Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance
Abstract
:1. Introduction
2. Development of Reference BPs and Early CA Evaluation of Commercial Methods
3. Review Purpose and Guidelines
4. Triazoles, Reference High MICs versus Genetic Mutational Changes
5. Echinocandins, High MICs, and Genetic Changes
6. Development of Etest and SYO ECVs for Candida spp. and Resistance Mechanisms
6.1. Etest ECVs: Echinocandins
6.2. Etest ECVs: Triazoles
Species | No. NWT (%) | Agent MICs (µg/mL) | Mutations 2 | ECV (µg/mL) | Refs. |
---|---|---|---|---|---|
AND | |||||
C. albicans | 48/55 | ≥0.01 | 2FKS1-L644L/stop, F641L, S645F (2 isolates), R6471, S645P (2 isolates) | 0.01 | [8] |
C. glabrata | 36/37 | ≥0.03 | 2FKS2-K1323E | 0.03 | |
C. krusei | 14/15 | ≥0.06 | 2FKS1-T6571, L660I | 0.06 | |
C. tropicalis | 9/9 | ≥0.03 | FKS1-F655S, F655X, F76S, S80P, V213I, V265I, S645P/S (2x), S645S/P | 0.03 | |
Total | 107/116 (92%) | 2 Overlap: mostly among 7 of the C. albicans mutants | |||
AND | ECV | ||||
C. glabrata | 10/10 | ≥0.03 | FKS1-D632H, D632Y, R635I; FKS2-F659L(3x), F659 del (2x), S663P, F659S | 0.01 | [8,41] |
22/22 | ≥0.03 | FKS2-F659S (14x), F659S/S663A (7x), F659S/S663A/D666E | [8,42] | ||
10/10 | ≥0.25 | FKS1p-F625S, S629P, D632G FKS2-F659V, F659S, S663P, S663F, D666G, D666E, P667T | [8,43] | ||
Total | 42/42 | No overlap | |||
AND | ECV | ||||
C. albicans | 7/7 | ≥0.01 | Laboratory mutants | 0.01 | [8,44] |
C. krusei | 0/1 | 0.03 | 2Overlap: C. krusei | 0.06 | |
Total | 7/8 | ||||
AND | ECV | ||||
C. albicans | 9/10 | ≥0.01 | FKS1-F641S (2x), S645Y, S645F, S645P (3x), S645F, and R1361R/H, P649H, D648Y | 0.01 | [8,43] |
C. krusei | 2/3 | ≥0.06 | FKS1-R1361G, F655F/C, L658W and L701M, D700M, L701M | 0.06 | |
C. tropicalis | 4/4 | ≥0.5 | FKS1-F76S, S80P, V213I, and V265I | 0.03 | |
Total | 15/17 (88%) | 2Overlap: C. albicans and C. krusei (1 isolate each) | |||
AND | ECV | ||||
C. albicans | 1/3 | ≥0.01 | FKS1-S645S, 1360R/K (2x) | 0.01 | [8,45] |
C. glabrata | 2/5 | ≥0.03 | FKS2-L660F, S663P(2x), L1381S, R1377T | 0.03 | |
Total | 3/8 | 2 Overlap: both species | |||
CAS | ECV | ||||
C. albicans | 9/11 | ≥0.5 | FKS1-F641Y, F641S(2x), S645Y, S645F, S645P (3x), S645F and R1361R/H, P649H, D648Y | 0.5 | [8,43,46] |
C. glabrata | 12/15 | ≥1 | FKS1p-F625S, S629P, D632G, S645P FKS2-L644W, S645P (2x), F659V, F659S (2x), S663P, S663F, D666G, D666E, P667T | 1 | |
C. tropicalis | 5/6 | ≥1 | FKS1-F641S(2x), F76S, S80P, V213I, V265I | 1 | |
Total | 26/32 (81%) | 2Overlap: each species | |||
CAS | ECV | ||||
C. krusei | 1/1 | 0.12 | WT | 0.5 | [8,47] |
6/6 | 1–4 | FKS1-F655L, P663Q(3x), F655L, S659P/S | |||
Total | 7/7 | No overlap | |||
MCA | ECV | ||||
C. albicans | 1 | 32 | FKS1-641S | 0.03 | [8,48] |
C. glabrata C. tropicalis | 1 3 | 0.12 ≥0.25 | FKS2-AF649 FKS1-F641L, R647G, S645F | 0.03 0.12 | |
Total | 5/5 | No overlap | |||
AND/CAS/MFC | ECVs | ||||
