A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints
Abstract
:1. Introduction
2. What Is in an MIC?
Country/Region, Type of the Study [Reference] | Asian Multi-centre (25 Hospitals) [4] | Spain, Multi-centre (29 Centres) [5] | Sweden, Nationwide [6] | Italy, Lombardy Multi-centre (12 Hospitals) [7] | Denmark Nationwide [8,9] | Greece Single Centre (Tertiary Hospital) [10] | Norway Nationwide [11] | SENTRY 39 Countries [12] |
---|---|---|---|---|---|---|---|---|
Period (year) | 2010–2011 | 2010–2011 | 2015–2016 | 2016–2017 | 2012–2018 | 2009–2018 | 2004–2012 | 2006–2016 |
Infection type | Blood/bone marrow | Bloodstream | Bloodstream | Bloodstream | Bloodstream | Bloodstream | Bloodstream | Bloodstream/Invasive |
Main identification procedures 1 | Variable methods Molecular ID (four) | ITS sequencing (all isolates) | >96% identified also by MALDI-TOF MS or VITEK MS | VITEK 2 (one), MALDI-TOF-MS, (two), VITEK MS (nine) | MALDI-TOF, ITS sequencing | VITEK 2 and Auxacolor | VITEK 2 and API 32. MALDI-TOF since 2011 Molecular ID | Sequence-based or proteomic methods |
Yeasts isolates, n | 2155 | 781 | 487 | 1020 | 3379 | 477 | 1724 | 15,312 |
Candida, n (%) 2 | 1988 (92.3) | 766 (98.1) | 485 (99.6) | 1006 (98.6) | 3333 (98.6) | 449 (94.1) | 1724 | 15,312 |
C. albicans | 348 (44.6) | 267 (54.8) | 547 (53.6) | 1540 (45.6) | 186 (39.0) | 1168 (67.7) | 7179 (46.9) | |
C. glabrata SC 3 | 103 (13.2) | 96 (19.7) | 205 (20.1) | 1084 (32.1) | 48 (10.1) | 255 (14.8) | 2860 (18.7) | |
C. parapsilosis SC 3 | 191 (24.5) | 44 (9.0) | 161 (15.8) | 126(3.7) | 167 (35.0) | 74 (4.3) | 2433 (15.9) | |
C. tropicalis | 59 (7.6) | 18 (3.7) | 56 (5.5) | 158 (4.7) | 31 (6.5) | 112 (6.7) | 1418 (9.3) | |
C. krusei | 15 (1.9) | 14 (2.9) | 10 (1.0) | 148 (4.4) | 5 (1.0) | 23 (1.3) | 421 (2.7) | |
Rare Candida n (%) | 50 (6.4) | 46 (9.4) | 27 (2.6) | 277 (8.2) | 12 (2.5) | 92 (5.3) | 1001 (6.5) | |
C. dubliniensis | 4 (0.5) | 18 (3.7) | 4 (0.4) | 144 (4.3) | 2 (0.4) | 46 (2.7) | 264 (1.7) | |
C. guilliermondii | 13 (1.7) | 7 (0.7) | 14 (0.4) | 8 (0.5) | 91 (0.6) | |||
C. kefyr | 4 (0.5) | 5 (1.0) | 3 (0.3) | 21 (0.6) | 3 (0.6) | 7 (0.4) | 94 (0.6) | |
C. lipolytica | 4 (0.5) | 1 (0.2) | 1 (0.2) | 1 (0.1) | 10 (0.1) | |||
C. lusitaniae | 10 (1.3) | 10 (2.1) | 8 (0.8) | 41 (1.2) | 2 (0.4) | 25 (1.5) | 277 (1.8) | |
C. metapsilosis | 2 (0.3) | 4 (0.1) | 33 (0.2) | |||||
C. orthopsilosis | 7 (0.9) | 2 (0.4) | 8 (0.2) | 82 (0.5) | ||||
C. pelliculosa | 2 (0.3) | 4 (0.8) | 9 (0.3) | 2 (0.1) | 22 (0.1) | |||
Other Candida spp. | 4 (0.5) | 6 (1.2) | 5 (0.5) | 36 (1.1) | 4 (0.8) | 3 (0.2) | 128 (0.8) | |
Other yeasts, n (%) | 167 (7.7) | 15 (1.9) | 2 (0.4) | 14 (1.4) | 46 (1.4) | 28 (5.9) | ||
Cryptococcus spp. | 109 (5.1) | 5 (0.6) | 1 (0.2) | 5 (0.5) | 14 (0.4) | 3 (0.6) | ||
Trichosporon spp. | 23 (1.1) | 3 (0.4) | 1 (0.03) | 4 (0.8) | ||||
Rhodutorula spp. | 10 (0.5) | 2 (0.3) | 2 (0.2) | 3 (0.1) | 12 (2.5) | |||
M. capitatus 4 | 3 (0.4) | 4 (0.1) | ||||||
M. clavatus 5 | 3 (0.3) | 2 (0.1) | ||||||
K. (Pichia) ohmeri 6 | 7 (0.3) | 1 (0.1) | ||||||
Malassezia spp. | 4 (0.2) | |||||||
L. elongisporus 7 | 1 (0.1) | 1 (0.03) | ||||||
E. dermatitidis 8 | 1 (0.1) | |||||||
S. cerevisiae 9 | 1 (0.2) | 3 (0.3) | 18 (0.5) | 9 (1.9) | ||||
Other spp. (no ID) | 14 (0.6) | 3 (0.1) |
3. Variation of MICs and Epidemiological Cut-Off Values
4. The Difference between ECOFFs and Clinical Breakpoints
Species | MIC mg/L | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AMB | CAS 1 | MFG | AFG | FLC | VRC | ITC | POS | ISA | 5FC | |
C. albicans | 1 | - | 0.016 | 0.03 | 0.5 | 0.03 | 0.06 | 0.06 | - | - |
C. dubliniensis | 0.25 | - | - | - | [0.5] | 0.03 | 0.06 | 0.06 | - | - |
C. glabrata | 1 | - | 0.03 | 0.06 | 16 | 1 | 2 | 1 | - | - |
C. guilliermondii | [0.5] | - | - | - | [16] | - | 2 | 0.25 | - | - |
C. kefyr | [1] | - | - | - | [1] | - | - | - | - | - |
C. krusei | 1 | - | 0.25 | 0.06 | 128 | 1 | 1 | 0.5 | - | - |
C. lusitaniae | [0.5] | - | - | - | - | - | 0.125 | - | - | - |
C. parapsilosis | 1 | - | 2 | 4 | 2 | 0.06 | 0.125 | 0.06 | - | - |
C. tropicalis | 1 | - | 0.06 | 0.06 | 1 | 0.125 | 0.125 | 0.06 | - | - |
Cryptococcus neoformans | [1] | - | - | - | - | 0.5 | - | 0.5 | - | - |
Cryptococcus gattii | [0.5] | - | - | - | - | - | - | 1 | - | - |
S. cerevisiae | [0.5] | - | - | - | - | - | - | - | - | - |
5. Pragmatic Guidance for MIC Interpretation in the Absence of Breakpoints
5.1. General Considerations
5.2. Amphotericin B
Recommendation Regarding Treatment | Amphotericin B | Anidulafungin | Fluconazole | Voriconazole |
---|---|---|---|---|
