Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Fungi and Inoculum Preparation
2.2. Submerged Liquid Fermentation
2.3. Drying Fungal Propagules after Submerged Production
2.4. Seed Treatment of Beans with Nematophagous Fungi, Endophytism, and Growth Promotion
2.5. Effects of Nematophagous Fungi on the Population Growth of the Two-Spotted Spider Mite
2.6. Effects of Nematophagous Fungi on the Soybean Cyst Nematode
2.7. Data Analysis
3. Results
3.1. Microsclerotia (MS) Production
3.2. Submerged Blastospore Production
3.3. Effect of Nematophagous Fungi on Bean Growth through Seed Treatment
3.4. Fungal Colonization in Potted Bean Plants
3.5. Effects of Nematophagous Fungi on Population Growth of T. urticae
3.6. Effects of Nematophagous Fungi on the Population Growth of H. glycines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Eilenberg, J.; Hajek, A.E.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Parra, J.R.P. Biological control in Brazil: An overview. Sci. Agric. 2014, 71, 345–355. [Google Scholar] [CrossRef]
- Brito, D. Mercado de Biodefensivos Cresce Mais de 70% No Brasil em um ano. Ministério da Agricultura, Pecuária e Abastecimento 2019. Available online: www.agricultura.gov.br/noticias/feffmercado-de-biodefensivos-cresce-em-mais-de-50-no-brasil. (accessed on 3 January 2020).
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, V.H.M.; Inomoto, M.M.; Pascholati, S.F.; Roma-Almeida, R.C.C.; Melo, T.A.; Rezende, D.C. Fitonematoides: Controle Biológico e Indução de Resistência. In Revisão Anual de Patologia de Plantas, 1st ed.; Dalio, R.J.D., Ed.; Sociedade Brasileira de Fitopatologia: Brasília, Brazil, 2015; pp. 242–292. [Google Scholar]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current Status and Perspectives of Fungal Entomopathogens Used for Microbial Control of Arthropod Pests in Brazil. J. Invertebr. Pathol. 2019, 165, 46–53. [Google Scholar] [CrossRef]
- Agrofif. Ministério da Agricultura, Pecuária e Abastecimento. 2020. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 17 January 2020).
- Angelo, I.C.; Fernandes, E.K.K.; Bahiense, T.C.; Perinotto, W.M.S.; Golo, P.S.; Moraes, A.P.R.; Bittencourt, V.R.E. Virulence of Isaria sp. and Purpureocillium lilacinum to Rhipicephalus microplus tick under laboratory conditions. Parasitol. Res. 2012, 111, 1473–1480. [Google Scholar] [CrossRef]
- Medeiros, F.R.; Lemos, R.N.S.; Rodrigues, A.A.C.; Filho, A.B.; Oliveira, L.J.M.G.; Araujo, J.R.G. Occurrence of Purpureocillium lilacinum in citrus Black flynymphs. Rev. Bras. Frutic. 2018, 40, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Maciá-Vicente, J.G.; Rosso, L.C.; Ciancio, A.; Lopez-Llorca, L.V. Colonisation of barley roots by endophytic Fusarion equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann. Appl. Biol. 2009, 155, 391–401. [Google Scholar] [CrossRef]
- Kiriga, A.W.; Haukeland, S.; Kariuki, G.M.; Coyne, D.L.; Beek, N.V. Effect of Trichoderma sand Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biol. Control 2018, 119, 27–32. [Google Scholar] [CrossRef]
- Jaronski, S.T.; Mascarin, G.M. Chapter 9: Mass production of fungal entomopathogens. In Mass Production of Entomopathogenic Fungi: State of the Art; Jarinski, S.T., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 141–155. [Google Scholar] [CrossRef]
- Jackson, M.A. Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J. Ind. Microbiol. Biotechnol. 1997, 19, 180–187. [Google Scholar] [CrossRef]
