Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection, Isolation, and Maintenance of Fungal Samples
2.2. DNA Extraction, Library Preparation, and Genome Sequencing
2.3. Quality Control, Assembly, and Structural Annotation of the O. australis (CCMB661) Genome
2.4. Functional Annotation of the O. australis (CCMB661) Genome
2.5. Analysis of Predicted Secretome
2.6. In Silico Characterization in Plant Biomass Degradation
2.7. Phylogenetic Analyses
3. Results
3.1. Genome Assembly
3.2. Predicted Secretome
3.3. Enzymes Involved in the Infection Process
3.3.1. Adhesion and Recognition
3.3.2. Germination
3.3.3. Cuticle Degradation
Chitinases
Proteases and Associated Domains
Phospholipases, P450, and Lipid Droplet
3.4. Other Important Proteins for the Infection Process
3.4.1. Enterotoxins
3.4.2. Protein Tyrosine Phosphatases—PTPs
3.5. Enzymes Associated with Plant Biomass Degradation
3.6. Phylogenetic Analyses
4. Discussion
4.1. Predicted Secretome
4.2. Proteins and Enzymes Involved in the Infection Process
4.2.1. Adhesion and Recognition
4.2.2. Germination
4.2.3. Cuticle Degradation
4.3. Other Important Proteins for the Infection Process
4.3.1. Enterotoxins
4.3.2. Protein Tyrosine Phosphatase—PTP
4.4. Enzymes Associated with Plant Degradation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araújo, J.P.M.; Evans, H.C.; Kepler, R.; Hughes, D.P. Zombie-Ant Fungi across Continents: 15 New Species and New Combinations within Ophiocordyceps. I. Myrmecophilous Hirsutelloid Species. Stud. Mycol. 2018, 90, 119–160. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.P.M.; Hughes, D.P. Diversity of Entomopathogenic Fungi: Which Groups Conquered the Insect Body? Adv. Genet. 2016, 94, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D. Chapter 5—Basic and Applied Research on Entomopathogenic Fungi. In Microbial Control of Insect and Mite Pests; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 69–89. ISBN 978-0-12-803527-6. [Google Scholar]
- Kepler, R.M.; Sung, G.-H.; Harada, Y.; Tanaka, K.; Tanaka, E.; Hosoya, T.; Bischoff, J.F.; Spatafora, J.W. Host Jumping onto Close Relatives and across Kingdoms by Tyrannicordyceps (Clavicipitaceae) Gen. Nov. and Ustilaginoidea_(Clavicipitaceae). Am. J. Bot. 2012, 99, 552–561. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B. Can We Use Entomopathogenic Fungi as Endophytes for Dual Biological Control of Insect Pests and Plant Pathogens? Biol. Control 2017, 116, 36–45. [Google Scholar] [CrossRef]
- Shahid, A.; Rao, Q.; Bakhsh, A.; Husnain, T. Entomopathogenic Fungi as Biological Controllers: New Insights into Their Virulence and Pathogenicity. Arch. Biol. Sci. 2012, 64, 21–42. [Google Scholar] [CrossRef]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzón, A.; Ownley, B.H.; et al. Fungal Entomopathogens: New Insights on Their Ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, M.; Ju, W.-B.; Ye, W.; Xue, L.; Boufford, D.; Gao, X.; Yue, B.; Liu, Y.; Pierce, N. The Entomophagous Caterpillar Fungus Ophiocordyceps Sinensis Is Consumed by Its Lepidopteran Host as a Plant Endophyte. Fungal Ecol. 2020, 47, 100989. [Google Scholar] [CrossRef]
- Lovett, B.; Leger, R.J.S. The Insect Pathogens. In The Fungal Kingdom; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 923–943. ISBN 978-1-68367-082-7. [Google Scholar]
- Pedrini, N. Molecular Interactions between Entomopathogenic Fungi (Hypocreales) and Their Insect Host: Perspectives from Stressful Cuticle and Hemolymph Battlefields and the Potential of Dual RNA Sequencing for Future Studies. Fungal Biol. 2018, 122, 538–545. [Google Scholar] [CrossRef]