Treat if wild-type | Confirmed MIC ≤ 1: Candida species Rare yeasts (except those below) | Confirmed MIC ≤ 0.06: →regard susceptible C. dubliniensis C. inconspicua C. nivariensis C. norvegensis C. pelliculosa C. utilis L. elongisporus P. kluyveri Repeat MIC ≤0.125 mg/L →regard susceptible (consider FKS sequencing if MIC > 0.06 mg/L) C. intermedia C. lusitaniae C. palmioleophila C. kefyr | Confirmed MIC ≤ 2: →regard susceptible C. intermedia C. kefyr [1] C. lusitaniae C. metapsilosis C. orthopsilosis C. utilis L. elongisporus | Confirmed MIC ≤0.03: →regard susceptible C. intermedia C. kefyr C. lusitaniae C. metapsilosis C. orthopsilosis L. elongisporus |
Consider use if wild-type and: Not severe/ Elevated dose/ Oral consolidation/ No better options | Confirmed MIC 0.125–0.5: →consider use in some situations (for ex. less severe infections, when no better option is available) C. lipolytica C. magnoliae C. metapsilosis C. orthopsilosis C. pararugosa S. cerevisiae A. adeninivorans | Confirmed MIC 2–16: →consider use in some situations (increased dosage and less severe infections) C. fermentati C. nivariensis C. pararugosa C. pelliculosa C. guilliermondii [16] C. bovina T. dermatis (1st line Alt) Cr. Neoformans (2nd line) S. cerevisiae T. asahii (1st line Alt) | Confirmed MIC 0.06–0.125: →consider use in some situations (TDM confirmed sufficient exposure, less severe infections or when no better option is available) C. fermentati C. guilliermondii C. lipolytica C. nivariensis C. palmioleophila C. pelliculosa C. utilis S. cerevisiae Cr. neoformans [0.5] T. dermatis (1st line) | |
Consider alternative therapy | Confirmed MIC >1: Any isolate →regard resistant C. lusitaniae [0.5] Trichosporon spp. (2nd line) | Repeat MIC 0.5–1 No evidence that allows recommendation C. fermentati C. guilliermondii Repeat MIC ≥1: →regard resistant Cryptococcus Trichosporon, Magnusiomyces, Geotrichum and Rhodutorula (Against due to intrinsic resistance) | Confirmed MIC > 16 →regard resistant C. inconspicua C. lipolytica C. magnoliae C. norvegensis C. palmioleophila P. kluyveri G. candidum R. mucilaginosa M. capitatus M. clavatus A. adeninivorans | Confirmed MIC 0.25–1: No evidence that allows recommendations C. inconspicua C. norvegensis P. kluyveri M. capitatus (1st line Alt) G. candidum (1st line Alt) Confirmed MIC testing ≥2 →Regard as resistant A. adeninivorans R. mucilaginosa (Against) |
Species | n | Amphotericin MIC (mg/L) | ECOFF/ WT susc. 1 | ECMM/ISHAM/ASM Recommendation (SoR/QoE) [14] 2 | Number; MIC50/MIC90 (Range), [Reference] 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.016 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | |||||
C. dubliniensis | 235 | 26 | 57 | 102 | 41 | 9 | 0.25/S | n = 146; 0.06/0.25 [34] | |||||
C. albicans | 1260 | 2 | 81 | 337 | 707 | 132 | 1 | 1/S | n = 1342; 0.25 /0.5 [34] | ||||
C. glabrata | 947 | 6 | 28 | 149 | 433 | 323 | 8 | 1/S | n = 907; 0.25/0.5 [34] | ||||
C. tropicalis | 147 | 5 | 75 | 64 | 3 | 1/S | n = 257; 0.25/0.5 [34] | ||||||
C. krusei | 150 | 1 | 3 | 73 | 73 | 1/S | n = 262; 0.5/1 [34] | ||||||
C. parapsilosis | 128 | 3 | 35 | 81 | 9 | 1/S | n = 314; 0.5/0.5 [34] | ||||||
P. kluyveri | 2 | 2 | |||||||||||
C. intermedia | 1 | 1 | n = 13; 0.25/1 [45], n = 1, (0.03) [46] | ||||||||||
P. manshurica | 1 | 1 | n = 1; (0.25) [47] | ||||||||||
L. elongisporus | 2 | 2 | n = 1, 0.03 [49]; n = 2 (0.03-0.12) [46] | ||||||||||
C. pararugosa | 2 | 1 | 1 | n = 60; 1/1 [48], n = 6; 1/1 [45] | |||||||||
C. utilis | 3 | 1 | 2 | ||||||||||
C. fermentati | 11 | 1 | 4 | 6 | n = 29; 0.5/2 [45] | ||||||||
C. pelliculosa | 12 | 3 | 3 | 4 | 2 | n = 30; 0.5/1 [45] | |||||||
R. mucilaginosa | 7 | 1 | 1 | 3 | 2 | 1st line (+/− 5FC) (BIIu/BIII) | n = 1; (0.25) [49]; n = 5; (0.5–1) [50] | ||||||
C. guilliermondii | 32 | 2 | 14 | 15 | 1 | [0.5] | n = 88; 0.125/0.25 [34], n = 30, 0.125/0.25 [51], n = 27; 1/1 [45] | ||||||
C. lusitaniae | 61 | 6 | 24 | 26 | 4 | 1 | [0.5] | n = 59; 0.125/0.25 [34], n = 30; 0.06/0.25 [51], n = 14; 0.25/1 [45] | |||||
C. orthopsilosis | 15 | 2 | 6 | 7 | n = 5; 0.06/NA (0.03-0.12) [25]; n = 8; (0.03-0.12) [46] | ||||||||
Cr. neoformans SC | 17 | 1 | 1 | 2 | 9 | 3 | 1 | [1] | 1st line (+/− 5FC) (IDSA) | n = 1022; 0.25/0.5 [34], n = 106, 0.125/0.25 [52] | |||
S. cerevisiae | 58 | 1 | 4 | 11 | 26 | 15 | 1 | [0.5] | 1st line (BIII) | n = 81; 0.25/0.5 [34] | |||
C. palmioleophila | 1 | 1 | n = 3; (0.125-0.5) [45] | ||||||||||
C. fabianii | 1 | 1 | n = 2, (0.06-0.25) [46] | ||||||||||
C. inconspicua | 6 | 1 | 3 | 2 | n = 168; 0.5/1 [48]; n = 5 (0.25-0.5) [46] | ||||||||
C. kefyr | 47 | 9 | 32 | 6 | [1] | n = 64; 0.5/1 [34], n = 17; 1/2 [45] | |||||||
C. nivariensis | 4 | 1 | 3 | n = 4; 0.125/0.25 [45] | |||||||||
K. ohmeri | 1 | 1 | 1st line (BIII) | n = 1, 0.03 [49], n = 1; (0.125) [50]; n = 4 (0.03-0.12) [46] | |||||||||
C. catenulata | 1 | 1 | n = 1; (0.06) [47] | ||||||||||
C. norvegensis | 10 | 1 | 7 | 2 | n = 18; 0.25/1 [45], n = 15; 1/2 [48] | ||||||||
C. metapsilosis | 5 | 4 | 1 | n = 6; 0.09/NA (0.06-0.12) [25] | |||||||||
C. lipolytica | 2 | 1 | 1 | n = 27; 0.5/1 [45] | |||||||||
C. ciferrii | 1 | 1 | n = 8; (1-2) [48]; n = 1, 0.25 [46] | ||||||||||
A. adeninivorans | 3 | 2 | 1 | n = 1; (2) [50] | |||||||||