- Jackson, M.A.; Jaronski, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol. Res. 2009, 113, 842–850. [Google Scholar] [CrossRef]
- Thomas, K.C.; Khachatourians, G.G.; Ingledew, W.M. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can. J. Microbiol. 1987, 33, 12–20. [Google Scholar] [CrossRef]
- Hegedus, D.D.; Bidochka, M.J.; Khachatourians, G.G. Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Appl. Microbiol. Biotechnol. 1990, 33, 641–647. [Google Scholar] [CrossRef]
- Cho, E.M.; Liu, L.; Farmerie, W.; Keyhani, N.O. EST analysis of cDNA libraries from entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 2006, 152, 2843–2854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidochka, M.J.; Pfeifer, T.A.; Khachatourians, G.G. Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Microbiology 1987, 99, 77–83. [Google Scholar] [CrossRef]
- Humphreys, A.M.; Matewele, P.; Trinci, A.P.J.; Gillespie, A.T. Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in batch and fed-batch culture. Mycol. Res. 1989, 92, 257–264. [Google Scholar] [CrossRef]
- Feng, M.G.; Poprawski, T.J.; Khachatourians, G.G. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control worldwide. Biocontrol Sci. Technol. 1994, 4, 34. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jackson, M.A.; Kobori, N.N.; Behle, R.W.; Dunlap, C.A.; Delalibera Júnior, Í. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores. Appl. Microbiol. Biotechnol. 2015, 99, 6653–6665. [Google Scholar] [CrossRef]
- De Lira, A.C.; Mascarin, G.M.; Delalibera Júnior, Í. Microsclerotia production of Metarhizium sfor dual role as plant biostimulant and control of Spodoptera frugiperda through corn seed coating. Fungal Biol. 2020, 124, 689–699. [Google Scholar] [CrossRef]
- Marciano, A.F.; Mascarin, G.M.; Franco, R.F.F.; Golo, P.S.; Jaronski, S.T.; Fernandes, É.K.K.; Bittencourt, V.R.E.P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Sci. Rep. 2021, 11, 4972. [Google Scholar] [CrossRef]
- Santos, T.R.; da Paixão, F.R.S.; Catão, A.M.L.; Muniz, E.R.; Ribeiro-Silva, C.S.; Taveira, S.F.; Luz, C.; Mascarin, G.M.; Fernandes, É.K.K.; Marreto, R.N. Inorganic pellets containing microsclerotia of Metarhizium anisopliae: A new technological platform for the biological control of the cattle tick Rhipicephalus microplus. Appl. Microbiol. Biotechnol. 2021, 105, 5001–5012. [Google Scholar] [CrossRef]
- Ferreira, C.; Andrade, F.; Rodrigues, A.; Siqueira, H.; Gondim, M., Jr. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop. Prot. 2015, 67, 77–83. [Google Scholar] [CrossRef]
- Suekane, R.; Degrande, P.E.; Melo, E.P.; Bertoncello, T.F.; Junior, I.S.L.; Kodama, C. Damage level of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in soybeans. Rev. Ceres 2012, 59, 77–81. [Google Scholar] [CrossRef]
- Wrather, J.A.; Stienstra, W.C.; Koenning, S.R. Soybean disease loss estimates for the United States from 1996 to 1998. Can. J. Plant Pathol. 2001, 23, 122–131. [Google Scholar] [CrossRef]
- Morton, C.O.; Mauchline, T.H.; Kerry, R.; Hirsch, P.R. PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycol. Res. 2003, 107, 198–205. [Google Scholar] [CrossRef]
- Medina-Canales, M.G.; Rodríguez-Tovar, A.V.; Manzanilla-López, R.H.; Zuniga, G.; Tovar-Soto, A. Identification and molecular characterisation of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Sci. Technol. 2014, 24, 1–21. [Google Scholar] [CrossRef]
