Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis
Abstract
:1. Introduction
2. Chromoblastomycosis
2.1. Methods for Diagnosis and Identification from Culture Samples
2.1.1. DNA Isolation
2.1.2. DNA Sequencing
Target | Primers | Ref. |
---|---|---|
ITS | ITS1-CCGTAGGTGAACCTGCGG | [50] |
ITS4-TCCTCCGCTTATTGATATGC | [50] | |
ITS3-GCATCGATGAAGAACGCAGC | [50] | |
V9G-TTACGTCCCTGCCCTTTGTA | [51] | |
LS266-GCATTCCCAAACAACTCGACTC | [51] | |
D1/D2 | NL1-GCATATCAATAAGCGGAGGAAAAG NL4-GGTCCGTGTTTCAAGACGG | [52] |
TEF1α | EF1-F CTGAGGCTCGTTACCAGGAG EF1-R CGACTTGATGACACCGACAG | [53] |
ACT1 | F-CACGTTGTCCCCATCTAC R-CACGTTGTCCCCATCTAC | [47] |
BT2 | BT2a-GGTAACCAAATCGGTGCTGCTT T2-TAGTGACCCTTGGCCCAGTTG | [54,55] |
RPB1 | F-GARTGYCCDGGDCAYTTYGG R-CCNGCDATNTCRTTRTCCATRTA | [40] |
CAL | CL1-GA(GA)T(AT)CAAGGAGGCCTTCTC CL2A-TTTTTGCATCATGAGTTGGAC | [56] |
CDC42 | Cdc42-SF1s-GGCAAGACATGCTTGTTGATCTC Cdc42-SR1s-GCCTCGTCAAATACGTCCTTA A | [49] |
Cladophialophora Carrionnii | CarF-TAAACCTCATGTTGCTTCG CarR-TCGAGAM(A/C)CACTCGACCAA | [57] |
CcarF-ATCGCTGCGAAGCGTCTCG Ccar-R 5′-ACCGTCCAACACCAAGCACAGG | [2] | |
Fonseceae spp. | Fon-F-TAATGCGGGTGTTGCCTCTG Fon-R-AGGGGTGGAAAGTGTGAACT | [58] |
Lamp Fonsecaea | F outer (F3)-ACATTGCGCCCTTTGGTAT R outer (B3)-GCACCCTTCATCCGATACG F inner (FIP)-CAACACCAAGCACAGGGGCTTTTTCGAAGGGCATGCCTGTTC R inner (BIP)-TGGTGGAGCGAGTTCACACTTTTTTTAAAGAAGCTCAGTGTACCGG | [59] |
Lamp Cladophialophora | F outer (F3)-CCGTCACGTGATTTCACACT R outer (B3)-CATCGATGACGGTGACGAAG F inner (FIP)-GAGCCCTTGCCGAGTTCAGCTTTCCCGAGCCTGATCAACT R inner (BIP)-ATGCCTGGGTTTTGGACAAGCTGTCTCGAACTTCCAGAGCG | [60] |
RCA Cladophialophora | RCA1 ATGGGCACCGAAGAAGCA RCA2 CGCGCAGACACGATA padlock probe-specific-TCGGCGGACACGGGCCCAGAGatcaTGCTTCTTCGGTGCCCAT tacgaggtgcggatagctacCGCGCAGACACGATAgtctaAGAGTTTGGGGTTGGCTG | [60] |
RCA Fonsecaea | Padlock probe-specific | [61] |
RCA Sporothrix | padlock probe-specific | [15] |
2.1.3. Nucleic Acid Amplification Tests (NAATs)
- (a)
- Conventional NAATs (PCRs)
- (b)
- Rapid NAATs
- (1)
- Loop-mediated isothermal amplification (LAMP)
- (2)
- Rolling circle amplification (RCA)
2.1.4. MALDI-ToF Mass Spectrometry
2.2. Methods for Diagnosis from Clinical Samples
2.2.1. Skin or Subcutaneous Samples (Squamous, Biopsies, Needle Aspirates)
- (a)
- DNA isolation
- (b)
- DNA sequencing
- (c)
- Nucleic acid amplification tests (NAATs)
- (1)
- Conventional NAATs (PCRs)
- (2)
- Rapid NAATs
2.2.2. Formalin, Fixed and Paraffin Embedded (FFPE) Tissues
- (a)
- DNA isolation
- (b)
- DNA sequencing
3. Sporotrichosis
3.1. Methods for Diagnosis and Identification from Culture Samples
3.1.1. DNA Isolation
3.1.2. DNA Sequencing
3.1.3. Nucleic Acid Amplification Tests (NAATs)
- (a)
- Conventional NAATs (PCRs)
- (b)
- PCR-RFLP, PCR-RAPD
- (c)
- Rapid NAATs: rolling circle amplification (RCA)
3.1.4. MALDI-ToF MS
3.2. Methods for Diagnosis from Clinical Samples
- (a)
- DNA isolation
- (b)
- DNA sequencing
- (c)
- Nucleic acid amplification tests (NAATs)
- (1)
- Conventional PCRs
- (2)
- Rapid NAATs
