Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Seed Material
2.2. Field Experimenlt and Sampling
2.3. Litter Quality Analysis
2.4. Soil Property Analysis
2.5. Statistical Analysis
3. Results
3.1. Aboveground Litter Characterization
3.2. Soil Chemical Properties
3.3. Visualization of the Effect of Plant Species and Endophyte Status on Aboveground Litter and Soil Properties
3.4. Soil Microbial Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reynolds, H.L.; Packer, A.; Bever, J.D.; Clay, K. Grassroots Ecology: Plant-Microbe-Soil Interactions as Drivers of Plant Community Structure and Dynamics. Ecology 2003, 84, 2281–2291. [Google Scholar] [CrossRef] [Green Version]
- Hewedy, O.A.; Abdel Lateif, K.S.; Seleiman, M.F.; Shami, A.; Albarakaty, F.M.; El-Meihy, R.M. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology 2020, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Franche, C.; Lindström, K.; Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 2009, 321, 35–59. [Google Scholar] [CrossRef]
- Bever, J.D.; Richardson, S.C.; Lawrence, B.M.; Holmes, J.; Watson, M. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 2009, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 2010, 12, 563–569. [Google Scholar] [CrossRef]
- Harindintwali, J.D.; Zhou, J.L.; Yu, X.B. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: A novel tool for environmental sustainability. Sci. Total Environ. 2020, 715, 136912. [Google Scholar] [CrossRef]
- Matthews, J.W.; Clay, K. Influence of Fungal Endophyte Infection on Plant–Soil Feedback and Community Interactions. Ecology 2001, 82, 500–509. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Aschehoug, E.T.; Metlen, K.L.; Callaway, R.M.; George, N. Fungal endophytes directly increase the competitive effects of an invasive forb. Ecology 2012, 93, 3–8. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhou, Y.P.; Lin, W.H.; Li, M.M.; Wang, M.N.; Wang, Z.G.; Kuang, Y.; Tian, P. Effect of an Epichloë endophyte on adaptability to water stress in Festuca sinensis. Fungal Ecol. 2017, 30, 39–47. [Google Scholar] [CrossRef]
- Chen, P.L.; Hu, Y.M.; Tang, F.; Zhao, M.L.; Peng, X.J.; Shen, S.H. Cooperation between Broussonetia papyrifera and Its Symbiotic Fungal Community To Improve Local Adaptation of the Host. Appl. Environ. Microbiol. 2020, 86, e00464-20. [Google Scholar] [CrossRef] [PubMed]
- Hosseyni Moghaddam, M.S.; Safaie, N.; Soltani, J.; Hagh-Doust, N. Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem. 2021, 160, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Koide, K.; Osono, T.; Takeda, H. Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 2005, 46, 280–286. [Google Scholar] [CrossRef]
- Sánchez Márquez, S.; Bills, G.F.; Herrero, N.; Zabalgogeazcoa, Í. Non-systemic fungal endophytes of grasses. Fungal Ecol. 2012, 5, 289–297. [Google Scholar] [CrossRef]
- Clay, K. Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 1987, 73, 58–362. [Google Scholar] [CrossRef]
- Leuchtmann, A. Systematics, distribution, and host specificity of grass endophytes. Nat. Toxins 1992, 1, 150–162. [Google Scholar] [CrossRef]
- Faeth, S.H. Are endophytic fungi defensive plant mutualists? Oikos 2002, 98, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.X.; Zou, W.X. Endophytes: A rich source of functional metabolites. Nat. Prod. Rep. 2001, 18, 448–459. [Google Scholar] [CrossRef]
- Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog. 2015, 82, 50–59. [Google Scholar] [CrossRef]