C. tropicalis | 1 | ≥1/≥1/0.5 | FKS1-S80P | 0.031/1/0.12 | [8,49] |
FLU | ECV | ||||
C. albicans | 6/6 | ≥1 | ERG11: A114S, G464S, T22OL, E66D, G448R, Y132H, T220L, V437I, F145T, V437I, and CDR2/MDR overexpression | 1 | [10,50] |
C. glabrata | 5/5 | ≥64 | ERG11: A114S, G464S | 128 | |
C. krusei | 2/2 | ≥16 | ERG11: Y87X (2x) | 16 | |
C. parapsilosis | 45/45 | ≥2 | ERG11: Y132F, A114S, G464S | 2 | |
C. tropicalis | 6/6 | ≥4 | ERG11: K143R, Y132F, G464D | 4 | |
C. guilliermondii | 0/2 | ≥16 | ERG11: A114S, G464S | 16 | |
Total | 64/66 (97%) | 2Overlap: C. guilliermondii | |||
FLU | ECV | ||||
C. albicans | 1 | 1 | WT | 1 | [10,51] |
Total | 8/8 | 8–16 | TAC and CDR1 lab. Mutants No overlap |
Species | No. NWT (%) | Agent MICs (µg/mL) | 2 Mutations | ECV (µg/mL) | Refs. |
---|---|---|---|---|---|
POS | ERG11mutations | ||||
C. albicans | 59 | ≥0.06 | 2 V112I/G450R, D116E/K128T/V159I (3x) | 0.06 | [9] |
Total | 55/59 POS (93%) FLU (81%) | 2Overlap | |||
FLU | ERG11mutations | ECV | |||
C. parapsilosis | 49 | >2 | T591C (2x), R398I (2x), Y132F/T591C (24x), | 2 | [9,52] |
Y132F/T591C (19x), | |||||
Y132F/T591C/G398I (2x) | |||||
Total | 49/49 | No overlap | |||
FLU | MRR1 mutations | ECV | |||
C. parapsilosis | 29 | ≥2 | 2 | [9,52] | |
Total | 26/29 | G53A/G1214A (R405K), 1 nt del at 1331, G53A/C744T (2x), G1747A (G583R) (3x), | |||
C1856T (A619V) (6x), G53A (9x), G1436A (G583R) (5x), G53A/C1856T/G1214A (R405K) 2 Overlap | |||||
Total | 75/78 (96%) | ||||
FLU | ERG 11 | ECV | |||
C. tropicalis | 1/5 | 0.5–>128 | T225C, G264A, G1362A, T1554C 2 Overlap | 4 | [9,53] |
ERG3 | |||||
3/3 | >128 | 2-bp insertion in positions 1130 and 1131 No overlap | |||
Total | 4/8 | ||||
MCA | ECV | ||||
C. albicans | 38/41 | ≥0.06 | 1 FKS1 L644L/stop, F641L, R136IR/H, S645F (2x). | 0.06 | [7] |
C. glabrata | 24/26 | ≥0.03 | 1FKS2 F659L (3x), F659S, S663P | 0.03 | |
C. krusei, | 5/5 | >0.25 | 1FKS1 H675H/Q | 0.25 | |
C. tropicalis | 8/8 | >0.06 | 1FKS1 F641L, F641S | 0.06 | |
Total | 76/81 (94%) | One C. dubliniensis: not listed 2 Overlap | |||
CAS | ECV | ||||
C. glabrata | 5 | 0.12–8 | FKS1-1634V (2/3 responses); F625C (1/1 response), S629P (persistent) | 0.25 | [7,54] |
5 | 0.5–8 | FKS2-S663P (4/4 persistent), S663F (1/1 response) | |||
Total | 10 | 2 Overlap: first set of mutants | |||
C. auris | 11 | FLU: Resistant Cutoff: ≥32 | ERG 11: Y132F, VF125AL, K117R, N335S, E343D, | NA | [55] |
MR11: N647T, TAC1b-S195G, A651P, A657V, | |||||
FKS1HP1-S639P, | |||||
ERG3: S58T |
6.3. SYO ECVs: Triazoles
6.4. SYO ECVs: Echinocandins
Candida auris: Data for Mutants
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI Supplement M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.3, E.Def 9.3 and E.Def 11.0 Procedures, Version 2.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/EUCAST_BP_ECOFF_v2.0_20-09-24.pdf (accessed on 24 September 2020).