- Sequeira, D.C.M.; Menezes, R.C.; Oliveira, M.M.E.; Antas, P.R.Z.; Luca, P.M.; Oliveira-Ferreira, J.; Borba, C.M. Purpureocillium lilacinum: Outcome of the infection in C57BL/6 MurineModels. Front. Microbiol. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotides sequences. J. Mol. Evol. 1980, 16, 11–120. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Iwanicki, N.S.; Ferreira, B.O.; Mascarin, G.M.; Delalibera, I. Modified Adamek’s medium renders high yields of Metarhizium robertsii blastospores that are desiccation tolerant and infective to cattle-tick larvae. Fungal Biol. 2018, 122, 883–890. [Google Scholar] [CrossRef]
- Adámek, L. Submerse cultivation of the fungus Metarhizium anisopliae (Metsch.). Folia Microbiol. 1965, 10, 255–257. [Google Scholar] [CrossRef]
- Kobori, N.N.; Mascarin, G.M.; Jackson, M.A.; Schilser, D.A. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biol. 2015, 119, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.M.; Van Den Berg, J.; Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effecys on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- Behie, S.W.; Jones, S.J.; Bidochka, M.J. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecol. 2015, 13, 112–119. [Google Scholar] [CrossRef]
- Canassa, F.; Tall, S.; Moral, R.A.; Lara, I.A.R.; Delalibera, I.; Meyling, N.V. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite population and behavior of predatory mites. Biol. Control 2019, 132, 199–208. [Google Scholar] [CrossRef]
- Machado, A.; Silva, S.A. Extração de nematoides. In Métodos em Nematologia Agrícola. Sociedade Brasileira de Nematologia; Machado, A.C.Z., Silva, S.A., Ferraz, L.C.C.B., Eds.; Sociedade Brasileira de Nematologia: Piracicaba, Brazil, 2019; pp. 9–33. [Google Scholar]
- Niblack, T.L. Soybean cyst nematode management reconsidered. Plant Dis. 2005, 89, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Coolen, W.A.; D’Herde, C.J. A Method for the Quantitative Extraction of Nematodes from Plant Tissue, 1st ed.; State Agriculture Research Center: Ghent, Belgium, 1972; p. 77. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.0.1.2. 2020. Available online: https://CRAN.R-project.org/package=gplots (accessed on 5 December 2021).
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means [Computer Software Manual]. (R package version 1.4.1). 2020. Available online: http://cran.project.org/package=emmeans (accessed on 5 December 2021).
- Stasinopoulos, D.M.; Rigby, R.A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 2007, 23, 1–46. Available online: http://www.jstatsoft.org/v23/i07 (accessed on 5 December 2021). [CrossRef] [Green Version]
- Moral, R.; Hinde, J.; Demétrio, C. Half-Normal plots and overdispersed models in R: The hnp package. J. Stat. Softw. 2017, 81, 1–23. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and environment for statistical computing. R. Foundation for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 5 December 2021).
- Sun, T.; Wu, J.; Ali, S. Morphological and molecular identification of four Purpureocillium isolates and evaluating their efficacy against the sweet potato whitefly, Bemisia tabaci (Genn.) (Hemiptera: Aleurodidae). Egyp. J. Biol. Pest Control 2021, 31, 27. [Google Scholar] [CrossRef]
- Giaretta, R.D. Isolamento, Identificação e Avaliação de Pochonia chlamudosporia No Controle de Meloidogyne javanica e na Promoção de Crescimento de Tomateiro. Ph.D. Thesis, Universidade Feferal de Viçosa, Viçosa, Brazil, 2008. Available online: https://www.locus.ufv.br/bitstream/123456789/1012/1/texto%20completo.pdf (accessed on 21 February 2022).