G. candidum | 4 | 2 | 2 | 1st line (+/− 5FC) (BIII) | n = 3; (0.25-1) [35] | ||||||||
M. capitatus | 11 | 1 | 9 | 1 | 1st line (+/− 5FC) (BIIu) | n = 27; 0.25/0.5 [35], n = 3 (0.125-0.5) [49] | |||||||
T. asahii | 1 | 1 | 2nd line (CIIu) | n = 37; 2/16 [36], n = 29 (0.25-4) [37], n = 2 (2) [49], n = 1; (>8) [50] | |||||||||
T. dermatis | 2 | 1 | 1 | 2nd line (CIIu) | n = 1; (2) [36], n = 1 (0.13), [37], n = 1; (1) [50] | ||||||||
T. inkin | 1 | 1 | 2nd line (CIIu) | n = 3; (0.25-1) [37], n = 2; (>8) [50] |
5.3. Anidulafungin
Species | n | Anidulafungin MIC (mg/L) | EUCAST ECOFF/WT susc. 1 | ECMM/ISHAM/ASM recommendation (SoR/QoE) [14] 2 | Number, MIC50/MIC90 (Range), [Reference] 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.008 | 0.016 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | >1 | |||||
C. albicans | 1928 | 1626 | 255 | 44 | 2 | 1 | 0.03/S | n = 958; 0.004/0.016 [38] | |||||
C. tropicalis | 200 | 41 | 89 | 56 | 13 | 1 | 0.06/S | n = 110; 0.016/0.03 [38] | |||||
C. glabrata | 1351 | 52 | 352 | 591 | 327 | 11 | 7 | 3 | 5 | 3 | 0.06/S | n = 392; 0.016/0.03 [38] | |
C. krusei | 204 | 4 | 27 | 102 | 63 | 6 | 1 | 1 | 0.06/S | n = 60; 0.016/0.06 [38] | |||
C. parapsilosis | 164 | 5 | 43 | 77 | 39 | 4/S | n = 419; 1/2 [38] | ||||||
C. dubliniensis | 276 | 107 | 130 | 36 | 3 4 | 1 5 | 2 5 | n = 30; (≤0.016) [51], n = 14; 0.03/0.06 [39], n = 7; (0.03) [46] | |||||
P. kluyveri | 2 | 2 | |||||||||||
C. inconspicua | 10 | 4 | 4 | 2 | n = 168; 0.03/0.06 [48], n = 5; 0.03 [46] | ||||||||
C. norvegensis | 10 | 1 | 6 | 3 | n = 18; 0.016/0.06 [45], n = 15; 0.03/0.125 [48] | ||||||||
C. pelliculosa | 14 | 4 | 10 | n = 30; 0.008/0.016 [45] | |||||||||
C. utilis | 4 | 3 | 1 | ||||||||||
C. nivariensis | 6 | 3 | 1 | 2 | n = 4; 0.016/0.03 [45] | ||||||||
L. elongisporus | 2 | 2 | n = 1; 0.03 [49], n = 2, 0.03 [46] | ||||||||||
C. intermedia | 3 | 1 | 2 | n = 13; 0.03/0.125 [45], n = 1; 0.03 [46] | |||||||||
C. ciferrii | 1 | 1 | n = 8; (0.03->4) [48] | ||||||||||
C. fabianii | 1 | 1 | n = 2; (0.03) [46] | ||||||||||
C. palmioleophila | 10 | 2 | 6 | 1 | 1 | n = 3; (0.03-0.5) [45] | |||||||
C. kefyr | 56 | 1 | 13 | 31 | 8 | 24 | 1 5 | n = 17; 0.03/0.125 [45]; n = 8; 0.06/0.125 [39] | |||||
C. lusitaniae | 76 | 3 | 31 | 29 | 11 | 2 | n = 24; 0.125/0.5 [39], n = 30; 0.016/0.125 [51], n = 14; 0.06/0.125 [45] | ||||||
S. cerevisiae | 63 | 1 | 6 | 25 | 25 | 5 | 1 | 1st line Alt (BIII) 6 | |||||
C. metapsilosis | 6 | 1 | 3 | 1 | 1 | n = 6; 0.18/NA (0.06-1) [25] | |||||||
C. magnoliae | 2 | 1 | 1 | ||||||||||
C. pararugosa | 2 | 1 | 1 | n = 60; 0.5/>4 [48], n = 6; 0.25/0.5 [45] | |||||||||
A. adeninivorans | 3 | 1 | 1 | 1 | n = 1; (0.5) [50] | ||||||||
C. orthopsilosis | 16 | 1 | 10 | 2 | 3 | n = 27; 2/2 [40], n = 5; (0.25-0.5) [25]; n = 8; (0.12-1) [46] | |||||||
C. lipolytica | 2 | 2 | n = 27; 0.25/0.5 [45] | ||||||||||
C. fermentati | 24 | 4 | 10 | 7 | 3 | n = 29; 1/2 [45] | |||||||
K. ohmeri | 1 | 1 | 1st line Alt (BIIu/BIII) 6 | n = 1; (1) [49], n = 4; (0.03-4) [46], n = 1; (1) [50] | |||||||||
C. guilliermondii | 58 | 2 | 4 | 15 | 23 | 14 | n = 32; 1/2 [38], n = 30; 0.5/2 [51], n = 27; 1/2 [45], n = 8; 2/4 [39] | ||||||
Cr. neoformans SC | 21 | 21 | Against (IDSA) | ||||||||||
M. capitatus | 11 | 1 | 10 | Against (DIIu-DIII) | n = 3, (2-32) [49] | ||||||||
M. clavatus | 2 | 2 | Against (DIIu-DIII) | ||||||||||
G. candidum | 4 | 1 | 3 | Against | |||||||||
T. asahii | 2 | 2 | Against | n = 2, (4-32) [49], n = 1; (>8) [50] | |||||||||
T. dermatis | 2 | 2 | Against | n = 1; (>8) [50] | |||||||||
T. inkin | 1 | 1 | Against | n = 2; (>8) [50] | |||||||||
R. mucilaginosa | 8 | 8 | Against | n = 1; 32 [49], n = 5 (>8) [50] |
5.4. Fluconazole
Species | n | Fluconazole MICs (mg/L) | EUCAST ECOFF/ WT susc. 1 | ECMM/ISHAM/ASM Recommendation (SoR/QoE) [14] 2 | Number, MIC50/MIC90 (Range) 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | ≥32 | |||||
C. albicans | 1972 | 927 | 895 | 120 | 14 | 4 | 4 | 1 | 7 | 0.5/S | n = 2175; 0.25/0.5 [41] | ||
C. dubliniensis | 280 | 116 | 85 | 49 | 15 | 2 | 1 | 1 | 3 | 8 | [0.5]/S | n = 142; 0.25/0.5 [41] | |
C. tropicalis | 203 | 15 | 57 | 71 | 44 | 2 | 5 | 2 | 3 | 4 | 1/S | n = 551; 0.5/2 [41] | |
C. parapsilosis | 171 | 9 | 87 | 54 | 12 | 3 | 1 | 1 | 4 | 2/S | n = 835; 0.5/2 [41] | ||
C. glabrata | 1385 | 1 | 3 | 38 | 377 | 671 | 117 | 27 | 151 | 16/I | n = 1289; 4/32 [41] | ||
C. krusei | 206 | 5 | 39 | 162 | 128/R | n = 363; 32/64 [41] | |||||||
L. elongisporus | 2 | 2 | n = 7, (≤0.125-0.5) [42]; n = 1, 0.25 [49]; n = 2; (0.12) [46] | ||||||||||
C. kefyr | 57 | 3 | 20 | 23 | 8 | 2 | 1 | [1] | n = 170; 0.25/1 [42], n = 69; 0.25/1 [41], n = 17; 0.5/2 [45], n = 8; 0.5/16 [39] | ||||
C. lusitaniae | 77 | 5 | 24 | 36 | 5 | 1 | 2 | 4 | n = 221, 0.25/0.5 [42], n = 30; 0.25/2 [51], n = 24; 0.25/1 [39], n = 14, 0.25/1 [45] | ||||
C. intermedia | 3 | 1 | 1 | 1 | n = 13; 0.5/1 [45], n = 1; (0.25) [46] | ||||||||
