Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Reagents Preparation
2.3. Optimization of Extraction Technology of SW from A. Oxytropis by Response Surface Methodology
2.3.1. Preparation of Dry Powder of A. oxytropis and the Extraction of SW
2.3.2. Determination of SW Content
2.3.3. Methodology Validation
2.3.4. Single Factor Experiment
- (1)
- Comparison of the extraction times: the concentration of formic acid in solvent was 0, the material-to-liquid ratio was 1: 30 g/mL, the extraction temperature was 60 °C, and the extraction times were set to 20, 40, 60, 80, 100 and 120 min, respectively.
- (2)
- Comparison of the extraction temperatures: the concentration of formic acid in solvent was 0, the extraction time was 40 min, the material-to-liquid ratio was 1: 30 g/mL, and the extraction temperatures were set to 30, 40, 50, 60, 70 and 80 °C, respectively.
- (3)
- Comparison of the concentrations of formic acid in solvent: the material-to-liquid ratio was 1: 30 g/mL, the extraction temperature was 60 °C, the extraction time was 40 min, and the concentrations of formic acid in solvent were set to 0, 0.5%, 1%, 2%, 4% and 6%, respectively.
- (4)
- Comparison of the material-to-liquid ratio: the concentration of formic acid in the solvent was 0, the extraction temperature was 60 °C, the extraction time was 40 min, the material-to-liquid ratios were set to 1:10, 1:15, 1:20, 1:25, 1:30 and 1:35 g/mL, respectively. The experiment was repeated three times in each group to determine the content of SW and take the average value.
2.3.5. Optimization of SW Extraction Process by Response Surface Methodology
2.3.6. Verification Test
2.4. Mutagenesis of A. Oxytropis by Heavy-Ion Irradiation Technology
2.4.1. Treatment of A. oxytropis Suspension by Heavy-Ion Irradiation
2.4.2. Determination of SW Content and Screening of Mutagenic Strains
2.4.3. Observation of Mutant Colony Morphology and Stability Test of SW Production
2.5. Metabolomics Studies
2.5.1. Metabolites Extraction
2.5.2. HPLC-MS/MS Analysis
2.5.3. Metabolites Identification and Quantification
2.5.4. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Optimization of Extraction Technology of SW from A. Oxytropis by Response Surface Methodology
3.1.1. Standard Curve of SW, Lower Limit of Detection, Lower Limit of Quantification
3.1.2. Methodology Validation
3.1.3. Single-Factor Experiment
3.1.4. Optimization of SW Extraction Process by Response Surface Methodology
3.1.5. Verification Test
3.2. Mutagenesis of A. Oxytropis by Heavy-Ion Irradiation Technology
3.2.1. Lethality Rate of A. oxytropis Strain Induced by 12C6+ Heavy ion Beam Irradiation
3.2.2. Determination of SW Content and Screening of Mutagenic Strains
3.2.3. Observation of Mutant Colony Morphology and Stability Test of SW Production
3.3. Metabolomics Studies
3.3.1. Data Quality Control
3.3.2. Differential Metabolite Screening
3.3.3. KEGG Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- James, L.F.; Hartley, W.J.; Kampen, V.K.R. Syndromes of astragalus poisoning in livestock. J. Am. Vet. Med. Assoc. 1981, 178, 146–150. [Google Scholar] [PubMed]
- Wu, C.C.; Wang, W.L.; Liu, X.X.; Ma, F.; Cao, D.D.; Yang, X.W.; Wang, S.S.; Geng, P.S.; Hao, L.; Zhao, B.Y. Pathogenesis and preventive treatment for animal disease due to locoweed poisoning. Environ. Toxicol. Phar. 2014, 37, 336–347. [Google Scholar]