- Clinical and Laboratory Standards Institute (CLSI). Principles and Procedures for the Development of Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 1st ed.; CLSI Document M57; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Epidemiological Cutoff Values for Antifungal Susceptibility Testing, 3th ed.; CLSI Supplement M59; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Dannaoui, E.; Espinel-Ingroff, A. Antifungal Susceptibly Testing by Concentration Gradient Strip Etest Method for Fungal Isolates: A Review. J. Fungi 2019, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Espinel-Ingroff, A.; Dannaoui, E. Should Etest MICs for Yeasts Be Categorized by Reference (BPs/ECVs) or by Etest (ECVs) Cutoffs as Determinants of Emerging Resistance? Curr. Fungal Infect. Rep. 2020, 14, 120–129. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Alvarez-Fernandez, M.; Cantón, E.; Carver, P.L.; Chen, S.C.-A.; Eschenauer, G.; Getsinger, D.L.; Gonzalez, G.M.; Govender, N.P.; Grancini, A.; et al. Multicenter study of epidemiological cutoff values and detection of resistance in Candida spp. to anidulafungin, caspofungin, and micafungin using the Sensititre YeastOne colorimetric method. Antimicrob. Agents Chemother. 2015, 59, 6725–6732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinel-Ingroff, A.; Arendrup, M.; Canton, E.; Cordoba, S.; Dannaoui, E.; Garcia-Rodriguez, J.; Gonzalez, G.M.; Govender, N.; Martin-Mazuelos, E.; Lackner, M.; et al. Multicenter study of method-dependent epidemiological cutoff values for detection of resistance in Candida spp. and Aspergillus spp. to amphotericin B and echinocandins for the Etest agar diffusion method. Antimicrob. Agents Chemother. 2016, 61, e01792-16. [Google Scholar] [CrossRef] [Green Version]
- Espinel-Ingroff, A.; Turnidge, J.; Alastruey-Izquierdo, A.; Botterel, F.; Canton, E.; Castro, C.; Chen, Y.C.; Chen, Y.; Chryssanthou, E.; Dannaoui, E.; et al. Method-dependent epidemiological cutoff values for detection of triazole resistance in Candida and Aspergillus species for the Sensititre YeastOne colorimetric broth and Etest agar diffusion methods. Antimicrob. Agents Chemother. 2019, 63, e01651-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinel-Ingroff, A.; Sasso, M.; Turnidge, J.; Arendrup, M.; Botterel, F.; Bourgeois, N.; Bouteille, B.; Canton, E.; Cassaing, S.; Dannaoui, E.; et al. Etest ECVs/ECOFFs for detection of resistance in prevalent and three non-prevalent Candida spp. to triazoles and amphotericin B and Aspergillus spp. to caspofungin: Further assessment of modal variability. Antimicrob. Agents Chemother. 2021, 65, e01093-21. [Google Scholar] [CrossRef] [PubMed]
- Espinel-Ingroff, A. Comparison of three commercial assays and a modified disk diffusion assay with two broth microdilution reference assays for testing zygomycetes, Aspergillus spp., Candida spp., and Cryptococcus neoformans with posaconazole and amphotericin B. J. Clin. Microbiol. 2006, 44, 3616–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, G.R.; Fothergill, A.W.; Wiederhold, N.P.; Vallor, A.C.; Wickes, B.L.; Patterson, T.F. Evaluation of Etest method for determining isavuconazole MICs for Cryptococcus gattii and Cryptococcus neoformans. Antimicrob. Agents Chemother. 2008, 52, 2959–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naicker, S.D.; Mpembe, R.S.; Maphanga, T.G.; Zulu, T.G.; Desanto, D.; Wadula, J.; Mvelase, N.; Maluleka, C.; Reddy, K.; Dawood, H.; et al. Decreasing fluconazole susceptibility of clinical South African Cryptococcus neoformans isolates over a decade. PLoS Negl. Trop. Dis. 2020, 14, e0008137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rex, J.H.; Pfaller, M.A.; Galgiani, J.N.; Bartlett, M.S.; Espinel-Ingroff, A.; Ghannoum, M.; Lancaster, M.; Rinaldi, M.G.; Walsh, T.J.; Barry, A.L. Development of interpretive breakpoints for antifungal susceptibility testing: Conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infection. Clin. Infect. Dis. 1997, 24, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Rex, J.H.; Espinel-Ingroff, A.; Johnson, E.M.; Andes, D.; Chaturvedi, V.; Ghannoum, M.A.; Odds, F.C.; Rinaldi, M.G.; et al. Correlation of MIC with Outcome for Candida Species Tested against Voriconazole: Analysis and Proposal for Interpretive Breakpoints. J. Clin. Microbiol. 