C. fabianii | 1 | 1 | n = 10; 0.5/1 [42], n = 2; (0.5-1) [46] | ||||||||||
T. inkin | 1 | 1 | 1st line Alt (BIIu) | n = 10; 2/4 [42], n = 3; (2) [37], n = 2; (1) [50] | |||||||||
C. metapsilosis | 6 | 3 | 3 | n = 45; 1/2 [42], n = 9; (0.5-8) [46], n = 6; 1/NA [25] | |||||||||
C. orthopsilosis | 16 | 2 | 4 | 3 | 2 | 1 | 4 | n = 49; 0.5/8 [42], n = 5; (0.5) [25], n = 8; (0.5) [46] | |||||
C. utilis | 4 | 1 | 2 | 1 | n = 23; 1/4 [42] | ||||||||
C. catenulata | 1 | 1 | n = 1; (0.5) [47] | ||||||||||
T. dermatis | 2 | 1 | 1 | 1st line Alt (BIIu) | n = 7; (1-≥64) [42], n = 1; (0.25) [36], n = 1; (2) [37], n = 1; (4) [50] | ||||||||
C. fermentati | 24 | 4 | 11 | 4 | 2 | 3 | n = 35; 8/≥64 [42]¸n = 29; 16/32 [45] | ||||||
C. nivariensis | 6 | 2 | 4 | n = 13; 4/4 [42], n = 4; 4/16 [45] | |||||||||
C. pararugosa | 2 | 1 | 1 | n = 60; 16/64 [48], n = 9; (4-16) [42] n = 6, 16/>64 [45] | |||||||||
C. pelliculosa | 14 | 6 | 7 | 1 | n = 36; 2/4 [42], n = 30; 4/8 [45] | ||||||||
Cr. neoformans SC | 21 | 1 | 3 | 7 | 6 | 4 | 2nd line (IDSA) | n = 106; 4/16 [52], n = 1126; 4/8 [42] 4 | |||||
C. guilliermondii | 59 | 6 | 18 | 21 | 2 | 12 | [16] | n = 115; 8/≥64 [42], n = 66; 4/128 [41], n = 30; 2/16 [51], n = 27; 8/16 [45], n = 8; 4/128 [39] | |||||
S. cerevisiae | 64 | 4 | 20 | 24 | 10 | 6 | 1st line Alt (BIIu) | n = 61; 8/16 [42] | |||||
K. ohmeri | 1 | 1 | 1st line Alt (BIIu-BIII) | n = 32; 4/16 [42], n = 4; (2-8) [46], n = 1; (8) [49], n = 1; (16) [50] | |||||||||
C. bovina | 1 | 1 | n = 5; (2-8) [42] | ||||||||||
T. asahii | 2 | 2 | 1st line Alt (BIIu) | n = 59; 4/16 [42], n = 37; 8/64 [36], n = 29; (1-64) [37], n = 2; (1-4) [49], n = 1; (16) [50] | |||||||||
M. capitatus | 11 | 2 | 3 | 3 | 3 | (BIIu-DIII) | n = 56; 8/16 [42], n = 28; 4/16 [35] , n = 3, (32-128) [49] | ||||||
C. palmioleophila | 10 | 1 | 1 | 3 | 5 | n = 20; 8/32 [42], n = 3; (8-16) [45] | |||||||
R. mucilaginosa | 8 | 8 | Against (BIIu-DIII) | n = 55; ≥64/≥64 [42], n = 5; (64) [50], n = 1; (128) [49] | |||||||||
C. norvegensis | 11 | 5 | 6 | n = 19; 32/≥64 [42], n = 18; 32/64 [45] , n = 15; 64/>64 [48] | |||||||||
C. inconspicua | 10 | 3 | 7 | n = 168; 32/>64 [48], n = 45; 16/32 [42], n = 5, (32->64) [46] | |||||||||
C. lipolytica | 2 | 1 | 1 | n = 27; 16/32 [45], n = 27; 4/16 [42] | |||||||||
M. clavatus | 2 | 1 | 1 | (BIIu-DIII) | n = 184; 16/≥64 [42], n = 18; 8/16 [35] | ||||||||
C. magnoliae | 2 | 2 | |||||||||||
C. ciferrii | 1 | 1 | n = 8; (16->64) [48], n = 1; (>64) [46] | ||||||||||
A. adeninivorans | 3 | 3 | n = 1; (64) [50] | ||||||||||
G. candidum | 4 | 4 | n = 36; 16/≥64 [42], n = 3; (2-16) [35] | ||||||||||
P. manshurica | 1 | 1 | n = 1; (64) [47] | ||||||||||
P. kluyveri | 2 | 2 |
5.5. Voriconazole
6. Interpretation of MICs Obtained by Commercial Tests
Species | n | Voriconazole MIC (mg/L) | EUCAST ECOFF/WT susc. 1 | ECMM/ISHAM/ASM Recommendation (SoR/QoE) [14] 2 | Number, MIC50/MIC90 (Range) 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.004 | 0.008 | 0.016 | 0.03 | 0.06 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | >4 | |||||
C. albicans | 865 | 597 | 237 | 15 | 7 | 4 | 1 | 1 | 3 | 0.03/S | n = 13,630; 0.016/0.03 4 [43] | |||||
C. dubliniensis | 184 | 40 | 106 | 26 | 3 | 1 | 2 | 2 | 4 | 0.03/S | n = 101; 0.016/0.03 4 [43] | |||||
C. parapsilosis | 94 | 2 | 30 | 47 | 10 | 3 | 1 | 1 | 0.06/S | n = 2571; 0.016/0.06 4 [43] | ||||||
C. tropicalis | 95 | 8 | 34 | 40 | 6 | 3 | 2 | 2 | 0.125/S | n = 2958; 0.03/0.125 4 [43] | ||||||
C. glabrata | 637 | 1 | 71 | 340 | 131 | 25 | 7 | 17 | 27 | 15 | 3 | 1/IE | n = 5907; 0.25/1 [43] | |||
C. krusei | 109 | 21 | 49 | 24 | 11 | 3 | 1 | 1/IE | n = 427; 0.25/1 [43] | |||||||
C. kefyr | 43 | 2 | 25 | 13 | 2 | 1 | n = 170; ≤0.015/≤0.015 [42], n = 34; 0.016/0.03 [43]; n = 17; 0.016/0.06 [45], n = 8; 0.016/1 [39] | |||||||||
C. lusitaniae | 49 | 5 | 33 | 8 | 2 | 1 | n = 221; ≤0.015/≤0.015 [42], n = 91; 0.016/0.06 [43], n = 30; 0.016/0.06 [51], n = 24; 0.016/0.03 [39] | |||||||||
L. elongisporus | 2 | 1 | 1 | n = 7; (≤0.015) [42], n = 1; (0.02) [49] | ||||||||||||
C. intermedia | 3 | 1 | 2 6 | n = 13; 0.016/0.03 [45] | ||||||||||||
T. inkin | 1 | 1 | 1st line (BIIu-CIII) | n = 10; ≤0.015/0.06 [42], n = 3; (0.03-0.13) [37], n = 2; (0.015-0.25) [50] | ||||||||||||
C. metapsilosis | 5 | 2 | 3 | n = 45; 0.03/0.06 [42], n = 6; 0.03/NA (0.02-0.12) [25] | ||||||||||||
C. catenulata | 1 | 1 | n = 1; (≤0.015) [47] | |||||||||||||
C. orthopsilosis | 12 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | n = 49; 0.03/1 [42], n = 5; 0.03/NA (0.02-0.03) [25] | |||||||
C. nivariensis | 4 | 2 | 2 | n = 13; 0.06-0.125 [42], n = 4, (0.016-0.125) [45] | ||||||||||||
K. ohmeri | 1 | 1 | 2nd line (BIII) | n = 32; 0.03/0.125 [42], n = 1, (0.06) [49], n = 1; (0.06) [50] | ||||||||||||
C. lipolytica | 2 | 1 | 1 | n = 27; 0.06/0.125 [42], n = 26;0.125/0.25 [45] | ||||||||||||