- Hossain, M.M.; Sultana, F.; Islam, S. Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. In Plant-Microbe Interactions in Agro-Ecological Perspectives, 1st ed.; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: Singapore, 2017; Volume 2, pp. 135–191. [Google Scholar] [CrossRef]
- Fontana, D.C.; de Paula, S.; Torres, A.G.T.; de Souza, V.H.M.; Pascholati, S.F.; Schmidt, D.; Neto, D.D. Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses. Pathogens 2021, 10, 570. [Google Scholar] [CrossRef]
- Yang, L.; Zou, Y.N.; Tian, Z.H.; Wu, Q.S.; Kuča, K. Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Sci. Hortic. 2021, 227, 109815. [Google Scholar] [CrossRef]
- Song, Z.; Shen, L.; Zhong, Q.; Yin, Y.; Wang, Z. Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology 2016, 18, 719–726. [Google Scholar] [CrossRef]
- Behle, R.W.; Jackson, M.A. Effect of Fermentation Media on the Production, Efficacy, and Storage Stability of Metarhizium brunneum Microsclerotia Formulated as a Prototype Granule. J. Econ. Entomol. 2014, 107, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Yin, Y.; Jiang, S.; Liu, J.; Wang, Z. Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl 2014, 59, 597–605. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Kobori, N.N.; Vital, R.C.J.; Jackson, M.A.; Quintela, E.D. Production of microsclerotia by Brazilian strains of Metarhizium susing submerged liquid culture fermentation. World J. Microbiol. Biotechnol. 2014, 30, 1583–1590. [Google Scholar] [CrossRef]
- Zhou, G.; Song, Z.; Yin, Y.; Jiang, W.; Wang, Z. Involvement of an alternative oxidase in the regulation of hyphal growth and microsclerotial formation in Nomuraea rileyi CQNr01. World J. Microbiol. Biotechnol. 2015, 31, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Song, Z. Fungal microsclerotia development: Essential prerequisites, influencing factors, and molecular mechanism. Appl. Microbiol. Biotechnol. 2018, 102, 9873–9880. [Google Scholar] [CrossRef]
- Larriba, E.; Jaime, M.D.L.A.; Nislow, C.; Martín-Nieto, J.; Lopez-Llorca, L.V. Endophytic colonization of barley (Hordeum vulgare) roots by nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J. Plant Res. 2015, 128, 665–678. [Google Scholar] [CrossRef]
- Vega, F.E.; Jackson, M.A.; McGuire, M.R. Germination of conidia and blastospores of Paecilomyces fumosoroseus on the cuticle of the silverleaf whitefly, Bemisia argentifolii. Mycopathologia 1999, 147, 33–35. [Google Scholar] [CrossRef]
- Bernardo, C.C.; Barreto, L.P.; Silva, C.S.R.; Luz, C.; Arruda, W.; Fernandes, É.K.K. Conidia and blastospores of Metarhizium sand Beauveria bassiana s.l.: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks Tick Borne Dis. 2018, 9, 1334–1342. [Google Scholar] [CrossRef]
- Iwanicki, N.S.; Delalibera Júnior, I.; Eilenberg, J.; Licht, H.H.D.F. Comparative RNAseq analysisis of the insect-pathogenic fungus Metarhizium anisopliae reverals specific transcriptome signatures of finalmentous and yeast-like development. G3 Genes Genomes Genet. 2020, 10, 2141–2157. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jackson, M.A.; Kobori, N.N.; Behle, R.W.; Delalibera Junior, I. Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. J. Invertebr. Pathol. 2015, 127, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, B.; da Silveira Duarte, V.; Silva, D.M.; Mascarin, G.M.; Júnior, I.D. Comparative analysis of blastospore production and virulence of Beauveria bassiana and Cordyceps fumosorosea against soybean pests. BioControl 2020, 65, 323–337. [Google Scholar] [CrossRef]