- Cao, R.H.; Liu, X.G.; Gao, K.X.; Mendgen, K.; Kang, Z.S.; Gao, J.F.; Dai, Y.; Wang, X. Mycoparasitism of Endophytic Fungi Isolated from Reed on Soilborne Phytopathogenic Fungi and Production of Cell Wall-Degrading Enzymes In Vitro. Curr. Microbiol. 2009, 59, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.; Rüdiger, H.; Sikora, R.A. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 2006, 8, 847–852. [Google Scholar] [CrossRef]
- Chitnis, V.R.; Suryanarayanan, T.S.; Nataraja, K.N.; Prasad, S.R.; Oelmuller, R.; Shaanker, R.U. Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Front. Plant Sci. 2020, 11, 1588. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.J.; Song, S.L.; Ma, C.Y.; Zhang, W.; Sun, K.; Tang, M.J.; Xie, X.G.; Fan, K.K.; Dai, C.C. Endophytic fungus improves peanut drought resistance by reassembling the root-dwelling community of arbuscular mycorrhizal fungi. Fungal Ecol. 2020, 48, 100993. [Google Scholar] [CrossRef]
- Gupta, S.; Schillaci, M.; Walker, R.; Smith, P.M.C.; Watt, M.; Roessner, U. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant Soil 2020, 461, 219–244. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Clay, K.; Marks, S. Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol. 1989, 111, 89–97. [Google Scholar] [CrossRef]
- Adams, A.E.; Kazenel, M.R.; Rudgers, J.A. Does a foliar endophyte improve plant fitness under flooding? Plant Ecol. 2017, 218, 711–723. [Google Scholar] [CrossRef]
- Torres, M.S.; White, J.F.; Zhang, X.; Hinton, D.M.; Bacon, C.W. Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol. 2012, 5, 322–330. [Google Scholar] [CrossRef]
- Buckley, H.; Young, C.A.; Charlton, N.D.; Hendricks, W.Q.; Haley, B.; Nagabhyru, P.; Rudgers, J.A. Leaf endophytes mediate fertilizer effects on plant yield and traits in northern oat grass (Trisetum spicatum). Plant Soil 2018, 434, 425–440. [Google Scholar] [CrossRef]
- Rahman, M.H.; Saiga, S. Endophyte Effects on Nutrient Acquisition in Tall Fescue Grown in Andisols. J. Plant Nutr. 2007, 30, 2141–2158. [Google Scholar] [CrossRef]
- Clay, K. Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi. Ecology 1988, 69, 10–16. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, J.; Zhao, X.X.; Shi, J.L.; Jiang, C.M.; Shao, D.Y. Beneficial effects of endophytic fungi colonization on plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef]
- Knops, J.M.H.; Wedin, D.; Tilman, D. Biodiversity and decomposition in experimental grassland ecosystems. Oecologia 2001, 126, 429–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madritch, M.D.; Hunter, M.D. Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia 2003, 136, 124–128. [Google Scholar] [CrossRef]
- Gartner, T.B.; Cardon, Z.G. Decomposition dynamics in mixed-species leaf litter. Oikos 2004, 104, 230–246. [Google Scholar] [CrossRef]
- Kumaresan, V.; Suryanarayanan, T.S. Endophytes assemblages in young mature and senescent leaves of Rhizophora apiculata: Evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 2002, 9, 81–91. [Google Scholar]
- Omacini, M.; Chaneton, E.J.; Ghersa, C.M.; Otero, P. Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 2004, 104, 581–590. [Google Scholar] [CrossRef]
- Lemons, A.; Clay, K.; Rudgers, J.A. Connecting plant-microbial interactions above and belowground: A fungal endophyte affects decomposition. Oecologia 2005, 145, 595–604. [Google Scholar] [CrossRef]
- Purahong, W.; Hyde, K.D. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 2010, 47, 1–7. [Google Scholar] [CrossRef]
- Chen, T.X.; Johnson, R.; Chen, S.H.; Lv, H.; Zhou, J.L.; Li, C.J. Infection by the fungal endophyte Epichloë bromicola enhances the tolerance of wild barley (Hordeum brevisubulatum) to salt and alkali stresses. Plant Soil 2018, 428, 353–370. [Google Scholar] [CrossRef]