- Hao, B.C.; Liang, J.P.; Yang, X.P.; Liu, Y.; Wang, B.H.; Wang, X.H.; Liu, J.Z.; Zhao, M.R.; Zhang, D. Research advances in the detoxificating preparation of swainsonine in "Locoweed" and its application to anti-tumor. J. Anhui Agric. Sci. 2012, 40, 2664–2665. [Google Scholar]
- Huang, X.; Liang, J.P.; Gao, X.D.; Hao, B.C. Research advance on sources, pharmacological effects and detection methods of swainsonine. Acta. Vet. Zootech. Sin. 2016, 47, 1075–1085. [Google Scholar]
- Martinez, A.; Robles, C.A.; Roper, J.M.; Gardner, D.R.; Neyaz, M.S.; Joelson, N.Z.; Cook, D. Detection of swainsonine-producing endophytes in Patagonian Astragalus species. Toxicon 2019, 171, 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.F.; Li, H.P.; Wang, L.Y.; Zhang, C.; Xing, X.H.; Bao, Y.B. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl. Microbiol. Biot. 2014, 98, 5387–5396. [Google Scholar] [CrossRef]
- Wang, C.P.; He, G.; Meng, J.; Wang, S.M.; Kong, Y.Z.; Jiang, J.X.; Hu, R.B.; Zhou, G.K. Improved lignocellulose saccharification of a Miscanthus reddish stem mutant induced by heavy-ion irradiation. GCB Bioenergy 2020, 12, 1066–1077. [Google Scholar] [CrossRef]
- Hu, W.; Li, W.; Chen, J. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP. Lett. Appl. Microbiol. 2017, 65, 274–280. [Google Scholar] [CrossRef]
- Li, Q. Biomedical research with heavy ions at the IMP accelerators. Adv. Space Res. 2007, 40, 455–460. [Google Scholar] [CrossRef]
- Li, X.; Lu, P. Adances in research on swainsonine biosynthesis pathway in fungi. Chem. Life 2018, 38, 815–820. [Google Scholar]
- Li, X.; Lu, P. Transcriptome Profiles of Alternaria oxytropis Provides Insights into Swainsonine Biosynthesis. Sci. Rep. 2019, 9, 6021. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, P.; Sa, R.L.; Xi, L.J.; Yuan, B.; Du, L. Construcion and identification of sac functional complementary strain in alternaria oxytropis. Mol. Plant Breed. 2020, 18, 7777–7783. [Google Scholar]
- Song, X.D.; Hao, B.C.; Liang, J.P.; Xu, W.J.; Wang, B.H.; Liu, J.Z.; Xia, C.Y.; Xin, X.Y.; Bao, S.J.; Hu, Y.H. Fermention of locoweed endophytic (U. oxytropis) producing swainsonine and the establishment of swainsonine detection method. Chin. J. Vet. Sci. 2019, 39, 328–336. [Google Scholar]
- Li, X.; Liu, Z.R.; Li, D.H.; Ma, X.; Yang, P.R.; Zheng, J.; Ma, S.C. Determination of swainsonine in Oxytropis of different origins and varieties by ultra high performance liquid chromatography-tandem mass spectrometry coupled with solid-phase extraction. Chin. J. Pharm. Anal. 2021, 41, 586–593. [Google Scholar]
- Sellick, C.A.; Hansen, R.; Stephens, G.M.; Goodacre, R.; Dickson, A.J. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 2011, 6, 1241–1249. [Google Scholar] [CrossRef]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef]
- Luo, P.; Dai, W.; Yin, P.; Zeng, Z.; Kong, H.; Zhou, L.; Wang, X.; Chen, S.; Lu, X.; Xu, G. Multiple reaction monitoring-ion pair finder: A systematic approach to transform nontargeted mode to pseudotargeted mode for metabolomics study based on liquid chromatography-mass spectrometry. Anal. Chem. 2015, 87, 5050–5055. [Google Scholar] [CrossRef]
- Chen, X.; Xie, C.; Sun, L.; Ding, J.; Cai, H. Longitudinal metabolomics profiling of parkinson’s disease-related alpha-Synuclein A53T transgenic mice. PLoS ONE 2015, 10, e0136612. [Google Scholar]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef]