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Queiroz-Telles, F.; de Hoog, S.; Santos, D.W.C.L.; Salgado, C.G.; Vicente, V.A.; Bonifaz, A.; Roilides, E.; Xi, L.; de Azevedo, C.M.P.E.S.; da Silva, M.B.; et al. Chromoblastomycosis. Clin. Microbiol. Rev. 2017, 30, 233–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasamoelina, T.; Maubon, D.; Andrianarison, M.; Ranaivo, I.; Sendrasoa, F.; Rakotozandrindrainy, N.; Rakotomalala, F.A.; Bailly, S.; Rakotonirina, B.; Andriantsimahavandy, A.; et al. Endemic Chromoblastomycosis Caused Predominantly by Fonsecaea Nubica, Madagascar1. Emerg. Infect. Dis. 2020, 26, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.W.C.L.; de Azevedo, C.M.P.E.S.; Vicente, V.A.; Queiroz-Telles, F.; Rodrigues, A.M.; de Hoog, G.S.; Denning, D.W.; Colombo, A.L. The Global Burden of Chromoblastomycosis. PLoS Negl. Trop. Dis. 2021, 15, e0009611. [Google Scholar] [CrossRef]
- Esterre, P.; Andriantsimahavandy, A.; Ramarcel, E.R.; Pecarrere, J.L. Forty Years of Chromoblastomycosis in Madagascar: A Review. Am. J. Trop. Med. Hyg. 1996, 55, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.; Denning, D.W.; Bonifaz, A.; Queiroz-Telles, F.; Beer, K.; Bustamante, B.; Chakrabarti, A.; de Chavez-Lopez, M.G.; Chiller, T.; Cornet, M.; et al. The Diagnosis of Fungal Neglected Tropical Diseases (Fungal NTDs) and the Role of Investigation and Laboratory Tests: An Expert Consensus Report. Trop. Med. Infect. Dis. 2019, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Badali, H.; Bonifaz, A.; Barrón-Tapia, T.; Vázquez-González, D.; Estrada-Aguilar, L.; Oliveira, N.M.C.; Sobral Filho, J.F.; Guarro, J.; Meis, J.F.G.M.; De Hoog, G.S. Rhinocladiella Aquaspersa, Proven Agent of Verrucous Skin Infection and a Novel Type of Chromoblastomycosis. Med. Mycol. 2010, 48, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Tomson, N.; Abdullah, A.; Maheshwari, M.B. Chromomycosis Caused by Exophiala Spinifera. Clin. Exp. Dermatol. 1992, 31, 239–241. [Google Scholar] [CrossRef]
- de Barros, M.B.L.; de Almeida Paes, R.; Schubach, A.O. Sporothrix Schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [Green Version]
- Buot, G.; Develoux, M.; Hennequin, C. Sporotrichose. Encycl. Méd. Chir. 2017, 14, 1–10. [Google Scholar] [CrossRef]
- Gremião, I.D.F.; Miranda, L.H.M.; Reis, E.G.; Rodrigues, A.M.; Pereira, S.A. Zoonotic Epidemic of Sporotrichosis: Cat to Human Transmission. PLoS Pathog. 2017, 13, e1006077. [Google Scholar] [CrossRef]
- Rasamoelina, T.; Maubon, D.; Raharolahy, O.; Razanakoto, H.; Rakotozandrindrainy, N.; Rakotomalala, F.A.; Bailly, S.; Sendrasoa, F.; Ranaivo, I.; Andrianarison, M.; et al. Sporotrichosis in the Highlands of Madagascar, 2013-20171. Emerg. Infect. Dis. 2019, 25, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Toriello, C.; Brunner-Mendoza, C.; Ruiz-Baca, E.; Duarte-Escalante, E.; Pérez-Mejía, A.; del Rocío Reyes-Montes, M. Sporotrichosis in Mexico. Braz. J. Microbiol. 2021, 52, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, F.; Li, R.; Gong, J.; Zhao, F. Fast Diagnosis of Sporotrichosis Caused by Sporothrix Globosa, Sporothrix Schenckii, and Sporothrix Brasiliensis Based on Multiplex Real-Time PCR. PLoS Negl. Trop. Dis. 2019, 13, e0007219. [Google Scholar] [CrossRef] [PubMed]