- Baral, B. Entomopathogenicity and Biological Attributes of Himalayan Treasured Fungus Ophiocordyceps Sinensis (Yarsagumba). J. Fungi 2017, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Kobmoo, N.; Wichadakul, D.; Arnamnart, N.; Vega, R.C.R.D.L.; Luangsa-ard, J.J.; Giraud, T. A Genome Scan of Diversifying Selection in Ophiocordyceps Zombie-Ant Fungi Suggests a Role for Enterotoxins in Co-Evolution and Host Specificity. Mol. Ecol. 2018, 27, 3582–3598. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, H.; Wang, C.; Xu, J.-R. Comparative Analysis of Fungal Genomes Reveals Different Plant Cell Wall Degrading Capacity in Fungi. BMC Genom. 2013, 14, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quandt, C.A.; Kepler, R.M.; Gams, W.; Araújo, J.P.M.; Ban, S.; Evans, H.C.; Hughes, D.; Humber, R.; Hywel-Jones, N.; Li, Z.; et al. Phylogenetic-Based Nomenclatural Proposals for Ophiocordycipitaceae (Hypocreales) with New Combinations in Tolypocladium. IMA Fungus 2014, 5, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, R.C.S.; Shrestha, B.; Salvador Montoya, C.A.; Tomé, L.M.R.; Reck, M.A.; Góes-Neto, A.; Drechsler Dos Santos, E.R. Ophiocordyceps Neonutans Sp. Nov., a New Neotropical Species from O. Nutans Complex (Ophiocordycipitaceae, Ascomycota). Phytotaxa 2018, 344, 215–227. [Google Scholar] [CrossRef]
- Luangsa-ard, J.; Tasanathai, K.; Thanakitpipattana, D.; Khonsanit, A.; Stadler, M. Novel and Interesting Ophiocordyceps Spp. (Ophiocordycipitaceae, Hypocreales) with Superficial Perithecia from Thailand. Stud. Mycol. 2018, 89, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan, T.I.; Franco-Molano, A.E.; Kepler, R.M.; Spatafora, J.W.; Tabima, J.; Vasco-Palacios, A.M.; Restrepo, S. Five New Species of Entomopathogenic Fungi from the Amazon and Evolution of Neotropical Ophiocordyceps. Fungal Biol. 2015, 119, 901–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, G.-H.; Hywel-Jones, N.L.; Sung, J.-M.; Luangsa-ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic Classification of Cordyceps and the Clavicipitaceous Fungi. Stud. Mycol. 2007, 57, 5–59. [Google Scholar] [CrossRef] [Green Version]
- Neto, J.A.C.; Leal, L.C.; Baccaro, F.B. Temporal and Spatial Gradients of Humidity Shape the Occurrence and the Behavioral Manipulation of Ants Infected by Entomopathogenic Fungi in Central Amazon. Fungal Ecol. 2019, 42, 100871. [Google Scholar] [CrossRef]
- Wang, J.; Lovett, B.; St. Leger, R.J. The Secretome and Chemistry of Metarhizium; a Genus of Entomopathogenic Fungi. Fungal Ecol. 2019, 38, 7–11. [Google Scholar] [CrossRef]
- de Bekker, C.; Ohm, R.A.; Evans, H.C.; Brachmann, A.; Hughes, D.P. Ant-Infecting Ophiocordyceps Genomes Reveal a High Diversity of Potential Behavioral Manipulation Genes and a Possible Major Role for Enterotoxins. Sci. Rep. 2017, 7, 12508. [Google Scholar] [CrossRef] [Green Version]
- de Bekker, C.; Ohm, R.A.; Loreto, R.G.; Sebastian, A.; Albert, I.; Merrow, M.; Brachmann, A.; Hughes, D.P. Gene Expression during Zombie Ant Biting Behavior Reflects the Complexity Underlying Fungal Parasitic Behavioral Manipulation. BMC Genom. 2015, 16, 620. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Zhang, G.; Peng, Q.; Liu, X. Development of Ophiocordyceps Sinensis through Plant-Mediated Interkingdom Host Colonization. Int. J. Mol. Sci. 2015, 16, 17482–17493. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.P.; Evans, H.C.; Hywel-Jones, N.; Boomsma, J.J.; Armitage, S.A.O. Novel Fungal Disease in Complex Leaf-Cutting Ant Societies. Ecol. Entomol. 2009, 34, 214–220. [Google Scholar] [CrossRef]
- Babraham Bioinformatics. FastQC—A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 30 June 2021).