T. dermatis | 2 | 2 | 1st line (BIIu-CIII) | n = 7; (≤0.015-0.125) [42]; n = 1; (0.06) [37], n = 1; (0.03) [36], n = 1 (0.06) [50] | ||||||||||||
C. fermentati | 15 | 3 6 | 7 | 3 | 1 | 1 | n = 35; 0.125/2 [42], n = 29; 0.25/0.5 [45] | |||||||||
C. pelliculosa | 6 | 1 | 4 | 1 | n = 36; 0.125/0.25 [42], n = 30; 0.06/0.125 [45] | |||||||||||
C. guilliermondii | 50 | 5 6 | 16 | 15 | 2 | 4 | 2 | 2 | 2 | 1 | n = 125; 0.06/0.5 [43], n = 115; 0.06/0.5 [42], n = 30; 0.06/2 [51], n = 27; 0.125/0.25 [45] | |||||
S. cerevisiae | 48 | 9 | 28 | 8 | 2 | 1 | (BIII) | n = 61; 0.125/0.25 [42], n = 59; 0.125/0.5 [43] | ||||||||
Cr. neoformans SC | 10 | 2 | 1 | 3 | 3 | 1 | 0.5 | n = 479; 0.125/0.25 [43], n = 106, 0.03/0.06 [52], n = 1126; 0.03/0.125 [42] 5 | ||||||||
C. palmioleophila | 9 | 4 | 2 | 1 | 2 | n = 20; 0.125/0.25 [42], n = 3; (0.125) [45] | ||||||||||
C. utilis | 3 | 1 | 2 | n = 23; 0.06/0.125 [42] | ||||||||||||
C. bovina | 1 | 1 | n = 5; (0.03-0.125) [42] | |||||||||||||
T. asahii | 1 | 1 | 1st line (BIIu-CIII) | n = 59; 0.06/0.25 [42]; n = 37; 1/32 [36], n = 29; (0.03-0.5) [37]; n = 2 (0.25) [49]; n = 1 (0.25) [50] | ||||||||||||
C. inconspicua | 4 | 2 | 1 | 1 | n = 168; 0.25/1 [48], n = 45; 0.125/0.5 [42] | |||||||||||
G. candidum | 3 | 1 | 2 | 1st line Alt (BIII) | n = 36; 0.25/1 [42], n = 3; (0.06-0.25) [35] | |||||||||||
C. norvegensis | 9 | 1 | 4 | 3 | 1 | n = 19; 0.25/0.5 [42], n = 18; 0.5/0.5 [45], n = 15; 1/2 [48] | ||||||||||
M. capitatus | 10 | 2 | 2 | 2 | 3 | 1 | 1st line (BIIu) | n = 56; 0.06/0.5 [42], n = 27; 0.125/0.5 [35], n = 3 (1-16) [49] | ||||||||
C. ciferrii | 1 | 1 | n = 8; (0.5-2) [48] | |||||||||||||
C. pararugosa | 1 | 1 | n = 60; 0.5/1 [48], n = 9; (≤0.015-0.25) [42], n = 6, 0.25/0.5 [45] | |||||||||||||
P. manshurica | 1 | 1 | n = 1; (0.125) [47] | |||||||||||||
P. kluyveri | 2 | 1 | 1 | |||||||||||||
A. adeninivorans | 2 | 1 | 1 | n = 1; (1) [50] | ||||||||||||
R. mucilaginosa | 5 | 1 | 2 | 1 | 1 | Against | n = 55; 2/4 [42], n = 5 (0.5->8) [50], n = 1; (16) [49] |
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arendrup, M.C.; Friberg, N.; Mares, M.; Kahlmeter, G.; Meletiadis, J.; Guinea, J.; Arendrup, M.C.; Meletiadis, J.; Guinea, J.; Friberg, N.; et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin. Microbiol. Infect. 2020, 26, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Guinea, J.; Cuenca-Estrella, M.; Lagrou, K.; Howard, S.J.; Arendrup, M.C.; Meletiadis, J.; Howard, S.J.; et al. EUCAST technical note on isavuconazole breakpoints for Aspergillus, itraconazole breakpoints for Candida and updates for the antifungal susceptibility testing method documents. Clin. Microbiol. Infect. 2016, 22, 571.e1–571.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W.W. Breakpoints for antifungal agents: An update from EUCAST focussing on echinocandins against Candida spp. and triazoles against Aspergillus spp. Drug Resist. Updat. 2013, 16, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Lu, P.-L.; Tan, B.H.; Chakrabarti, A.; Wu, U.-I.; Yang, J.-H.; Patel, A.K.; Li, R.Y.; Watcharananan, S.P.; Liu, Z.; et al. The epidemiology of non-Candida yeast isolated from blood: The Asia Surveillance Study. Mycoses 2019, 62, 112–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinea, J.; Zaragoza, Ó.; Escribano, P.; Martín-Mazuelos, E.; Pemán, J.; Sánchez-Reus, F.; Cuenca-Estrella, M. Molecular Identification and Antifungal Susceptibility of Yeast Isolates Causing Fungemia Collected in a Population-Based Study in Spain in 2010 and 2011. Antimicrob. Agents Chemother. 2014, 58, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Klingspor, L.; Ullberg, M.; Rydberg, J.; Kondori, N.; Serrander, L.; Swanberg, J.; Nilsson, K.; Jendle Bengtén, C.; Johansson, M.; Granlund, M.; et al. Epidemiology of fungaemia in Sweden: A nationwide retrospective observational survey. Mycoses 2018, 000, 777–785. [Google Scholar] [CrossRef]
- Prigitano, A.; Cavanna, C.; Passera, M.; Gelmi, M.; Sala, E.; Ossi, C.; Grancini, A.; Calabrò, M.; Bramati, S.; Tejada, M.; et al. Evolution of fungemia in an Italian region. J. Mycol. Med. 2020, 30, 100906. [Google Scholar] [CrossRef]
- Astvad, K.M.T.; Johansen, H.K.; Røder, B.L.; Rosenvinge, F.S.; Knudsen, J.D.; Lemming, L.; Schønheyder, H.C.; Hare, R.K.; Kristensen, L.; Nielsen, L.; et al. Update from a 12-Year Nationwide Fungemia Surveillance: Increasing Intrinsic and Acquired Resistance Causes Concern. J. Clin. Microbiol. 2018, 56, e01564-17. [Google Scholar] [CrossRef] [Green Version]
- Risum, M.; Astvad, K.; Johansen, H.K.; Schønheyder, H.C.; Rosenvinge, F.; Knudsen, J.D.; Hare, R.K.; Datcu, R.; Røder, B.L.; Antsupova, V.S.; et al. Update 2016-2018 of the Nationwide Danish Fungaemia Surveillance Study: Epidemiologic Changes in a 15-Year Perspective. J. Fungi 2021, 7, 491. [Google Scholar] [CrossRef]