2006, 44, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Andes, D.; Diekema, D.J.; Espinel-Ingroff, A.; Sheehan, D. The CLSI Subcommittee for Antifungal Susceptibility Testing. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: Time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist. Updates 2010, 13, 180–195. [Google Scholar]
- Pfaller, M.A.; Andes, D.; Arendrup, M.C.; Diekema, D.J.; Espinel-Ingroff, A.; Alexander, B.D.; Brown, S.D.; Chaturvedi, V.; Fowler, C.L.; Ghannoum, M.A.; et al. Clinical breakpoints for voriconazole and Candida spp. revisited: Review Microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn. Microbiol. Infect. Dis. 2011, 70, 330–343. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Andes, D.; Arendrup, M.C.; Brown, S.D.; Lockhart, S.R.; Perlin, D.S. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Update 2011, 14, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L.; Pfaller, M.A.; Rennie, R.P.; Fuchs, P.C.; Brown, S.D. Precision and accuracy of fluconazole susceptibility testing by broth microdilution, Etest, and disk diffusion Methods. Antimicrob. Agents Chemother. 2002, 46, 1781–1784. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Mellado, E.; Rodriguez-Tudela, J.L. Correlation between the procedure for antifungal susceptibility testing for Candida spp. of the European Committee on Antibiotic Susceptibility Testing (EUCAST) and four commercial techniques. Clin. Microbiol. Infect. 2005, 11, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J.; Procop, G.W.; Rinaldi, M.G. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J. Clin. Microbiol. 2007, 45, 3522–3528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Rodríguez, J.M.; Alvarado-Ramírez, E. In vitro susceptibilities to yeasts using the ATB® Fungus 2 method, compared with Sensititre Yeastone® and standard CLSI (NCCLS) M27-A2 methods. J. Antimicrob. Chemother. 2007, 60, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Eraso, E.; Ruesga, M.; Villar-Vidal, M.; Carrillo-Muñoz, A.J.; Espinel-Ingroff, A.; Quindós, G. Comparative evaluation of ATB® Fungus 2 and Sensititre YeastOne panels for testing in vitro Candida antifungal susceptibility. Rev. Iberoam. Micol. 2008, 25, 3–6. [Google Scholar] [CrossRef]
- Posteraro, B.; Martucci, M.; La Sorda, B.; Fiori, D.; Sanglard, E.; De Carolis, A.; Florio, R.; Fadda, G.; Sanguinetti, M. Reliability of the Vitek 2 yeast susceptibility test for detection of in vitro resistance to fluconazole and voriconazole in clinical isolates of Candida albicans and Candida glabrata. J. Clin. Microbiol. 2009, 47, 1927–1930. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Bernal-Martinez, L.; Cuesta, I.; Buitrago, M.J.; Rodriguez-Tudela, J.L. Comparison of the Vitek 2 Antifungal Susceptibility System with the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest Techniques for In Vitro Detection of Antifungal Resistance in Yeast Isolates. J. Clin. Microb. 2010, 48, 1782–1786. [Google Scholar]
- Maldonado, L.F.; Canigia, W.; Vivot, P.; Domecq, G.; Davel, S.; Cordoba, S. Candida spp. clinic isolates according to reference method E.Def 7.1 and ATB® Fungus fluconazole by disk diffusion in agar with Neo-Sensitabs TM tablets and Malbrán disks with those of the reference. Rev. Argent. Microbiol. 2011, 43, 120–126. [Google Scholar] [PubMed]