- Yao, X.; Christensen, M.J.; Bao, G.S.; Zhang, C.P.; Li, X.Z.; Li, C.J.; Nan, Z.B. A toxic endophyte-infected grass helps reverse degradation and loss of biodiversity of over-grazed grasslands in northwest China. Sci. Rep. 2015, 5, 18527. [Google Scholar] [CrossRef]
- Ma, M.Z.; Christensen, M.J.; Nan, Z.B. Effects of the endophyte Epichloë festucae var. lolii of perennial ryegrass (Lolium perenne) on indicators of oxidative stress from pathogenic fungi during seed germination and seedling growth. Eur. J. Plant Pathol. 2015, 141, 571–583. [Google Scholar] [CrossRef]
- Song, M.L.; Chai, Q.; Li, X.Z.; Yao, X.; Li, C.J.; Christensen, M.J.; Nan, Z.B. An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley (Hordeum brevisubulatum) under salt stress. Plant Soil 2015, 387, 153–165. [Google Scholar] [CrossRef]
- Wang, J.F.; Nan, Z.B.; Christensen, M.J.; Li, C.J. Glucose-6-phosphate dehydrogenase plays a vital role in Achnatherum inebrians plants host to Epichloë gansuensis by improving growth under nitrogen deficiency. Plant Soil 2018, 430, 37–48. [Google Scholar] [CrossRef]
- FAO; ISRIC. Revised Legend of the FAO-UNESCO Soil Map of the World; ISRIC Report 1988/01; ISRIC—World Soil Information: Wageningen, The Netherlands, 1988. [Google Scholar]
- Wu, T.Y.; Schoenau, J.J.; Li, F.M.; Qian, P.Y.; Malhi, S.S.; Shi, Y.C.; Xu, F.L. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China. Soil Tillage Res. 2004, 77, 59–68. [Google Scholar] [CrossRef]
- Li, C.J.; Nan, Z.B.; Liu, Y.; Paul, V.H.; Peter, D. Methodology of Endophyte Detection of Drunken Horse Grass (Achnatherum inebrians). Edible Fungi China 2008, 27, 16–19. [Google Scholar]
- Kooch, Y.; Bayranvand, M. Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. For. Ecol. Manag. 2017, 401, 55–64. [Google Scholar] [CrossRef]
- Golebiewski, M.; Tarasek, A.; Sikora, M.; Deja-Sikora, E.; Tretyn, A.; Niklinska, M. Rapid Microbial Community Changes During Initial Stages of Pine Litter Decomposition. Microb. Ecol. 2019, 77, 56–75. [Google Scholar] [CrossRef] [Green Version]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for The Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinso, D.S. Chloroform Fumigation and The Release of Soil Nitrogen: A Rapid Direct Extraction Method To Measure Microbial Biomass Nitrogen in Soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Brookes, P.C.; Powlson, D.S. Measuring soil microbial biomass. Soil Biol. Biochem. 2004, 36, 5–7. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 15 January 2022).
- Brundrett, M.C. Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In Microbial Root Endophytes; Schulz, B., Boyle, C., Sieber, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 281–293. [Google Scholar]
- Drew, G.C.; Stevens, E.J.; King, K.C. Microbial evolution and transitions along the parasite-mutualist continuum. Nat. Rev. Microbiol. 2021, 19, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Wani, Z.A.; Ashraf, N.; Mohiuddin, T.; Riyaz-Ul-Hassan, S. Plant-endophyte symbiosis, an ecological perspective. Appl. Microbiol. Biotechnol. 2015, 99, 2955–2965. [Google Scholar] [CrossRef]
- Mishra, S.; Bhattacharjee, A.; Sharma, S. An ecological insight into the multifaceted world of plant-endophyte association. Crit. Rev. Plant Sci. 2021, 40, 127–146. [Google Scholar] [CrossRef]
- Christensen, M.J.; Bennett, R.J.; Ansari, H.A.; Koga, H.; Johnson, R.D.; Bryan, G.T.; Simpson, W.R.; Koolaard, J.P.; Nicklessd, E.M.; Voisey, C.R. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet. Biol. 2008, 45, 84–93. [Google Scholar] [CrossRef]