- Romero-Rangel, O.; Maldonado-Blanco, M.G.; Aguilar-López, C.C.; Elías-Santos, M.; Rodríguez-Guerra, R.; López-Arroyo, J.I. Production of mycelium and blastospores of Hirsutella sp. in submerged culture. Afr. J. Biotechnol. 2012, 11, 15336–15340. [Google Scholar] [CrossRef]
- Jackson, M.A.; Cliquet, S.; Iten, L.B. Media and Fermentation process for the rapid production of high concentrations of stable blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Biocontrol Sci. Technol. 2003, 13, 23–33. [Google Scholar] [CrossRef]
- Lopez, D.C.; Sword, G.A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol. Control 2015, 89, 53–60. [Google Scholar] [CrossRef]
- Chang, Y.; Xia, X.; Sui, L.; Kang, Q.; Lu, Y.; Li, L.; Liu, W.; Li, Q.; Zhang, Z. Endophytic colonization pf entomopathogenic fungi increases plant disease resistance by changing the endophytic bacterial community. J. Basic Microbiol. 2021, 61, 1098–1112. [Google Scholar] [CrossRef]
- Dini-Andreote, F. Endophytes: The Second Layer of Plant Defense. Trends Plant Sci. 2020, 25, 319–322. [Google Scholar] [CrossRef]
- Dash, C.K.; Bamisile, B.S.; Keppanan, R.; Qasim, M.; Lin, Y.W.; Ul Islam, S.; Hussain, M.; Wang, L.D. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb. Pathog. 2018, 125, 385–392. [Google Scholar] [CrossRef]
- Golo, P.S.; Gardner, D.R.; Grilley, M.M.; Takemoto, J.Y.; Krasnoff, S.B.; Pires, M.S.; Fernandes, E.K.K.; Bittencourt, V.R.E.P.; Roberts, D.W. Production of destruxins from Metarhizium sfungi in artificial medium and in endophytically colonized cowpea plants. PLoS ONE 2017, 9, e104946. [Google Scholar] [CrossRef]
- Garrido-Jurado, I.; Resquín-Romero, G.; Amarilla, S.P.; Ríos-Moreno, A.; Carrasco, L.; Quesada-Moraga, E. Transient endophytic colonization of melon plants by entomopathogenic fungi after foliar application for the control of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). J. Pest Sci. 2017, 90, 319–330. [Google Scholar] [CrossRef]
- Al Khoury, C. Molecular insight into the endophytic growth of Beauveria bassiana within Phaseolus vulgaris in the presence or absence of Tetranychus urticae. Mol. Biol. Rep. 2021, 48, 2485–2496. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.S.; Schmitt, D.P. Influence of temperature and soybean phenology on dormancy induction in Heterodera glycines. J. Nematol. 1989, 2, 361–369. [Google Scholar]
- Yen, J.H.; Niblack, T.; Wiebold, W.J. Dormancy of Heterodera glycines in Missouri. J. Nematol. 1995, 27, 153–163. [Google Scholar] [PubMed]
- Westphal, A.; Becker, J.O. Components of soil suppressiveness against Heterodera schachtii. Soil Biol. Biochem. 2001, 33, 9–16. [Google Scholar] [CrossRef]
- Silva, S.D.; Carneiro, R.M.D.G.; Faria, M.; Souza, D.A.; Monnerat, R.G.; Lopes, R.B. Evaluation of Pochonia chlamydosporia and Purpureocillium lilacinum for Suppression of Meloidogyne enterolobii on Tomato and Banana. J. Nematol. 2017, 49, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Haarith, D.; Kim, D.; Chen, S.; Bushley, K.E. Growth chamber and greenhouse screening of promising in vitro fungal biological control candidates for the soybean cyst nematode (Heterodera glycines). Biol. Control 2021, 160, 104635. [Google Scholar] [CrossRef]
- Mukhtar, T.; Arshad Hussain, M.; Zameer Kayani, M. Biocontrol potential of Pasteuria penetrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against Meloidogyne incognita in okra. Phytopathol. Mediterr. 2013, 52, 66–76. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Llorca, L.V. Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis 2012, 57, 33–42. [Google Scholar] [CrossRef]