- Astvad, K.M.; Perlin, D.S.; Johansen, H.K.; Jensen, R.H.; Arendrup, M.C. Evaluation of caspofungin susceptibility testing by the new Vitek 2 AST-YS06 yeast card using a unique collection of FKS wild-type and hot spot mutant isolates, including the five most common Candida species. Antimicrob. Agents Chemother. 2013, 57, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naicker, S.D.; Govender, N.; Patel, J.; Zietsman, I.L.; Wadula, J.; Coovadia, Y.; Kularatne, R.; Seetharam, S.; Govender, N.P. on behalf of the TRAC-SA. Comparison of species-level identification and antifungal susceptibility results from diagnostic and reference laboratories for bloodstream Candida surveillance isolates, South Africa, 2009–2010. Med. Mycol. 2016, 54, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnidge, J.; Kahmeter, G.; Kronvall, G. Statistical characterization of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 2006, 12, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Perea, S.; Lopez-Ribot, J.L.; Kirkpatrick, W.R.; McAtee, R.K.; Santillan, R.A.; Martinez, M.; Calabrese, D.; Sanglard, D.; Patterson, T.F. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 2001, 45, 2676–2684. [Google Scholar] [CrossRef] [Green Version]
- Flowers, S.A.; Colon, B.; Whaley, S.G.; Schuler, M.A.; Rogers, P.D. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 2015, 59, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Fiori, B.; Ranno, S.; Torelli, R.; Fadda, G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 2005, 49, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Forastiero, A.; Mesa-Arango, A.C.; Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Bernal-Martinez, L.; Pelaez, T.; Lopez, J.F.; Grimalt, J.O.; Gomez-Lopez, A.; Cuesta, I.; et al. Candida tropicalis Antifungal Cross-Resistance Is Related to Different Azole Target (Erg11p) Modifications. Antimicrob. Agents Chemother. 2013, 57, 4769–4781. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Miranda, I.M.; Guida, A.; Synnott, J.; Rocha, R.; Silva, R.; Amorim, A.; Pina-Vaz, C.; Butler, G.; Rodrigues, A.G. Transcriptional Profiling of Azole-Resistant Candida parapsilosis Strains. Antimicrob. Agents Chemother. 2011, 55, 3546–3556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kelly, R.; Kahn, N.; Robles, J.; Hsu, M.J.; Register, E.; Li, W.; Vyas, V.; Fan, H.; Abruzzo, G. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob. Agents Chemother. 2005, 49, 3264–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Effron, G.; Kontoyiannis, D.P.; Lewis, R.E.; Perlin, D.S. Caspofungin-Resistant Candida tropicalis Strains Causing Breakthrough Fungemia in Patients at High Risk for Hematologic Malignancies. Antimicrob. Agents Chemother. 2008, 52, 4181–4183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Nguyen, H.; Press, E.G.; Kwa, A.L.; Cheng, S.; Du, C.; Clancy, C.J. The Presence of an FKS Mutation Rather than MIC Is an Independent Risk Factor for Failure of Echinocandin Therapy among Patients with Invasive Candidiasis Due to Candida glabrata. Antimicrob. Agents Chemother. 2012, 56, 4862–4869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Kwa, A.L.; Cheng, S.; Du, C.; Clancy, C.J. Abdominal candidiasis a hidden reservoir of echinocandin resistance. Antimicrob. Agents Chemother. 2014, 58, 7601–7605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.; Jiménez-Ortigosa, C.; Catani, J.E.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates with Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Hong Nguyen, M.; Press, E.G.; Updike, C.; Clancy, C.J. Anidulafungin and Micafungin MIC Breakpoints Are Superior to That of Caspofungin for Identifying FKS Mutant Candida glabrata Strains and Echinocandin Resistance. Antimicrob. Agents Chemother. 2013, 57, 6361–6365. [Google Scholar] [CrossRef] [Green Version]
- Pringent, G.; Ait-Ammar, N.; Levesque, E.; Fekkar, A.; Costa, J.M.; El Anbassi, S.; Foulet, F.; Duvoux, C.; Merle, J.-C.; Dannaoui, E.; et al. Echinocandin resistance in Candida species isolates from liver transplant recipients. Antimicrob. Agents Chemother. 2017, 61, e01229-16. [Google Scholar] [CrossRef]