- Della Terra, P.P.; Gonsales, F.F.; de Carvalho, J.A.; Hagen, F.; Kano, R.; Bonifaz, A.; Camargo, Z.P.; de Rodrigues, A.M. Development and Evaluation of a Multiplex QPCR Assay for Rapid Diagnostics of Emerging Sporotrichosis. Transbound. Emerg. Dis. 2021, 1–13. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Najafzadeh, M.J.; de Hoog, G.S.; de Camargo, Z.P. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification. Front. Microbiol. 2015, 6, 1385. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Rodrigues, A.M.; Feng, P.; de Hoog, G.S. Global ITS Diversity in the Sporothrix Schenckii Complex. Fungal Divers. 2014, 66, 153–165. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Bonifaz, A.; Gutierrez-Galhardo, M.C.; Mochizuki, T.; Li, S. Global Epidemiology of Sporotrichosis. Med. Mycol. 2015, 53, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.; Gopal, K.; Umesh, N.; Kumar, B. Sporotrichosis in Uttarakhand (India): A Report of Nine Cases. Int. J. Dermatol. 2008, 47, 367–371. [Google Scholar] [CrossRef]
- Arenas, R.; Miller, D.; Campos-Macias, P. Epidemiological Data and Molecular Characterization (MtDNA) of Sporothrix Schenckii in 13 Cases from Mexico. Int. J. Dermatol. 2007, 46, 177–179. [Google Scholar] [CrossRef]
- Dixon, D.M.; Salkin, I.F.; Duncan, R.A.; Hurd, N.J.; Haines, J.H.; Kemna, M.E.; Coles, F.B. Isolation and Characterization of Sporothrix Schenckii from Clinical and Environmental Sources Associated with the Largest U.S. Epidemic of Sporotrichosis. J. Clin. Microbiol. 1991, 29, 1106–1113. [Google Scholar] [CrossRef] [Green Version]
- Vismer, H.F.; Hull, P.R. Prevalence, Epidemiology and Geographical Distribution of Sporothrix Schenckii Infections in Gauteng, South Africa. Mycopathologia 1997, 137, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Queiroz-Telles, F.; Fahal, A.H.; Falci, D.R.; Caceres, D.H.; Chiller, T.; Pasqualotto, A.C. Neglected Endemic Mycoses. Lancet Infect. Dis. 2017, 17, e367–e377. [Google Scholar] [CrossRef]
- Magand, F.; Perrot, J.-L.; Cambazard, F.; Raberin, M.-H.; Labeille, B. Sporotrichose Cutanée Autochtone Française. Ann. Dermatol. Vénéréologie 2009, 136, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Criseo, G.; Malara, G.; Romeo, O.; Puglisi Guerra, A. Lymphocutaneous Sporotrichosis in an Immunocompetent Patient: A Case Report from Extreme Southern Italy. Mycopathologia 2008, 166, 159–162. [Google Scholar] [CrossRef]
- Rasamoelina, T.; Raharolahy, O.; Rakotozandrindrainy, N.; Ranaivo, I.; Andrianarison, M.; Rakotonirina, B.; Maubon, D.; Rakotomalala, F.A.; Rakoto Andrianarivelo, M.; Andriantsimahavandy, A.; et al. Chromoblastomycosis and Sporotrichosis, Two Endemic but Neglected Fungal Infections in Madagascar. J. Mycol. Med. 2017, 27, 312–324. [Google Scholar] [CrossRef]
- Lopes-Bezerra, L.M.; Mora-Montes, H.M.; Zhang, Y.; Nino-Vega, G.; Rodrigues, A.M.; de Camargo, Z.P.; de Hoog, S. Sporotrichosis between 1898 and 2017: The Evolution of Knowledge on a Changeable Disease and on Emerging Etiological Agents. Med. Mycol. 2018, 56, 126–143. [Google Scholar] [CrossRef]