- Heischmann, S.; Quinn, K.; Cruickshank-Quinn, C.; Liang, L.P.; Reisdorph, R.; Reisdorph, N.; Patel, M. Exploratory metabolomics profiling in the kainic acid rat model reveals depletion of 25-hydroxyvitamin D3 during epileptogenesis. Sci. Rep. 2016, 6, 31424. [Google Scholar] [CrossRef]
- Haspel, J.A.; Chettimada, S.; Shaik, R.S.; Chu, J.H.; Raby, B.A.; Cernadas, M.; Carey, V.; Process, V.; Hunninghake, G.M.; Ifedigbo, E.; et al. Circadian rhythm reprogramming during lung inflammation. Nat. Commun. 2014, 5, 4753. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009, 457, 910–914. [Google Scholar] [CrossRef]
- Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-dose hypersensitivity: Current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 379–389. [Google Scholar] [CrossRef]
- Hao, B.C.; Song, X.D.; Gao, Y.; Wang, X.H.; Liu, Y.; Li, Y.X.; Liang, Y.; Chen, K.Y.; Hu, Y.Y.; Xin, X.Y.; et al. Mutagenesis and screening of endophytic fungus alternaria section undifilum oxytropis producing swainsonine from locoweed. Sci. Agric. Sin. 2019, 52, 2716–2728. [Google Scholar]
- Qu, J.Z.; Chen, T.H.; Yao, M.D.; Wang, Y.; Xiao, W.H.; Li, B.Z. ABC transporter and its application in synthetic biology. Chin. J. Biotechnol. 2020, 36, 1754–1766. [Google Scholar]
- Kathawala, R.J.; Gupta, P.; Ashby, C.R.; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat. 2015, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Facchini, P.J.; Vincenzo, D.L. Opium poppy and madagascar periwinkle: Model non-model systems to investigate alkaloid biosynthesis in plants. Plant J. 2008, 54, 763–784. [Google Scholar] [CrossRef]
- Krause, D.J.; Kominek, J.; Opulente, D.A.; Shen, X.X.; Zhou, X.; Langdon, Q.K.; Devirgolio, J.; Hulfachor, A.B.; Kurtzman, C.P.; Rokas, A. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. USA 2018, 115, 11030–11035. [Google Scholar] [CrossRef]
- Luo, F.F.; Hong, S.; Chen, B.; Yin, Y.; Tang, G.R.; Hu, F.L.; Zhang, H.Z.; Wang, C.S. Unveiling of swainsonine biosynthesis via a multibranched pathway in fungi. ACS Chem. Biol. 2020, 15, 2476–2484. [Google Scholar] [CrossRef]
- Lu, H.; Quan, H.; Ren, Z.; Wang, S.; Xue, R.; Zhao, B. The genome of undifilum oxytropis provides insights into swainsonine biosynthesis and locoism. Sci. Rep. 2016, 6, 30760. [Google Scholar] [CrossRef]
- Tan, X.M.; Chen, A.J.; Wu, B.; Zhang, G.S.; Ding, G. Advance of swainsonine biosynthesis. Chin. Chem. Lett. 2018, 29, 417–422. [Google Scholar] [CrossRef]
- Ren, Z.H.; Song, R.J.; Wang, S.; Quan, H.Y.; Yang, L.; Sun, L.; Zhao, B.Y.; Lu, H. The biosynthesis pathway of swainsonine, a new anticancer drug from three endophytic fungi. J. Microbiol. Biotechnol. 2017, 27, 1897–1906. [Google Scholar] [CrossRef] [PubMed]
Level | Factors | |||
---|---|---|---|---|
(A) Extraction Time (min) | (B) Extraction Temperature (℃) | (C) formic Acid Concentration (%) | (D) Material-to-Liquid Ratio (g/mL) | |
1 | 120 | 50 | 2 | 1: 30 |
0 | 90 | 40 | 1 | 1: 25 |
−1 | 60 | 30 | 0 | 1: 20 |
The Sample Weight (g) | Content of SW (μg/g) | SW Mean Concentration (μg/g) | RSD (%) |
---|---|---|---|
0.201 | 87.930 | 88.024 | 2.12 |
0.203 | 89.281 | ||
0.205 | 85.259 | ||
0.210 | 86.391 | ||
0.206 | 90.049 | ||
0.207 | 89.237 |
The Sample Weight (g) | SW Content in the Sample (μg) | The Amount of SW Added (μg) | Estimated Value (μg) | Recovery Rate (%) | Average (%) | RSD (%) |
---|---|---|---|---|---|---|
0.203 | 17.85 | 20 | 36.926 | 95.37 | 94.71 | 2.82 |
0.210 | 18.46 | 20 | 37.370 | 94.51 | ||