- Burkett-Cadena, M.; Kokalis-Burelle, N.; Lawrence, K.S.; Van Santen, E.; Kloepper, J.W. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol. Control 2008, 47, 55–59. [Google Scholar] [CrossRef]
- Holland, R.J.; Williams, K.L.; Khan, A. Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1999, 1, 131–139. [Google Scholar] [CrossRef]
- Kiewnick, S.; Sikora, R.A. Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control 2006, 38, 179–187. [Google Scholar] [CrossRef]
- Huang, X.W.; Zhao, N.H.; Zhang, K.Q. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res. Microbiol. 2004, 55, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Parsa, S.; Adriana, M.; García-Lemos, K.C.; Ortiz, V.; López-Lavalle, L.A.B.; Braun, J.; Vega, F.E. Fungal Endophytes in Germinated Seeds of the Common Bean, Phaseolus vulgaris. Fungal Biol. 2016, 120, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, M.L.; Pelizza, S.A.; Vianna, M.F.; Allegrucci, N.; Cabello, M.N.; Toledo, A.V.; Mourelos, C.; Scorsetti, A.C. Effect of endophytic entomopathogenic fungi on soybean Glycine max (L.) Merr. growth and yield. J. King Saud Univ. 2018, 31, 728–736. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Schardl, C.L.; Leuchtmann, A.; Spiering, M.J. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 2004, 55, 315–340. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol. Control 2018, 116, 36–45. [Google Scholar] [CrossRef]
- Barros, F.C.; Sagata, É.; de Castro Ferreira, L.C.; Juliatti, F.C. Induction of resistance in plants against phytopathogens. Biosci. J. 2010, 26, 231–239. [Google Scholar]
- Pascholati, S.F.; Souza, V.H.M.; Cardoso Filho, J.A. Indução de Resistência Por Trichoderma. In Uso de Trichoderma Na Agricultura; Pascholati, S.F., Souza, V.H.M., Cardoso Filho, J.A., Eds.; Embrapa Soja: Londrina, Brazil, 2019; Volume 1, pp. 241–258. [Google Scholar]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khyrshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic acid signaling pathway in plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [Green Version]
Isolate Code | Collection Date | Species | Origin | |
---|---|---|---|---|
Host/Substrate | Location/Biome | |||
ESALQ489 | 12/05/1986 | Purpureocillium lilacinum | Lepidptera: Hemileucidae | Teixeira de Freitas—BA |
ESALQ668 | 10/21/1987 | Purpureocillium lilacinum | Solenopsis sp. | Porto Feliz—SP |
ESALQ774 | 03/01/1988 | Purpureocillium lilacinum | Solenopsis sp. nest soil | Rio Grande do Sul |
ESALQ1744 | 08/13/2012 | Purpureocillium lilacinum | Soil: Selective medium | Caatinga—Palma |
ESALQ1749 | 08/13/2012 | Purpureocillium lilacinum | Soil: Selective medium | Caatinga |
ESALQ1766 | 03/27/2012 | Purpureocillium lilacinum | Soil: Selective medium | Savanna |
ESALQ1771 | 03/27/2012 | Purpureocillium lilacinum | Soil: Selective medium | Savanna |
ESALQ1906 | 03/06/2012 | Purpureocillium lilacinum | Soil: Insect bait | Sinop—MT |
ESALQ1907 | 03/06/2012 | Purpureocillium lilacinum | Soil: Insect bait | Sinop—MT |
ESALQ1908 | 03/06/2012 | Purpureocillium lilacinum | Soil: Insect bait | Sinop—MT |
ESALQ1909 | 03/06/2012 | Purpureocillium lilacinum | Soil: Insect bait | Sinop—MT |
ESALQ1994 | 03/14/2012 | Purpureocillium lilacinum | Soil: Insect bait | Teotônio Vilela—AL |
ESALQ1995 | 03/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Delmiro Gouveia—AL |