- Marimon, R.; Cano, J.; Gené, J.; Sutton, D.A.; Kawasaki, M.; Guarro, J.; Sporothrix, B.; Globosa, S.; Mexicana, S. Three New Sporothrix Species of Clinical Interest. J. Clin. Microbiol. 2007, 45, 3198–3206. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.M.; Bagagli, E.; de Camargo, Z.P.; Bosco, S.D.M.G. Sporothrix Schenckii sensu Stricto Isolated from Soil in an Armadillo’s Burrow. Mycopathologia 2014, 177, 199–206. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; de Oliveira, M.M.E.; Freitas, D.F.S.; do Valle, A.C.F.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C. Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix Brasiliensis Is Associated with Atypical Clinical Presentations. PLoS Negl. Trop. Dis. 2014, 8, e3094. [Google Scholar] [CrossRef] [Green Version]
- Barros, M.B.L.; Schubach, A.O.; Schubach, T.M.P.; Wanke, B.; Lambert-Passos, S.R. An Epidemic of Sporotrichosis in Rio de Janeiro, Brazil: Epidemiological Aspects of a Series of Cases. Epidemiol. Infect. 2008, 136, 1192–1196. [Google Scholar] [CrossRef]
- Marimon, R.; Gené, J.; Cano, J.; Guarro, J. Sporothrix Luriei: A Rare Fungus from Clinical Origin. Med. Mycol. 2008, 46, 621–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddig, E.E.; Verbon, A.; Bakhiet, S.; Fahal, A.H.; van de Sande, W.W.J. The Developed Molecular Biological Identification Tools for Mycetoma Causative Agents: An Update. Acta Trop. 2022, 225, 106205. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, T.S.; Cury, A.E.; de Castro, L.G.M.; Hirata, M.H.; Hirata, R.D.C. Rapid Identification of Fonsecaea by Duplex Polymerase Chain Reaction in Isolates from Patients with Chromoblastomycosis. Diagn Microbiol. Infect. Dis. 2007, 57, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Najafzadeh, M.J.; Sun, J.; Vicente, V.A.; Klaassen, C.H.W.; Bonifaz, A.; van den Ende, A.H.G.G.; Menken, S.B.J.; de Hoog, G.S. Molecular Epidemiology of Fonsecaea Species. Emerg. Infect. Dis. 2011, 17, 464–469. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Nishikaku, A.S.; Fernandez-Zeppenfeldt, G.; Padín-González, C.; Burger, E.; Badali, H.; Richard-Yegres, N.; van den Ende, A.H.G.G. Molecular Analysis and Pathogenicity of the Cladophialophora Carrionii Complex, with the Description of a Novel Species. Stud. Mycol. 2007, 58, 219–234. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Li, W.; Huang, W.-M.; Zhou, Y.; Fan, Y.-M. Chromoblastomycosis Caused by Fonsecaea: Clinicopathology, Susceptibility and Molecular Identification of Seven Consecutive Cases in Southern China. Clin. Microbiol. Infect. 2013, 19, 1023–1028. [Google Scholar] [CrossRef] [Green Version]
- Campos-Macias, P.; Arenas, R.; Aquino, C.J.; Romero-Navarrete, M.; Martínez-Hernández, F.; Martínez-Chavarría, L.C.; Xicohtencatl-Cortes, J.; Hernández-Castro, R. Chromoblastomycosis Caused by Fonsecaea Monophora in Mexico. J. Mycol. Med. 2021, 31, 101114. [Google Scholar] [CrossRef]
- Fransisca, C.; He, Y.; Chen, Z.; Liu, H.; Xi, L. Molecular Identification of Chromoblastomycosis Clinical Isolates in Guangdong. Med. Mycol. 2017, 55, 896. [Google Scholar] [CrossRef] [Green Version]