- Siopi, M.; Tarpatzi, A.; Kalogeropoulou, E.; Damianidou, S.; Vasilakopoulou, A.; Vourli, S.; Pournaras, S.; Meletiadis, J. Epidemiological trends of fungemia in Greece with a focus on candidemia during the recent financial crisis: A 10-year survey in a tertiary care academic hospital and review of literature. Antimicrob. Agents Chemother. 2020, 64, 1–17. [Google Scholar] [CrossRef]
- Hesstvedt, L.; Gaustad, P.; Andersen, C.T.; Haarr, E.; Hannula, R.; Haukland, H.H.; Hermansen, N.-O.; Larssen, K.W.; Mylvaganam, H.; Ranheim, T.E.; et al. Twenty-two years of candidaemia surveillance: Results from a Norwegian national study. Clin. Microbiol. Infect. 2015, 21, 938–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O.; Arikan-Akdagli, S.; Cuenca-Estrella, M.; Dannaoui, E.; van Diepeningen, A.D.; et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 2014, 20, 76–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.C.-A.; Perfect, J.; Colombo, A.L.; Cornely, O.A.; Groll, A.H.; Seidel, D.; Albus, K.; de Almedia, J.N.; Garcia-Effron, G.; Gilroy, N.; et al. Global guideline for the diagnosis and management of rare yeast infections: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2021, 3099, 1–12. [Google Scholar] [CrossRef]
- Brandt, M.E.; Lockhart, S.R. Recent taxonomic developments with candida and other opportunistic yeasts. Curr. Fungal Infect. Rep. 2012, 6, 170–177. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Guarro, J.; Gené, J.; Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, M.J.; Vitale, R.G. Atlas of Clinical Fungi, 4th ed. 2020. Available online: https://www.clinicalfungi.org/ (accessed on 1 December 2021).
- Turnidge, J.; Paterson, D.L. Setting and Revising Antibacterial Susceptibility Breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI Standard M27; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2017. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; CLSI Standard M38; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2017. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antifungal Susceptibility Testing og Yeasts, 2nd ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2020. [Google Scholar]
- Pfaller, M.A.; Espinel-Ingroff, A.; Boyken, L.; Hollis, R.J.; Kroeger, J.; Messer, S.A.; Tendolkar, S.; Diekema, D.J. Comparison of the broth microdilution (BMD) method of the European Committee on Antimicrobial Susceptibility Testing with the 24-hour CLSI BMD method for testing susceptibility of Candida species to fluconazole, posaconazole, and voriconazole by use of ep. J. Clin. Microbiol. 2011, 49, 845–850. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 Systemically active antifungal agents when tested against Candida spp. Diagn. Microbiol. Infect. Dis. 2014, 79, 198–204. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Garcia-Effron, G.; Lass-Florl, C.; Lopez, A.G.; Rodriguez-Tudela, J.-L.; Cuenca-Estrella, M.; Perlin, D.S. Echinocandin Susceptibility Testing of Candida Species: Comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, Disk Diffusion, and Agar Dilution Methods with RPMI and IsoSensitest Media. Antimicrob. Agents Chemother. 2010, 54, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J.; Andes, D.; Arendrup, M.C.; Brown, S.D.; Lockhart, S.R.; Motyl, M.; Perlin, D.S. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Updat. 2011, 14, 164–176. [Google Scholar] [CrossRef]
- Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Rodriguez, D.; Almirante, B.; Pahissa, A.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M.; Fridkin, S.; Hajjeh, R.; Park, B.; et al. Prevalence and susceptibility profile of Candida metapsilosis and Candida orthopsilosis: Results from population-based surveillance of candidemia in Spain. Antimicrob. Agents Chemother. 2008, 52, 1506–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, F.; Hare Jensen, R.; Meis, J.F.; Arendrup, M.C. Molecular epidemiology and in vitro antifungal susceptibility testing of 108 clinical Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato isolates from Denmark. Mycoses 2016, 59, 576–584. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 3rd ed.; CLSI supplement M59; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Morio, F.; Jensen, R.H.; Le Pape, P.; Arendrup, M.C. Molecular basis of antifungal drug resistance in yeasts. Int. J. Antimicrob. Agents 2017, 50, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J.R.; Ghannoum, M. Emerging Issues in Antifungal Resistance. Infect. Dis. Clin. N. Am. 2020, 34, 921–943. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Kahlmeter, G.; Rodriguez-Tudela, J.L.; Donnelly, J.P. Breakpoints for susceptibility testing should Not divide wild-type distributions of important target species. Antimicrob. Agents Chemother. 2009, 53, 1628–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. MIC Distributions and Epidemiological Cut-Off Value (ECOFF) Setting, EUCAST SOP 10.2. 2021. Available online: http://www.eucast.org (accessed on 9 December 2021).