- Joint Genome Institute BBTools. Available online: https://jgi.doe.gov/data-and-tools/bbtools/ (accessed on 30 June 2021).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, C.; Yandell, M. MAKER2: An Annotation Pipeline and Genome-Database Management Tool for Second-Generation Genome Projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef] [Green Version]
- Leskovec, J.; Sosič, R. SNAP: A General Purpose Network Analysis and Graph Mining Library. ACM Trans. Intell. Syst. Technol. 2016, 8, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, F.A.; Barh, D.; Silva, A.; Guimarães, L.; Ramos, R.T.J. GO FEAT: A Rapid Web-Based Functional Annotation Tool for Genomic and Transcriptomic Data. Sci. Rep. 2018, 8, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2017-beyond Protein Family and Domain Annotations. Nucleic Acids Res. 2017, 45, D190–D199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam Protein Families Database: Towards a More Sustainable Future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016, 44, D7–D19. [Google Scholar] [CrossRef] [PubMed]
- Lopez, R.; Cowley, A.; Li, W.; McWilliam, H. Using EMBL-EBI Services via Web Interface and Programmatically via Web Services. Curr. Protoc. Bioinform. 2014, 48, 3.12.1–3.12.50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gene Ontology Resource. Available online: http://geneontology.org/ (accessed on 30 June 2021).
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER Web Server: 2018 Update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [Green Version]
- Cortázar, A.R.; Aransay, A.M.; Alfaro, M.; Oguiza, J.A.; Lavín, J.L. SECRETOOL: Integrated Secretome Analysis Tool for Fungi. Amino Acids 2014, 46, 471–473. [Google Scholar] [CrossRef]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An Integrative Web Server to Predict Subcellular Localization of Proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. DbCAN2: A Meta Server for Automated Carbohydrate-Active Enzyme Annotation. Nucleic Acids Res. 2018, 46, W95–W101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA genes for phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Vilgalys, R.; Sun, B.L. Ancient and Recent Patterns of Geographic Speciation in the Oyster Mushroom Pleurotus Revealed by Phylogenetic Analysis of Ribosomal DNA Sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 4599–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castlebury, L.A.; Rossman, A.Y.; Sung, G.-H.; Hyten, A.S.; Spatafora, J.W. Multigene Phylogeny Reveals New Lineage for Stachybotrys Chartarum, the Indoor Air Fungus. Mycol. Res. 2004, 108, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Home—Bioinformatics.Org. Available online: http://www.bioinformatics.org/ (accessed on 30 June 2021).
- Geneious|Bioinformatics Software for Sequence Data Analysis. Available online: https://www.geneious.com/ (accessed on 6 July 2021).
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. 2010 Gatew. Comput. Environ. Workshop GCE 2010, 1–7. [Google Scholar] [CrossRef] [Green Version]
- BioWeb > FigTree 1.4.3. Available online: https://bioweb.pasteur.fr/packages/pack@[email protected] (accessed on 6 July 2021).
- Draw Freely|Inkscape. Available online: https://inkscape.org/ (accessed on 6 July 2021).
- Kepler, R.M.; Sung, G.-H.; Ban, S.; Nakagiri, A.; Chen, M.-J.; Huang, B.; Li, Z.; Spatafora, J.W. New Teleomorph Combinations in the Entomopathogenic Genus Metacordyceps. Mycologia 2012, 104, 182–197. [Google Scholar] [CrossRef] [PubMed]
- SBT4.5—Subtilisin-like Protease SBT4.5 Precursor—Arabidopsis Thaliana (Mouse-Ear Cress)—SBT4.5 Gene & Protein. Available online: https://www.uniprot.org/uniprot/F4JA91 (accessed on 13 July 2021).
- DPP4—Probable Dipeptidyl Peptidase 4 Precursor—Arthroderma Benhamiae (Strain ATCC MYA-4681/CBS 112371)—DPP4 Gene & Protein. Available online: https://www.uniprot.org/uniprot/D4APE2 (accessed on 13 July 2021).
- HelA—Protostadienol Synthase HelA—Neosartorya Fumigata (Strain ATCC MYA-4609/Af293/CBS 101355/FGSC A1100)—HelA Gene & Protein. Available online: https://www.uniprot.org/uniprot/Q4WR16 (accessed on 13 July 2021).
- PLA2G4D—Cytosolic Phospholipase A2 Delta—Homo Sapiens (Human)—PLA2G4D Gene & Protein. Available online: https://www.uniprot.org/uniprot/Q86XP0 (accessed on 13 July 2021).
