Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Morphological and Molecular Identification
2.3. Production of Myco-Coagulant
2.4. Separation and Purification of Myco-Coagulant
2.5. Characterization of the Myco-Coagulant
3. Results and Discussion
3.1. Identification of Fungal Strain
3.2. Characterization of the Myco-Coagulant
3.3. Chemical Analysis
3.4. Flocculation Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, J.; Cheng, W.; Wan, T.; Wang, M.; Meng, T.; Lv, T. Characteristics of the extracellular polymeric substance composition in an up-flow biological aerated filter reactor: The impacts of different aeration rates and filter medium heights. Bioresour. Technol. 2019, 289, 121664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ji, S.; Sun, T.; Ma, F.; Chen, Z. Production of bio-coagulants prepared from wastewater supernatant of anaerobic co-digestion of corn straw and molasses wastewater treatment. BioResources 2017, 12, 1991–2003. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Li, N.; Wei, H.; Li, A.; Yang, H. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl3 in conjunction with a starch-based coagulant. Water Res. 2020, 170, 115361. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, H.; Zhou, J. Characterization of a bio-coagulant MBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. Bioresour. Technol. 2013, 137, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.M.; Qian, C.D.; Jiang, X.H.; Wu, X.C. Optimization and characterization of polysaccharide-based bio-coagulant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A. The potential role of aluminium in Alzheimer’s disease. Nephrol. Dial. Transplant. 2002, 17, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Rudén, C. Acrylamide and cancer risk—expert risk assessments and the public debate. Food Chem. Toxicol. 2004, 42, 335–349. [Google Scholar] [CrossRef]
- More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Subramanian, S.B.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering. Water Res. 2010, 44, 2253–2266. [Google Scholar] [CrossRef]
- Yang, M.; Liang, Y.; Dou, Y.; Jia, X.; Che, H. Isolation and identification of a bio-coagulant-producing strain and optimisation of cultural conditions via a response surface model. Chem. Ecol. 2015, 31, 650–660. [Google Scholar] [CrossRef]
- Lian, B.; Chen, Y.; Zhao, J.; Teng, H.H.; Zhu, L.; Yuan, S. Microbial flocculation by Bacillus mucilaginosus: Applications and mechanisms. Bioresour. Technol. 2008, 99, 4825–4831. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Nwodo, U.U.; Mabinya, L.V.; Okoli, A.S.; Okoh, A.I. Evaluation of flocculating performance of a thermostable bio-coagulant produced by marine Bacillus sp. Environ. Technol. 2016, 37, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Sun, J.; Li, J.; Jia, Y.; Xiao, T.; Meng, F.; Wang, M.; Ning, Z. High flocculation of coal washing wastewater using a novel bio-coagulant from Isaria cicadae GZU6722. Pol. J. Microbiol. 2020, 69, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljuboori, A.; Idris, H.R.; Abdullah, A.N.; Mohamad, R. Production and characterization of a bio-coagulant produced by Aspergillus flavus. Bioresour. Technol. 2013, 127, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Sivasankar, P.; Poongodi, S.; Lobo, A.O.; Pugazhendhi, A. Characterization of a novel polymeric bio-coagulant from marine actinobacterium Streptomyces sp. and its application in recovery of microalgae. Int. Biodeterior. Biodegrad. 2020, 148, 104883. [Google Scholar] [CrossRef]
- Deng, S.; Yu, G.; Ting, Y.P. Production of a bio-coagulant by Aspergillus parasiticus and its application in dye removal. Colloids Surf. B Biointerfaces 2005, 44, 179–186. [Google Scholar] [CrossRef]
- Tawila, Z.M.A.; Ismail, S.; Dadrasnia, A.; Usman, M.M. Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules 2018, 23, 2689. [Google Scholar] [CrossRef] [Green Version]
- Aljuboori, A.H.R.; Uemura, Y.; Osman, N.B.; Yusup, S. Production of a coagulant from Aspergillus niger using palm oil mill effluent as carbon source. Bioresour. Technol. 2014, 171, 66–70. [Google Scholar] [CrossRef]
- Li, Z.; Chen, R.W.; Lei, H.Y.; Shan, Z.; Bai, T.; Yu, Q.; Li, H.L. Characterization and flocculating properties of a novel bio-coagulant produced by Bacillus circulans. World J. Microbiol. Biotechnol. 2009, 25, 745–752. [Google Scholar] [CrossRef]
- Gong, W.; Wang, S.; Sun, X.; Liu, X.; Yue, Q.; Gao, B. Bio-coagulant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresour. Technol. 2008, 99, 4668–4674. [Google Scholar] [CrossRef]
- Auhim, H.S.; Odaa, N.H. Optimization of conditions of exopolysaccharide bio-coagulant from Azotobacter chrococcum and its potential for river water treatment. J. Microbiol Biotechnol. Res. 2013, 3, 93–99. [Google Scholar]