- European Committee on Antimicrobial Susceptibility Testing. Setting Breakpoints for New Antimicrobial Agents, EUCAST SOP 1.4. 2021. Available online: http://www.eucast.org (accessed on 9 December 2021).
- European Committee on Antimicrobial Susceptibility Testing. Review and Revision of Antimicrobial Breakpoints, EUCAST SOP 3.3. 2020. Available online: http://www.eucast.org (accessed on 1 December 2021).
- European Committee on Antimicrobial Susceptibility Testing. Amphotericin B: Rationale for the Clinical Breakpoints, Version 2.0. 2020. Available online: http://www.eucast.org (accessed on 9 December 2021).
- Esposto, M.C.; Prigitano, A.; Lo Cascio, G.; Ossi, C.; Grancini, A.; Cavanna, C.; Lallitto, F.; Tejada, M.; Bandettini, R.; Mularoni, A.; et al. Yeast-like filamentous fungi: Molecular identification and in vitro susceptibility study. Med. Mycol. 2019, 57, 909–913. [Google Scholar] [CrossRef]
- Arabatzis, M.; Abel, P.; Kanellopoulou, M.; Adamou, D.; Alexandrou-Athanasoulis, H.; Stathi, A.; Platsouka, E.; Milioni, A.; Pangalis, A.; Velegraki, A. Sequence-based identification, genotyping and EUCAST antifungal susceptibilities of Trichosporon clinical isolates from Greece. Clin. Microbiol. Infect. 2014, 20, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Taverna, C.G.; Córdoba, S.; Murisengo, O.A.; Vivot, W.; Davel, G.; Bosco-Borgeat, M.E. Molecular identification, genotyping, and antifungal susceptibility testing of clinically relevant Trichosporon species from Argentina. Med. Mycol. 2014, 52, 356–366. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Anidulafungin: Rationale for the Clinical Breakpoints, Version 3.0. 2020. Available online: http://www.eucast.org (accessed on 9 December 2021).
- Beyer, R.; Spettel, K.; Zeller, I.; Lass-Flörl, C.; Achleitner, D.; Krause, R.; Apfalter, P.; Buzina, W.; Strauss, J.; Gregori, C.; et al. Antifungal susceptibility of yeast bloodstream isolates collected during a 10-year period in Austria. Mycoses 2019, 64, 357–367. [Google Scholar] [CrossRef]
- Lovero, G.; Borghi, E.; Balbino, S.; Cirasola, D.; De Giglio, O.; Perdoni, F.; Caggiano, G.; Morace, G.; Montagna, M.T. Molecular identification and echinocandin susceptibility of candida parapsilosis complex bloodstream isolates in Italy, 2007–2014. PLoS One 2016, 11, e0150218. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Fluconazole: Rationale for the Clinical Breakpoints, Version 3.0. 2020. Available online: http://www.eucast.org (accessed on 9 December 2021).
- Desnos-Ollivier, M.; Lortholary, O.; Bretagne, S.; Dromer, F. Azole Susceptibility Profiles of More than 9,000 Clinical Yeast Isolates Belonging to 40 Common and Rare Species. Antimicrob. Agents Chemother. 2021, 65, 1–10. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing. Voriconazole: Rationale for the Clinical Breakpoints, Version 4.0. 2020. Available online: https://www.eucast.org (accessed on 9 December 2021).
- Jensen, R.H.; Arendrup, M.C. Candida palmioleophila: Characterization of a Previously Overlooked Pathogen and Its Unique Susceptibility Profile in Comparison with Five Related Species. J. Clin. Microbiol. 2011, 49, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrou, A.A.; Pérez-Hansen, A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. Elevated minimum inhibitory concentrations to antifungal drugs prevail in 14 rare species of candidemia-causing Saccharomycotina yeasts. Med. Mycol. 2020, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cendejas-Bueno, E.; Gomez-Lopez, A.; Mellado, E.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Identification of pathogenic rare yeast species in clinical samples: Comparison between phenotypical and molecular methods. J. Clin. Microbiol. 2010, 48, 1895–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bretagne, S.; Renaudat, C.; Desnos-Ollivier, M.; Sitbon, K.; Lortholary, O.; Dromer, F. Predisposing factors and outcome of uncommon yeast species-related fungaemia based on an exhaustive surveillance programme (2002–14). J. Antimicrob. Chemother. 2017, 72, 1784–1793. [Google Scholar] [CrossRef]
- Pérez-Hansen, A.; Lass-Flörl, C.; Lackner, M.; Aigner, M.; Alastruey-Izquierdo, A.; Arikan-Akdagli, S.; Bader, O.; Becker, K.; Boekhout, T.; Buzina, W.; et al. Antifungal susceptibility profiles of rare ascomycetous yeasts. J. Antimicrob. Chemother. 2019, 74, 2649–2656. [Google Scholar] [CrossRef]
- Fernández-Ruiz, M.; Guinea, J.; Puig-Asensio, M.; Zaragoza, Ó.; Almirante, B.; Cuenca-Estrella, M.; Aguado, J.M.; CANDIPOP Project; GEIH-GEMICOMED (SEIMC) and REIPI. Fungemia due to rare opportunistic yeasts: Data from a population-based surveillance in Spain. Med. Mycol. 2017, 55, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Uría, A.; Muñoz, P.; Vena, A.; Guinea, J.; Marcos-Zambrano, L.J.; Escribano, P.; Sánchez-Carrillo, C.; Bouza, E.; Valerio, M.; Cruz, A.F.; et al. Fungaemia caused by rare yeasts: Incidence, clinical characteristics and outcome over 10 years. J. Antimicrob. Chemother. 2018, 73, 823–825. [Google Scholar] [CrossRef] [Green Version]
- Díaz-García, J.; Alcalá, L.; Martín-Rabadán, P.; Mesquida, A.; Sánchez-Carrillo, C.; Reigadas, E.; Muñoz, P.; Escribano, P.; Guinea, J. Susceptibility of uncommon Candida species to systemic antifungals by the EUCAST methodology. Med. Mycol. 2020, 58, 848–851. [Google Scholar] [CrossRef]