- Schardl, C.L.; Craven, K.D.; Speakman, S.; Stromberg, A.; Lindstrom, A.; Yoshida, R. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses. Syst. Biol. 2008, 57, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Rudgers, J.A.; Koslow, J.M.; Clay, K. Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol. Lett. 2004, 7, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Gundel, P.E.; Helander, M.; Garibaldi, L.A.; Vázquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Saikkonen, K. Direct and indirect effects of the fungal endophyte Epichloë uncinatum on litter decomposition of the host grass, Schedonorus pratensis. Plant Ecol. 2017, 218, 1107–1115. [Google Scholar] [CrossRef]
- Müller, C.B.; Krauss, J. Symbiosis between grasses and asexual fungal endophytes. Curr. Opin. Plant Biol. 2005, 8, 450–456. [Google Scholar] [CrossRef]
- Bultman, T.L.; McNeill, M.R.; Goldson, S.L. Isolate-dependent impacts of fungal endophytes in a multitrophic interaction. Oikos 2003, 102, 491–496. [Google Scholar] [CrossRef]
- Popay, A.J.; Hume, D.E.; Davis, K.L.; Tapper, B.A. Interactions between endophyte (Neotyphodium spp.) and ploidy in hybrid and perennial ryegrass cultivars and their effects on Argentine stem weevil (Listronotus bonariensis). N. Z. J. Agric. Res. 2003, 46, 311–319. [Google Scholar] [CrossRef]
- Cheplick, G.P.; Cho, R. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol. 2003, 158, 183–191. [Google Scholar] [CrossRef]
- Rogers, J.K.; Morton, B.C.; Mosali, J. Plant and Endophyte Effect on Fiber, N, and P Concentrations in Tall Fescue. Int. J. Agron. 2011, 2011, 948605. [Google Scholar] [CrossRef] [Green Version]
- Lledó, S.; Rodrigo, S.; Poblaciones, M.J.; Santamaria, O. Biomass yield, nutritive value and accumulation of minerals in Trifolium subterraneum L. as affected by fungal endophytes. Plant Soil 2015, 405, 197–210. [Google Scholar] [CrossRef]
- Clay, K.; Schardl, C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat. 2002, 160, S99–S127. [Google Scholar] [CrossRef]
- Bray, S.R.; Kitajima, K.; Mack, M.C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol. Biochem. 2012, 49, 30–37. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; McCulley, R.L.; McNear, D.H., Jr. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front. Plant Sci. 2015, 6, 183. [Google Scholar] [CrossRef] [Green Version]
- Patchett, A.; Newman, J.A. Comparison of Plant Metabolites in Root Exudates of Lolium perenne Infected with Different Strains of the Fungal Endophyte Epichloe festucae var. lolii. J. Fungi 2021, 7, 148. [Google Scholar] [CrossRef]
- Valencia, E.; Gross, N.; Quero, J.L.; Carmona, C.P.; Ochoa, V.; Gozalo, B.; Delgado-Baquerizo, M.; Dumack, K.; Hamonts, K.; Singh, B.K.; et al. Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Glob. Change Biol. 2018, 24, 5642–5654. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.F.; Hou, W.P.; Christensen, M.J.; Li, X.Z.; Xia, C.; Li, C.J.; Nan, Z.B. Role of Epichloe Endophytes in Improving Host Grass Resistance Ability and Soil Properties. J. Agric. Food Chem. 2020, 68, 6944–6955. [Google Scholar] [CrossRef]
- Harrison, K.A.; Bardgett, R.D. Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. J. Ecol. 2010, 98, 384–395. [Google Scholar] [CrossRef]
- Xue, W.; Berendse, F.; Bezemer, T.M.; Hart, M. Spatial heterogeneity in plant–soil feedbacks alters competitive interactions between two grassland plant species. Funct. Ecol. 2018, 32, 2085–2094. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Hobbie, S.E.; Berg, B.; Zhang, H.G.; Wang, Q.K.; Wang, Z.W.; Hättenschwiler, S. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl. Acad. Sci. USA 2018, 115, 10392–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoorens, B.; Aerts, R.; Stroetenga, M. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 2003, 137, 578–586. [Google Scholar] [CrossRef]