- Abliz, P.; Fukushima, K.; Takizawa, K.; Nishimura, K. Identification of Pathogenic Dematiaceous Fungi and Related Taxa Based on Large Subunit Ribosomal DNA D1/D2 Domain Sequence Analysis. FEMS Immunol. Med. Microbiol. 2004, 40, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Irinyi, L.; Lackner, M.; de Hoog, G.S.; Meyer, W. DNA Barcoding of Fungi Causing Infections in Humans and Animals. Fungal. Biol. 2016, 120, 125–136. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, C.M.P.S.; Gomes, R.R.; Vicente, V.A.; Santos, D.W.C.L.; Marques, S.G.; do Nascimento, M.M.F.; Andrade, C.E.W.; Silva, R.R.; Queiroz-Telles, F.; de Hoog, G.S. Fonsecaea Pugnacius, a Novel Agent of Disseminated Chromoblastomycosis. J. Clin. Microbiol. 2015, 53, 2674–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafzadeh, M.J.; Sun, J.; Vicente, V.; Xi, L.; van den Ende, A.H.G.G.; de Hoog, G.S. Fonsecaea Nubica Sp. Nov, a New Agent of Human Chromoblastomycosis Revealed Using Molecular Data. Med. Mycol. 2010, 48, 800–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.-W.; Suh, M.-K.; Kang, G.-S.; Ha, G.-Y.; Kim, H.; Choi, J.-S.; Kim, Y.-S. Molecular Phylogenetics of Fonsecaea Strains Isolated from Chromoblastomycosis Patients in South Korea. Mycoses 2011, 54, e415–e420. [Google Scholar] [CrossRef] [PubMed]
- de Mouchalouat, M.F.; Gutierrez Galhardo, M.C.; Zancopé-Oliveira, R.M.; Monteiro Fialho, P.C.; de Oliveira Coelho, J.M.C.; Silva Tavares, P.M.; do Valle, A.C.F. Chromoblastomycosis: A Clinical and Molecular Study of 18 Cases in Rio de Janeiro, Brazil. Int. J. Dermatol. 2011, 50, 981–986. [Google Scholar] [CrossRef]
- de Andrade, T.S.; de Almeida, A.M.Z.; de Basano, S.A.; Takagi, E.H.; Szeszs, M.W.; Melhem, M.S.C.; Albuquerque, M.; de Souza, A.A.C.J.; Gambale, W.; Camargo, L.M.A. Chromoblastomycosis in the Amazon Region, Brazil, Caused by Fonsecaea Pedrosoi, Fonsecaea Nubica, and Rhinocladiella Similis: Clinicopathology, Susceptibility, and Molecular Identification. Med. Mycol. 2020, 58, 172–180. [Google Scholar] [CrossRef]
- Najafzadeh, M.J.; Gueidan, C.; Badali, H.; Ende, V.D.; Gerrits, A.H.G.; Xi, L.; Hoog, D.S.G. Genetic Diversity and Species Delimitation in the Opportunistic Genus Fonsecaea. Med. Mycol. 2009, 47, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Gomes, R.R.; Vicente, V.A.; Azevedo, C.M.P.S.; de Salgado, C.G.; da Silva, M.B.; Queiroz-Telles, F.; Marques, S.G.; Santos, D.W.C.L.; de Andrade, T.S.; Takagi, E.H.; et al. Molecular Epidemiology of Agents of Human Chromoblastomycosis in Brazil with the Description of Two Novel Species. PLoS Negl. Trop. Dis. 2016, 10, e0005102. [Google Scholar] [CrossRef]
- Sun, J.; Najafzadeh, M.J.; Najafzadeh, M.J.; Gerrits van den Ende, A.H.G.; Vicente, V.A.; Feng, P.; Xi, L.; De Hoog, G.S. Molecular Characterization of Pathogenic Members of the Genus Fonsecaea Using Multilocus Analysis. PLoS ONE 2012, 7, e41512. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: New York, NY, USA, 1990; p. 315e322. [Google Scholar]