- Arendrup, M.C.; García-Effrón, G.; Lass-Florl, C.; López, A.G.; Rodríguez-Tudela, J.L.; Cuenca-Estrella, M.; Perlin, D.S. Echinocandin susceptibility testing of Candida species: Comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob. Agents Chemother. 2010, 54, 426–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinel-Ingroff, A.; Canton, E.; Peman, J.; Martín-Mazuelos, E. Comparison of Anidulafungin MICs Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Method (M27-A3 Document) and Etest for Candida Species Isolates. Antimicrob. Agents Chemother. 2010, 54, 1347–1350. [Google Scholar] [CrossRef] [Green Version]
- Taj-Aldeen, S.J.; Salah, H.; Perez, W.B.; Almaslamani, M.; Motyl, M.; Abdul-Wahab, A.; Healey, K.R.; Perlin, D.S. Molecular analysis of resistance and detection of non-wild-type strains using Etest epidemiological cutoff values for amphotericin B and echinocandins for bloodstream Candida infections from a tertiary hospital in Qatar. Antimicrob. Agents Chemother. 2018, 62, e00214-18. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Castanheira, M.; Diekema, D.J.; Messer, S.; Moet, G.J.; Jones, R.N. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest Methods with the CLSI Broth Microdilution Method for Echinocandin Susceptibility Testing of Candida Species. J. Clin. Microb. 2010, 45, 1592–1599. [Google Scholar] [CrossRef] [Green Version]
- Forastiero, A.; Garcia-Gil, V.; Rivero-Menendez, O.; Garcia-Rubio, R.; Monteiro, M.C.; Alastruey-Izquierdo, A.; Jordan, R.; Agorio, I.; Mellado, E. Rapid development of Candida krusei echinocandin resistance during caspofungin therapy. Antimicrob. Agents Chemother. 2015, 59, 6975–6982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos-Zambrano, J.L.; Escribano, P.; Rueda, C.; Zaragoza, O.; Bouza, E.; Guinea, J. Comparison between the EUCAST Procedure and the Etest for Determination of the Susceptibility of Candida Species Isolates to Micafungin. Antimicrob. Agents Chemother. 2013, 57, 5767–5770. [Google Scholar] [CrossRef] [Green Version]
- Axner-Elings, M.; Botero-Kleiven, S.; Jensen, R.H.; Arendrup, M.C. Echinocandin Susceptibility Testing of Candida Isolates Collected during a 1-Year Period in Sweden. J. Clin. Microbiol. 2011, 49, 2516–2521. [Google Scholar] [CrossRef] [Green Version]
- Salse, M.; Gangneux, J.P.; Cassaing, S.; Delhaes, L.; Fekkar, A.; Dupont, D.; Botterel, F.; Costa, D.; Bourgeois, N.; Bouteille, B.; et al. Multicentre study to determine the Etest epidemiological cut-off values of antifungal drugs in Candida spp. and Aspergillus fumigatus species complex. Clin. Microbiol. Infect. 2019, 25, 1546–1552. [Google Scholar] [CrossRef]
- Myers, L.C. Mediator tail module is required for Tac1-activated CDR1 expression and azole resistance in Candida albicans. Antimicrob. Agents Chemother. 2017, 61, e01342-17. [Google Scholar] [CrossRef] [Green Version]
- Govender, N.P.; Patel, J.; Magobo, R.E.; Naicker, S.; Wadula, J.; Whitelaw, A.; Coovadia, Y.; Kularatne, R.; Govind, C.; Lockhart, S.R.; et al. Emergence of azole-resistant Candida parapsilosis causing bloodstream infection: Results from laboratory-based sentinel surveillance in South Africa. J. Antimicrob. Chemother. 2016, 71, 1994–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Pérez, S.; García, M.E.; Cutuli, M.T.; Fermín, M.L.; Daza, M.A.; Peláez, T.; Blanco, J.L. Acquired multi-azole resistance in Candida tropicalis during persistent urinary tract infection in a dog. Med. Mycolgy Case Reps. 2016, 11, 9–12. [Google Scholar] [CrossRef]