- Wu, L.; Feinstein, L.M.; Valverde-Barrantes, O.; Kershner, M.W.; Leff, L.G.; Blackwood, C.B. Placing the effects of leaf litter diversity on saprotrophic microorganisms in the context of leaf type and habitat. Microb. Ecol. 2011, 61, 399–409. [Google Scholar] [CrossRef]
- Hobara, S.; Osono, T.; Hirose, D.; Noro, K.; Hirota, M.; Benner, R. The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry 2013, 118, 471–486. [Google Scholar] [CrossRef]
- Fanin, N.; Barantal, S.; Fromin, N.; Schimann, H.; Schevin, P.; Hattenschwiler, S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE 2012, 7, e49990. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Cheng, Z.; Meng, H. Soil properties, nutrient dynamics, and soil enzyme activities associated with garlic stalk decomposition under various conditions. PLoS ONE 2012, 7, e50868. [Google Scholar] [CrossRef]
Litter Quality | Plants Species (P) | Endophyte Status (E) | (P) × (E) | |||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
TC | 26.026 | 0.000 | 5.388 | 0.027 | 0.311 | 0.735 |
TN | 38.131 | 0.000 | 1.369 | 0.251 | 2.463 | 0.102 |
TP | 21.744 | 0.000 | 1.725 | 0.199 | 9.542 | 0.001 |
C:N | 22.026 | 0.000 | 0.983 | 0.329 | 0.568 | 0.573 |
C:P | 31.620 | 0.000 | 0.994 | 0.327 | 9.902 | 0.000 |
N:P | 5.022 | 0.013 | 0.023 | 0.882 | 3.400 | 0.047 |
Cell solubles | 50.594 | 0.000 | 23.335 | 0.000 | 2.180 | 0.131 |
Hemicellulose | 43.715 | 0.000 | 1.686 | 0.204 | 1.254 | 0.300 |
ADF | 27.503 | 0.000 | 10.436 | 0.003 | 2.429 | 0.105 |
ADL | 2.777 | 0.078 | 13.252 | 0.001 | 12.316 | 0.000 |
Soil Property | Plants Species (P) | Endophyte Status (E) | (P) × (E) | |||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
TC | 1 | 0.362 | 14 | 0.001 | 0 | 0.909 |
TN | 1.391 | 0.264 | 3.294 | 0.080 | 0.197 | 0.822 |
TP | 0.803 | 0.457 | 2.689 | 0.111 | 0.513 | 0.604 |
C:N | 0.527 | 0.596 | 26.443 | 0.000 | 0.627 | 0.541 |
SOC | 3.066 | 0.061 | 7.208 | 0.012 | 2.283 | 0.119 |
NN | 1.253 | 0.300 | 12.539 | 0.001 | 28.063 | 0.000 |
AN | 14.505 | 0.000 | 57.237 | 0.000 | 9.123 | 0.001 |
AP | 0.510 | 0.605 | 9.400 | 0.005 | 13.597 | 0.000 |
pH | 0.304 | 0.740 | 3.481 | 0.072 | 0.113 | 0.894 |
SWC | 2.647 | 0.087 | 0.000 | 0.987 | 1.003 | 0.379 |
MBC | 5.935 | 0.007 | 1.364 | 0.252 | 0.176 | 0.839 |
MBN | 0.276 | 0.760 | 24.960 | 0.000 | 2.241 | 0.124 |
MBC:MBN | 1.555 | 0.228 | 2.418 | 0.130 | 0.792 | 0.462 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.-H.; Xing, Y.; Ma, J.-G.; Li, Y.-M.; Yang, X.-Q.; Wang, X.-B. Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality. J. Fungi 2022, 8, 237. https://doi.org/10.3390/jof8030237
Yang Z-H, Xing Y, Ma J-G, Li Y-M, Yang X-Q, Wang X-B. Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality. Journal of Fungi. 2022; 8(3):237. https://doi.org/10.3390/jof8030237
Chicago/Turabian StyleYang, Zhen-Hui, Ying Xing, Jian-Guo Ma, Yu-Man Li, Xiao-Qian Yang, and Xiao-Bo Wang. 2022. "Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality" Journal of Fungi 8, no. 3: 237. https://doi.org/10.3390/jof8030237
APA StyleYang, Z. -H., Xing, Y., Ma, J. -G., Li, Y. -M., Yang, X. -Q., & Wang, X. -B. (2022). Epichloë Fungal Endophytes Have More Host-Dependent Effects on the Soil Microenvironment than on the Initial Litter Quality. Journal of Fungi, 8(3), 237. https://doi.org/10.3390/jof8030237