- Delma, F.Z.; Al-Hatmi, A.M.S.; Buil, J.B.; van der Lee, H.; Tehupeiory-Kooreman, M.; de Hoog, G.S.; Meletiadis, J.; Verweij, P.E. Comparison of MIC Test Strip and Sensititre YeastOne with the CLSI and EUCAST Broth Microdilution Reference Methods for In Vitro Antifungal Susceptibility Testing of Cryptococcus neoformans. Antimicrob. Agents Chemother. 2020, 64, 1–7. [Google Scholar] [CrossRef]
- Perfect, J.R.; Dismukes, W.E.; Dromer, F.; Goldman, D.L.; Graybill, J.R.; Hamill, R.J.; Harrison, T.S.; Larsen, R.A.; Lortholary, O.; Nguyen, M.; et al. Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 291–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, B.J.; Lewis, R.E.; Kontoyiannis, D.P. Candida lusitaniae fungemia in cancer patients: Risk factors for amphotericin B failure and outcome. Med. Mycol. 2008, 46, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Fekkar, A.; Meyer, I.; Brossas, J.Y.; Dannaoui, E.; Palous, M.; Uzunov, M.; Nguyen, S.; Leblond, V.; Mazier, D.; Datry, A. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob. Agents Chemother. 2013, 57, 2380–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asner, S.A.; Giulieri, S.; Diezi, M.; Marchetti, O.; Sanglard, D. Acquired Multidrug Antifungal Resistance in Candida lusitaniae during Therapy. Antimicrob. Agents Chemother. 2014, 59, 7715–7722. [Google Scholar] [CrossRef]
- Desnos-Ollivier, M.; Moquet, O.; Chouaki, T.; Guérin, A.-M.M.; Dromer, F. Development of echinocandin resistance in Clavispora lusitaniae during caspofungin treatment. J. Clin. Microbiol. 2011, 49, 2304–2306. [Google Scholar] [CrossRef] [Green Version]
- Konuma, T.; Takahashi, S.; Kiyuna, T.; Miharu, Y.; Suzuki, M.; Shibata, H.; Kato, S.; Takahashi, S.; Tojo, A. Breakthrough fungemia due to Candida fermentati with fks1p mutation under micafungin treatment in a cord blood transplant recipient. Transpl. Infect. Dis. 2017, 19, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kabbara, N.; Lacroix, C.; De Latour, R.P.; Socié, G.; Ghannoum, M.; Ribaud, P. Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica 2008, 93, 639–640. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, C.D.; Garcia-Effron, G.; Zaas, A.K.; Perfect, J.R.; Perlin, D.S.; Alexander, B.D. Breakthrough Invasive Candidiasis in Patients on Micafungin. J. Clin. Microbiol. 2010, 48, 2373–2380. [Google Scholar] [CrossRef] [Green Version]
- Morita, K.; Honda, A.; Koya, J.; Toyama, K.; Ikeda, M.; Misawa, Y.; Okugawa, S.; Nakamura, F.; Moriya, K.; Kurokawa, M. Three cases of Candida fermentati fungemia following hematopoietic stem cell transplantation. J. Infect. Chemother. 2018, 24, 576–578. [Google Scholar] [CrossRef]
- Al-Sweih, N.; Ahmad, S.; Joseph, L.; Khan, S.; Vayalil, S.; Chandy, R.; Khan, Z. Candida fermentati as a Cause of Persistent Fungemia in a Preterm Neonate Successfully Treated by Combination Therapy with Amphotericin B and Caspofungin. J. Clin. Microbiol. 2015, 53, 1038–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ruiz, M.; Aguado, J.M.; Almirante, B.; Lora-Pablos, D.; Padilla, B.; Puig-Asensio, M.; Montejo, M.; García-Rodríguez, J.; Pemán, J.; Ruiz Pérez de Pipaón, M.; et al. Initial Use of Echinocandins Does Not Negatively Influence Outcome in Candida parapsilosis Bloodstream Infection: A Propensity Score Analysis. Clin. Infect. Dis. 2014, 58, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Vendetti, N.; Zaoutis, T.E.; Baddley, J.; Ostrosky-Zeichner, L.; Pappas, P.; Fisher, B.T. Comparative effectiveness of echinocandins versus fluconazole therapy for the treatment of adult candidaemia due to Candida parapsilosis: A retrospective observational cohort study of the Mycoses Study Group (MSG-12). J. Antimicrob. Chemother. 2016, 71, 3536–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Beredaki, M.-I.; Georgiou, P.-C.; Siopi, M.; Kanioura, L.; Andes, D.; Arendrup, M.C.; Mouton, J.W.; Meletiadis, J. Toward Harmonization of Voriconazole CLSI and EUCAST Breakpoints for Candida albicans Using a Validated In Vitro Pharmacokinetic/Pharmacodynamic Model. Antimicrob. Agents Chemother. 2020, 64, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Verification of Commercial Microbial Identification and Antimicrobial Susceptibility Testing Systems, 1st ed.; CLSI guideline M52; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2015. [Google Scholar]
- Helleberg, M.; JØrgensen, K.M.; Hare, R.K.; Datcu, R.; Chowdhary, A.; Arendrup, M.C. Rezafungin In Vitro Activity against Contemporary Nordic Clinical Candida Isolates and Candida auris Determined by the EUCAST Reference Method. Antimicrob. Agents Chemother. 2020, 64, e02438-19. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.3, E.Def 9.3 and E.Def 11.0 Procedures. Version 2. 2020. Available online: http://www.eucast.org (accessed on 9 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astvad, K.M.T.; Arikan-Akdagli, S.; Arendrup, M.C. A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. J. Fungi 2022, 8, 141. https://doi.org/10.3390/jof8020141
Astvad KMT, Arikan-Akdagli S, Arendrup MC. A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. Journal of Fungi. 2022; 8(2):141. https://doi.org/10.3390/jof8020141
Chicago/Turabian StyleAstvad, Karen Marie Thyssen, Sevtap Arikan-Akdagli, and Maiken Cavling Arendrup. 2022. "A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints" Journal of Fungi 8, no. 2: 141. https://doi.org/10.3390/jof8020141
APA StyleAstvad, K. M. T., Arikan-Akdagli, S., & Arendrup, M. C. (2022). A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints. Journal of Fungi, 8(2), 141. https://doi.org/10.3390/jof8020141