ESALQ1996 | 03/14/2012 | Purpureocillium lilacinum | Soil: Insect bait | Teotônio Vilela—AL |
ESALQ2077 | 03/27/2012 | Purpureocillium lilacinum | Soil: Insect bait | Rio Verde—GO |
ESALQ2078 | 03/27/2012 | Purpureocillium lilacinum | Soil: Insect bait | Rio Verde—GO |
ESALQ2164 | 08/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Delmiro Gouveia—AL |
ESALQ2165 | 08/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Delmiro Gouveia—AL |
ESALQ2166 | 08/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Delmiro Gouveia—AL |
ESALQ2167 | 08/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Delmiro Gouveia—AL |
ESALQ2482 | 09/05/2012 | Purpureocillium lilacinum | Soil: Insect bait | Rio Verde—GO |
ESALQ2509 | 06/26/2012 | Purpureocillium lilacinum | Soil: Insect bait | Aceguá-RS |
ESALQ2593 | 07/31/2012 | Purpureocillium lilacinum | Soil: Selective medium | Amazon |
ESALQ2599 | 09/04/2012 | Purpureocillium lilacinum | Soil: Selective medium | Savanna |
ESALQ2645 | 07/31/2012 | Purpureocillium lilacinum | Soil: Selective medium | Amazon |
ESALQ2715 | 09/04/2012 | Purpureocillium lilacinum | Soil: Selective medium | Savanna |
ESALQ2716 | 03/21/2012 | Purpureocillium lilacinum | Soil: Selective medium | Caatinga |
ESALQ2718 | 10/03/2012 | Purpureocillium lilacinum | Soil: Selective medium | Savanna |
ESALQ2765 | 06/26/2012 | Purpureocillium lilacinum | Soil: Selective medium | Pampa |
ESALQ2774 | 08/14/2012 | Purpureocillium lilacinum | Soil: Selective medium | Sinop—MT |
ESALQ2776 | 08/14/2012 | Purpureocillium lilacinum | Soil: Selective medium | Sinop—MT |
ESALQ2780 | 08/14/2012 | Purpureocillium lilacinum | Soil: Selective medium | Teotônio Vilela—AL |
ESALQ2832 | 10/03/2012 | Purpureocillium lilacinum | Soil: Selective medium | Rio Verde—GO |
ESALQ2833 | 10/03/2012 | Purpureocillium lilacinum | Soil: Selective medium | Rio Verde—GO |
ESALQ2847 | 03/14/2012 | Purpureocillium lilacinum | Soil: Selective medium | Atlantic florest |
ESALQ3599 | 02/19/2013 | Purpureocillium lilacinum | Toxoptera citricida | Itirapina—SP |
ESALQ3600 | 02/19/2013 | Purpureocillium lilacinum | Soil | Conchal—SP |
ESALQ3602 | 02/19/2013 | Purpureocillium lilacinum | Soil | Conchal—SP |
ESALQ3603 | 02/19/2013 | Purpureocillium lilacinum | Soil | Conchal—SP |
ESALQ3605 | 04/03/2013 | Purpureocillium lilacinum | Soil | Nova Europa—SP |
ESALQ5405 | 03/27/2012 | Pochonia chlamydosporia | Soil: Selective medium | Rio Verde—GO |
ESALQ5406 | 03/27/2012 | Pochonia chlamydosporia | Soil: Selective medium | Rio Verde—GO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.M.; de Souza, V.H.M.; Moral, R.d.A.; Delalibera Júnior, I.; Mascarin, G.M. Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation. J. Fungi 2022, 8, 511. https://doi.org/10.3390/jof8050511
Silva DM, de Souza VHM, Moral RdA, Delalibera Júnior I, Mascarin GM. Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation. Journal of Fungi. 2022; 8(5):511. https://doi.org/10.3390/jof8050511
Chicago/Turabian StyleSilva, Daniela Milanez, Victor Hugo Moura de Souza, Rafael de Andrade Moral, Italo Delalibera Júnior, and Gabriel Moura Mascarin. 2022. "Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation" Journal of Fungi 8, no. 5: 511. https://doi.org/10.3390/jof8050511
APA StyleSilva, D. M., de Souza, V. H. M., Moral, R. d. A., Delalibera Júnior, I., & Mascarin, G. M. (2022). Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation. Journal of Fungi, 8(5), 511. https://doi.org/10.3390/jof8050511