- van den Ende, A.G.; De Hoog, G. Variability and Molecular Diagnostics of the Neurotropic Species Cladophialophora Bantiana. Stud. Mycol. 1999, 43, 151–162. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification of Clinically Important Ascomycetous Yeasts Based on Nucleotide Divergence in the 5’ End of the Large-Subunit (26S) Ribosomal DNA Gene. J. Clin. Microbiol. 1997, 35, 1216–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Fernandes, G.F.; de Almeida, S.R.; Lopes-Bezerra, L.M.; de Camargo, Z.P. Immunoproteomic Analysis Reveals a Convergent Humoral Response Signature in the Sporothrix Schenckii Complex. J. Proteom. 2015, 115, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Cigelnik, E. Two Divergent Intragenomic RDNA ITS2 Types within a Monophyletic Lineage of the Fungus Fusarium Are Nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A Multigene Phylogeny of the Gibberella Fujikuroi Species Complex: Detection of Additional Phylogenetically Distinct Species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- Abliz, P.; Fukushima, K.; Takizawa, K.; Nishimura, K. Specific Oligonucleotide Primers for Identification of Cladophialophora Carrionii, a Causative Agent of Chromoblastomycosis. J. Clin. Microbiol. 2004, 42, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Abliz, P.; Fukushima, K.; Takizawa, K.; Nieda, N.; Miyaji, M.; Nishimura, K. Rapid Identification of the Genus Fonsecaea by PCR with Specific Oligonucleotide Primers. J. Clin. Microbiol. 2003, 41, 873–876. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Najafzadeh, M.J.; Vicente, V.; Xi, L.; de Hoog, G.S. Rapid Detection of Pathogenic Fungi Using Loop-Mediated Isothermal Amplification, Exemplified by Fonsecaea Agents of Chromoblastomycosis. J. Microbiol. Methods 2010, 80, 19–24. [Google Scholar] [CrossRef]
- Deng, S.; de Hoog, G.S.; Pan, W.; Chen, M.; van den Ende, A.H.G.G.; Yang, L.; Sun, J.; Najafzadeh, M.J.; Liao, W.; Li, R. Three Isothermal Amplification Techniques for Rapid Identification of Cladophialophora Carrionii, an Agent of Human Chromoblastomycosis. J. Clin. Microbiol. 2014, 52, 3531–3535. [Google Scholar] [CrossRef] [Green Version]
- Najafzadeh, M.J.; Sun, J.; Vicente, V.A.; de Hoog, G.S. Rapid Identification of Fungal Pathogens by Rolling Circle Amplification Using Fonsecaea as a Model. Mycoses 2011, 54, e577–e582. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, A.F.; Drake, S.K.; Calhoun, L.B.; Henderson, C.M.; Zelazny, A.M. Development of a Clinically Comprehensive Database and a Simple Procedure for Identification of Molds from Solid Media by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2013, 51, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Robert, M.-G.; Cornet, M.; Hennebique, A.; Rasamoelina, T.; Caspar, Y.; Pondérand, L.; Bidart, M.; Durand, H.; Jacquet, M.; Garnaud, C.; et al. MALDI-TOF MS in a Medical Mycology Laboratory: On Stage and Backstage. Microorganisms 2021, 9, 1283. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Singh, P.; Sharma, S.; Prasad, G.S.; Rudramurthy, S.M.; Chakrabarti, A.; Ghosh, A.K. MALDI-TOF MS-Based Identification of Melanized Fungi Is Faster and Reliable after the Expansion of In-House Database. Proteom. Clin. Appl. 2019, 13, e1800070. [Google Scholar] [CrossRef]