- Beyda, N.D.; John, J.; Kilic, A.; Alam, M.J.; Lasco, T.D.; Kevin, W.; Garey, K.W. FKS Mutant Candida glabrata: Risk Factors and Outcomes in Patients with Candidemia. Clin. Infect. Dis. 2014, 59, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Maphanga, T.G.; Naicker, S.D.; Kwenda, S.; Muñoz, J.F.; Schalkwyk, E.; Wadula, J.; Nana, T.; Ismail, A.; Coetzee, J.; Govind, C.; et al. In-vitro antifungal resistance of Candida auris isolates from bloodstream infections, South Africa. Antimicrob. Agents Chemother. 2021, 65, e0051721. [Google Scholar] [CrossRef] [PubMed]
Species 3 | Agent/Method-Dependent ECVs (µg/mL) 2 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FLU | POS | VOR | AND | CAS | MCA | ||||||||||||
SYO | Etest | CLSI | SYO | Etest | CLSI | SYO | Etest | CLSI | SYO | Etest | CLSI | SYO | Etest | SYO | Etest | CLSI | |
C. albicans | 1 | 1 | 0.5 | 0.06 | 0.06 | 0.06 | 0.01 | 0.03 | 0.03 | 0.12 | 0.01 | 0.12 | 0.25 | 0.5 | 0.06 | 0.03 | 0.03 |
C. dubliniensis | 1 | 0.5 | 0.5 | 0.12 | NA | 0.12 | 0.01 | 1 | 0.03 | 0.25 | NA | 0.12 | 0.25 | NA | 0.12 | NA | 0.12 |
C. glabrata | 64 | 64 | 8 | 4 | NA | 1 | 2 | 1 | 0.25 | 0.12 | 0.03 | 0.25 | 0.25 | 1 | 0.03 | 0.03 | 0.03 |
M. guilliemondii | 16 | 16 | 8 | 1 | NA | 0.5 | 0.5 | 0.5 | 0.12 | 4 | NA | 8 | 2 | NA | 2 | NA | 2 |
P. kudriavzevii | 128 | 128 | 32 | 1 | NA | 0.5 | 1 | 1 | 0.5 | 0.25 | 0.06 | 0.25 | 1 | 1 | 0.25 | 0.25 | 0.25 |
C. kefyr | NA | 1 | 1 | NA | NA | 0.5 | NA | NA | NA | NA | NA | 0.25 | NA | NA | NA | NA | 0.12 |
C. lusitaniae | 4 | 2 | 1 | 0.12 | NA | 0.06 | 0.03 | 0.03 | NA | 0.25 | NA | 1 | 1 | NA | 0.12 | NA | 0.5 |
C. parapsilosis SC | 2 | 2 | 1 | 0.12 | 0.12 | 0.25 | 0.01 | 0.25 | NA | 4 | 8 | 4 | 2 | 4 | 4 | 2 | 2 |
C. parapsilosis SS | 2 | NA | NA | 0.25 | NA | NA | 0.03 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
C. tropicalis | 4 | 4 | 1 | 1 | 0.25 | 0.12 | 0.5 | 0.25 | 0.12 | 0.5 | 0.03 | 0.12 | 0.25 | 1 | 0.06 | 0.12 | 0.06 |
Method | Brief Description |
---|---|
1 SYO ®; TREK | Sensititre colorimetric plate Microdilution plate wells are dosed with the antifungal appropriate dilutions, as well as with the colorimetric indicator. MIC: lowest antifungal concentration showing no color change (no growth) following 24–48 h of incubation. |
2 Etest ® | Gradient concentration methods ® |
3 Biomerieux Liofilchem ® | Based upon a continuous concentration gradient of drug infused on a plastic non-porous strip. The agent diffuses into an agar plate and the MICs are where the growth intersects with the testing strips after 24 to 48 h or until the susceptibility ellipse is created. |
4 Automated Vitek-2 ® | Automated system that spectrophotometrically and simultaneously provides the isolation, identification, and the MIC results of the pathogen. |
5 Neo-Sensitabs tablets ® and disk diffusion | The 9-mm tablets contain the following concentrations: amphotericin B (10 μg), caspofungin (5 μg), fluconazole (25 μg), itraconazole (8 μg), and voriconazole (1 μg). Discs can also be used when available (see CLSI M44 method). |
6 ATB ® fungus panel | This microdilution non-colorimetric panel determine MICs to six antifungal agents. |
7 The Fungitest ® | A microdilution colorimetric breakpoint method for amphotericin B, flucytosine, fluconazole, itraconazole, ketoconazole, and miconazole. Not much since BPs are not available for most of these antifungals. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinel-Ingroff, A. Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance. J. Fungi 2022, 8, 309. https://doi.org/10.3390/jof8030309
Espinel-Ingroff A. Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance. Journal of Fungi. 2022; 8(3):309. https://doi.org/10.3390/jof8030309
Chicago/Turabian StyleEspinel-Ingroff, Ana. 2022. "Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance" Journal of Fungi 8, no. 3: 309. https://doi.org/10.3390/jof8030309
APA StyleEspinel-Ingroff, A. (2022). Commercial Methods for Antifungal Susceptibility Testing of Yeasts: Strengths and Limitations as Predictors of Resistance. Journal of Fungi, 8(3), 309. https://doi.org/10.3390/jof8030309