- Jebun, N.; Al-Mamun, A.; Alam, M.Z.; Raus, R.A. Fungal coagulant to reduce turbidity of river water. ARPN J. Engin. Appl. Sci. 2016, 11, 4094–4099. [Google Scholar]
- Sakthi, S.S.; Kanchana, D.; Saranraj, P.; Usharani, G. Evaluation of Amylase Activity of the Amylolytic Fungi Aspergillus niger using Cassava as Substrate. Intern. J. Appl. Microbiol. Sci. 2012, 1, 24–34. [Google Scholar]
- Bala Subramanian, S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. A new pellet-forming fungal strain: Its isolation, molecular identification, and performance for simultaneous sludge-solids reduction, flocculation, and dewatering. Water Environ. Res. 2008, 80, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein determination with the Folin phenol reaction. J. Biol. Chem. 1951, 93, 265–273. [Google Scholar] [CrossRef]
- Chen, G.C.; Johnson, B.R. Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl. Environ. Microbiol. 1983, 46, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Mtui, G.; Nakamura, Y. Lignocellulosic enzymes from Flavodon flavus, a fungus isolated from Western Indian Ocean off the Coast of Dar es Salaam, Tanzania. Afr. J. Biotechnol. 2008, 7, 3066–3072. [Google Scholar]
- Kurane, R.; Hatamochi, K.; Kakuno, T.; Kiyohara, M.; Hirano, M.; Taniguchi, Y. Production of a coagulant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci. Biotechnol. Biochem. 1994, 58, 428–429. [Google Scholar] [CrossRef]
- Pegler, D.N. The Genus Lentinus: A World Monograph; Bull Addit Ser 10; Royal Botanic Gardens: Kew, UK, 1983; pp. 1–273. [Google Scholar]
- Singer, R. The Agaricales in Modern Taxonomy, 4th ed.; Koeltz: Koenigstein, Germany, 1986. [Google Scholar]
- Karunarathna, S.C.; Yang, Z.L.; Zhao, R.L.; Vellinga, E.C.; Bahkali, A.H.; Chukeatirote, E.; Hyde, K.D. Three new species of Lentinus from northern Thailand. Mycol. Prog. 2011, 10, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.Z.; Fakhru’l-Razi, A. Enhanced settleability and dewaterability of fungal treated domestic wastewater sludge by liquid state bioconversion process. Water Res. 2003, 37, 1118–1124. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Yu, Y.; Li, Q.; Wang, H.; Chen, R.; He, N. Production and characterization of a novel bio-coagulant from Bacillus licheniformis. Appl. Environ. Microbiol 2010, 76, 2778–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royse, D.J.; Bahler, B.D.; Bahler, C.C. Enhanced yield of shiitake by saccharide amendment of the synthetic substrate. Appl. Environ. Microbiol. 1990, 56, 479–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatakka, A. Lignin-modifying enzymes from selected white-rot fungi: Production and role in lignin degradation. FEMS Microbiol. Rev. 1994, 13, 125–135. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Paice, M.G.; Reid, I.D.; Lanthier, P.; Yaguchi, M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 1995, 61, 1876–1880. [Google Scholar] [CrossRef] [Green Version]
- Jebun, N.; Mamun, A.; Alam, M.Z.; Raus, R. Production and stability of myco-coagulants from Lentinus squarrosulus RWF-5 and Simplicillium obclavatum RWF-6 for reduction of water turbidity. IIUM Eng. J. 2018, 19, 48–58. [Google Scholar] [CrossRef]
- Aljuboori, A.; Idris, H.R.; Al-joubory, H.H.R.; Uemura, Y.; Abubakar, B.I. Flocculation behaviour and mechanism of bio-coagulant produced by Aspergillus flavus. J Environ. Manag. 2015, 150, 466–471. [Google Scholar] [CrossRef]
- Cheng, J.P.; Zhang, L.Y.; Zheng, M. Screening of coagulant-producing microorganisms and flocculating activity. J. Environ. Sci 2004, 16, 894–897. [Google Scholar]
- Liu, W.; Wang, K.; Li, B.; Yuan, H.; Yang, J. Production and characterization of an intracellular bio-coagulant by Chryseobacterium daeguense W6 cultured in low nutrition medium. Bioresour. Technol. 2010, 101, 1044–1048. [Google Scholar] [CrossRef]
- Yong, P.; Bo, S.; Yu, Z. Research on flocculation property of bio-coagulant PGa21 Ca. Mod. Appl. Sci. 2009, 3, 106–112. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jebun, N.; Alam, M.Z.; Mamun, A.A.; Ahmad Raus, R. Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization. J. Fungi 2022, 8, 192. https://doi.org/10.3390/jof8020192
Jebun N, Alam MZ, Mamun AA, Ahmad Raus R. Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization. Journal of Fungi. 2022; 8(2):192. https://doi.org/10.3390/jof8020192
Chicago/Turabian StyleJebun, Nessa, Md Zahangir Alam, Abdullah Al Mamun, and Raha Ahmad Raus. 2022. "Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization" Journal of Fungi 8, no. 2: 192. https://doi.org/10.3390/jof8020192
APA StyleJebun, N., Alam, M. Z., Mamun, A. A., & Ahmad Raus, R. (2022). Novel Myco-Coagulant Produced by Lentinus squarrosulus for Removal of Water Turbidity: Fungal Identification and Flocculant Characterization. Journal of Fungi, 8(2), 192. https://doi.org/10.3390/jof8020192