- Lau, A.F.; Walchak, R.C.; Miller, H.B.; Slechta, E.S.; Kamboj, K.; Riebe, K.; Robertson, A.E.; Gilbreath, J.J.; Mitchell, K.F.; Wallace, M.A.; et al. Multicenter Study Demonstrates Standardization Requirements for Mold Identification by MALDI-TOF MS. Front. Microbiol. 2019, 10, 2098. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Cadavid, C.; Rudd, S.; Zaki, S.R.; Patel, M.; Moser, S.A.; Brandt, M.E.; Gómez, B.L. Improving Molecular Detection of Fungal DNA in Formalin-Fixed Paraffin-Embedded Tissues: Comparison of Five Tissue DNA Extraction Methods Using Panfungal PCR. J. Clin. Microbiol. 2010, 48, 2147–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frickmann, H.; Loderstaedt, U.; Racz, P.; Tenner-Racz, K.; Eggert, P.; Haeupler, A.; Bialek, R.; Hagen, R.M. Detection of Tropical Fungi in Formalin-Fixed, Paraffin-Embedded Tissue: Still an Indication for Microscopy in Times of Sequence-Based Diagnosis? Biomed. Res. Int. 2015, 2015, 938721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.M.E.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Molecular Identification of the Sporothrix Schenckii Complex. Rev. Iberoam. Micol. 2014, 31, 2–6. [Google Scholar] [CrossRef]
- Orofino-Costa, R.; de Macedo, P.M.; Rodrigues, A.M.; Bernardes-Engemann, A.R. Sporotrichosis: An Update on Epidemiology, Etiopathogenesis, Laboratory and Clinical Therapeutics. An. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Cruz Choappa, R.; Fernandes, G.F.; de Hoog, G.S.; de Camargo, Z.P. Sporothrix chilensis Sp. Nov. (Ascomycota: Ophiostomatales), a Soil-Borne Agent of Human Sporotrichosis with Mild-Pathogenic Potential to Mammals. Fungal. Biol. 2016, 120, 246–264. [Google Scholar] [CrossRef]
- Eudes Filho, J.; Santos, I.B.D.; Reis, C.M.S.; Patané, J.S.L.; Paredes, V.; Bernardes, J.P.R.A.; Poggiani, S.D.S.C.; de Castro, T.C.B.; Gomez, O.M.; Pereira, S.A.; et al. A Novel Sporothrix Brasiliensis Genomic Variant in Midwestern Brazil: Evidence for an Older and Wider Sporotrichosis Epidemic. Emerg. Microbes. Infect. 2020, 9, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; de Hoog, G.S.; de Camargo, Z.P. Molecular Diagnosis of Pathogenic Sporothrix Species. PLoS Negl. Trop. Dis. 2015, 9, e0004190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanbe, T.; Natsume, L.; Goto, I.; Kawasaki, M.; Mochizuki, T.; Ishizaki, H.; Kikuchi, A. Rapid and Specific Identification of Sporothrix Schenckii by PCR Targeting the DNA Topoisomerase II Gene. J. Dermatol. Sci. 2005, 38, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.M.F.; Moreira, L.M.; Barczewski, B.F.; de Matos, L.X.; de Oliveira, J.B.V.; Pimentel, M.I.F.; Almeida-Paes, R.; Oliveira, M.G.; Pinto, T.C.A.; Lima, N.; et al. Identification by MALDI-TOF MS of Sporothrix Brasiliensis Isolated from a Subconjunctival Infiltrative Lesion in an Immunocompetent Patient. Microorganisms 2019, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.M.E.; Santos, C.; Sampaio, P.; Romeo, O.; Almeida-Paes, R.; Pais, C.; Lima, N.; Zancopé-Oliveira, R.M. Development and Optimization of a New MALDI-TOF Protocol for Identification of the Sporothrix Species Complex. Res. Microbiol. 