10.3390/jof8111199
APA StyleZhang, Y., Tan, Y., Reymick, O. O., Ouyang, Q., & Tao, N. (2022). γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum. Journal of Fungi, 8(11), 1199. https://doi.org/10.3390/jof8111199