0.207 | 18.20 | 20 | 36.230 | 90.13 | ||
0.200 | 17.59 | 20 | 37.056 | 97.34 | ||
0.206 | 18.12 | 20 | 36.850 | 93.67 | ||
0.205 | 18.03 | 20 | 37.470 | 97.21 |
Variance Sources | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5425.96 | 14 | 387.57 | 4.62 | 0.0035 |
A-Time | 14.78 | 1 | 14.78 | 0.18 | 0.6809 |
B-Temperature | 208.6 | 1 | 208.6 | 2.49 | 0.1371 |
C-Formic acid concentration | 621.36 | 1 | 621.36 | 7.41 | 0.0165 |
D-Material-to-liquid ratio | 3.44 | 1 | 3.44 | 0.041 | 0.8424 |
AB | 30.87 | 1 | 30.87 | 0.37 | 0.5537 |
AC | 134.92 | 1 | 134.92 | 1.61 | 0.2253 |
AD | 7.68 | 1 | 7.68 | 0.092 | 0.7666 |
BC | 63.06 | 1 | 63.06 | 0.75 | 0.4005 |
BD | 99.78 | 1 | 99.78 | 1.19 | 0.2938 |
CD | 21.06 | 1 | 21.06 | 0.25 | 0.624 |
A2 | 1556.09 | 1 | 1556.09 | 18.56 | 0.0007 |
B2 | 1034.35 | 1 | 1034.35 | 12.34 | 0.0035 |
C2 | 2128.88 | 1 | 2128.88 | 25.39 | 0.0002 |
D2 | 1798.23 | 1 | 1798.23 | 21.44 | 0.0004 |
Residual | 1173.95 | 14 | 83.85 | ||
Lack of Fit | 544.03 | 10 | 54.4 | 0.35 | 0.9213 |
Pure Error | 629.92 | 4 | 157.48 | ||
Cor Total | 6599.92 | 28 |
The Sample Weight (g) | Content of SW (μg/g) | Average Value (μg/g) | RSD/% |
---|---|---|---|
0.213 | 220.657 | 220.572 | 2.02 |
0.207 | 214.493 | ||
0.21 | 220 | ||
0.207 | 227.053 | ||
0.213 | 220.657 |
Irradiation Dose (Gy) | Number of Growing Colonies in Irradiation Group | Number of Growing Colonies in Control Group | Average Lethality Rate (%) | ||
---|---|---|---|---|---|
40 | 4 | 3 | 5 | 13 | 69.23 ± 7.69 |
60 | 4 | 5 | 4 | 13 | 66.67 ± 4.44 |
80 | 2 | 3 | 3 | 14 | 80.95 ± 4.12 |
100 | 2 | 1 | 2 | 14 | 88.09 ± 4.12 |
120 | 0 | 0 | 1 | 13 | 97.43 ± 4.44 |
140 | 0 | 0 | 0 | 14 | 100.00 ± 0.00 |
Group | Content of SW (μg/g) | The Content of SW after Subculture (μg/g) | Results |
---|---|---|---|
2 | 195.57 ± 10.67 | 217.03 ± 8.64 | Instability |
55 | 317.79 ± 4.16 | 314.80 ± 7.23 | Stability |
61 | 156.99 ± 7.97 | 160.54 ± 8.24 | Stability |
63 | 263.57 ± 3.77 | 211.37 ± 11.48 | Instability |
64 | 387.44 ± 8.57 | 394.27 ± 14.91 | Stability |
70 | 469.64 ± 8.66 | 473.13 ± 6.29 | Stability |
Compared Samples | Num. of Total Ident. | Num. of Total Sig. | Num. of Sig. Up | Num. of Sig. Down |
---|---|---|---|---|
A_61. vs. A_C | 843 | 186 | 171 | 15 |
A_70. vs. A_C | 843 | 251 | 130 | 121 |
A_61. vs. A_70 | 843 | 331 | 254 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, Y.; Yang, Z.; Hao, B.; Cheng, F.; Song, X.; Shang, X.; Zhao, H.; Shang, R.; Wang, X.; Liang, J.; et al. Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway. J. Fungi 2022, 8, 951. https://doi.org/10.3390/jof8090951
Mo Y, Yang Z, Hao B, Cheng F, Song X, Shang X, Zhao H, Shang R, Wang X, Liang J, et al. Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway. Journal of Fungi. 2022; 8(9):951. https://doi.org/10.3390/jof8090951
Chicago/Turabian StyleMo, Yanan, Zhen Yang, Baocheng Hao, Feng Cheng, Xiangdong Song, Xiaofei Shang, Haoxia Zhao, Ruofeng Shang, Xuehong Wang, Jianping Liang, and et al. 2022. "Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway" Journal of Fungi 8, no. 9: 951. https://doi.org/10.3390/jof8090951
APA StyleMo, Y., Yang, Z., Hao, B., Cheng, F., Song, X., Shang, X., Zhao, H., Shang, R., Wang, X., Liang, J., Wang, S., & Liu, Y. (2022). Screening of Endophytic Fungi in Locoweed Induced by Heavy-Ion Irradiation and Study on Swainsonine Biosynthesis Pathway. Journal of Fungi, 8(9), 951. https://doi.org/10.3390/jof8090951