2015, 166, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Normand, A.C.; Becker, P.; Gabriel, F.; Cassagne, C.; Accoceberry, I.; Gari-Toussaint, M.; Hasseine, L.; De Geyter, D.; Pierard, D.; Surmont, I.; et al. Validation of a New Web Application for Identification of Fungi by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2017, 55, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, F.; Gong, J.; Yang, X.; Zhang, J.; Zhao, F. Development and Evaluation of a Real-Time Polymerase Chain Reaction for Fast Diagnosis of Sporotrichosis Caused by Sporothrix Globosa. Med. Mycol. 2020, 58, 61–65. [Google Scholar] [CrossRef]
Fieldwork/Rural Clinics | Local Laboratories | Expert Laboratories | ||
---|---|---|---|---|
Conventional Diagnosis | Microscopy | X | X | X |
Culture | X | X | ||
Molecular Diagnosis | DNA Amplification | To be achieved | X | X |
From clinical samples | From culture or clinical samples | From culture or clinical samples | ||
Easy-to-use methods (ex: LAMP) | Easy-to-use methods (ex: LAMP) | |||
DNA Sequencing | X | |||
MALDI-ToF MS | X | |||
Development of New Diagnostic Tools | X |
Technique | Target | Ref. |
---|---|---|
Gene sequencing | CAL, BT2, CHS, ITS, 28S large subunit (LSU), | [11,69,70] |
Multi-gene sequencing (i.e., MLST) | ITS, 5.8S, BT2, CAL, TEF1α | [16,71] |
Conventional PCR | CAL, topoisomerase II | [73,74] |
Multiplex PCR | CAL, BT2 | [13,14] |
PCR-RFLP | CAL | [73] |
RCA | CAL | [15] |
Primers | Detection | Amplicon Size | Target Gene | Ref. |
---|---|---|---|---|
Sbra-F-CCCCCGTTTGACGCTTGG | S. brasiliensis | 469 pb | CAL | [73] |
Sbra-R-CCCGGATAACCGTGTGTC ATAAT | ||||
Ssch-F-TTTCGAATGCGTTCGGCTGG | S. schenckii | 331 pb | CAL gene | [73] |
Ssch-R-CTCCAGATCACCGTGTCA | ||||
Sglo-F-CGCCTAGGCCAGATCACCACTAAG | S. globosa | 243 pb | CAL gene | [73] |
Sglo-R-CCA ATG TCT ACC CGT GCT | ||||
Smex-F-TCTCTGCCGACAATTCTTTCTC | S. mexicana | 183 pb | CAL gene | [73] |
Smex-R-GGAAAGCGGTGGCTAGATGC | ||||
Spa-F-CGCTGCTTTCCGCCATTTTCGC | S. pallida | 363 pb | CAL gene | [73] |
Spa-R-GCCATTGTTGTCGCGGTCGAAG | ||||
SSHF31-GCAGCCCACGTCCAACAAGACT | Sporothrix spp. | 663−817 bp | topoisomerase II | [11,74] |
SSHR97-GTCAGAGGTCTTATTGGACGTGA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maubon, D.; Garnaud, C.; Ramarozatovo, L.S.; Fahafahantsoa, R.R.; Cornet, M.; Rasamoelina, T. Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis. J. Fungi 2022, 8, 382. https://doi.org/10.3390/jof8040382
Maubon D, Garnaud C, Ramarozatovo LS, Fahafahantsoa RR, Cornet M, Rasamoelina T. Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis. Journal of Fungi. 2022; 8(4):382. https://doi.org/10.3390/jof8040382
Chicago/Turabian StyleMaubon, Danièle, Cécile Garnaud, Lala Soavina Ramarozatovo, Rapelanoro Rabenja Fahafahantsoa, Muriel Cornet, and Tahinamandranto Rasamoelina. 2022. "Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis" Journal of Fungi 8, no. 4: 382. https://doi.org/10.3390/jof8040382
APA StyleMaubon, D., Garnaud, C., Ramarozatovo, L. S., Fahafahantsoa, R. R., Cornet, M., & Rasamoelina, T. (2022). Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis. Journal of Fungi, 8(4), 382. https://doi.org/10.3390/jof8040382