- Freire, F.M. Aspectos Taxonômicos de Fungos Entomopatógenos (Cordyceps s. l.) da Mata Atlântica Catarinense. Universidade Federal De Santa Catarina Centro De Ciências Biológicas Departamento De Botânica Laboratório De Micologia. 58. Available online: https://repositorio.ufsc.br/xmlui/handle/123456789/132645 (accessed on 13 July 2021).
- Sanjuan, T.; Henao, L.; Amat, G. Distribución Espacial de Cordyceps Spp. (Ascomycotina: Clavicipitaceae) y Su Impacto Sobre Las Hormigas En Selvas Del Piedemonte Amazónico de Colombia. Rev. Biol. Trop. 2001, 49, 945–955. [Google Scholar]
- Evans, H.C. Entomogenous Fungi in Tropical Forest Ecosystems: An Appraisal. Ecol. Entomol. 1982, 7, 47–60. [Google Scholar] [CrossRef]
- Keyhani, N.O. Lipid Biology in Fungal Stress and Virulence: Entomopathogenic Fungi. Fungal Biol. 2018, 122, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.-Q.; Xu, Z.-W.; Zhang, B.; Yi, M.; Weng, C.-Y.; Lin, S.; Wu, H.; Qin, X.-T.; Xu, F.; Teng, Y.; et al. Genome Sequencing and Analysis of Fungus Hirsutella Sinensis Isolated from Ophiocordyceps Sinensis. AMB Express 2020, 10, 105. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, J.; Wang, L.Y.; Li, S.P. Advanced Development in Chemical Analysis of Cordyceps. J. Pharm. Biomed. Anal. 2014, 87, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Chiriví, J.; Danies, G.; Sierra, R.; Schauer, N.; Trenkamp, S.; Restrepo, S.; Sanjuan, T. Metabolomic Profile and Nucleoside Composition of Cordyceps Nidus Sp. Nov. (Cordycipitaceae): A New Source of Active Compounds. PLoS ONE 2017, 12, e0179428. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions. Biol. Rev. 2019, 94, 1443–1476. [Google Scholar] [CrossRef] [Green Version]
- Dönnes, P.; Höglund, A. Predicting Protein Subcellular Localization: Past, Present, and Future. Genom. Proteom. Bioinform. 2004, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Agarwal, S.; Heyman, J.A.; Matson, S.; Heidtman, M.; Piccirillo, S.; Umansky, L.; Drawid, A.; Jansen, R.; Liu, Y.; et al. Subcellular Localization of the Yeast Proteome. Genes Dev. 2002, 16, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Li, W.; Wu, F.-X.; Pan, Y.; Wang, J. Identifying Essential Proteins Based on Sub-Network Partition and Prioritization by Integrating Subcellular Localization Information. J. Theor. Biol. 2018, 447, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.-H.; Yang, D.-R.; Jiang, J.-J.; Zhang, Q.-J.; Liu, Y.; Liu, Y.-L.; Zhang, Y.; Zhang, H.-B.; Shi, C.; Tong, Y.; et al. The Caterpillar Fungus, Ophiocordyceps Sinensis, Genome Provides Insights into Highland Adaptation of Fungal Pathogenicity. Sci. Rep. 2017, 7, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongsangnak, W.; Raethong, N.; Mujchariyakul, W.; Nguyen, N.N.; Leong, H.W.; Laoteng, K. Genome-Scale Metabolic Network of Cordyceps Militaris Useful for Comparative Analysis of Entomopathogenic Fungi. Gene 2017, 626, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, J.D.; Demont-Caulet, N.; Cheviron, N.; Laval, K.; Trinsoutrot-Gattin, I.; Mougin, C. Oxidoreductases Provide a More Generic Response to Metallic Stressors (Cu and Cd) than Hydrolases in Soil Fungi: New Ecotoxicological Insights. Environ. Sci. Pollut. Res. 2016, 23, 3036–3041. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, S. Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements. Annu. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef]
- Reyes-Montaño, E.; Vega Castro, N. Plant Lectins with Insecticidal and Insectistatic Activities. In Insecticides: Agriculture and Toxicology; Intechopen: London, UK, 2018; ISBN 978-1-78923-166-3. [Google Scholar]
- Pfam: Family: GLEYA (PF10528). Available online: https://pfam.xfam.org/family/PF10528 (accessed on 15 July 2021).
- Pfam: Family: PA14 (PF07691). Available online: https://pfam.xfam.org/family/PF07691 (accessed on 15 July 2021).
- Pfam: Family: Lectin_leg-like (PF03388). Available online: https://pfam.xfam.org/family/PF03388 (accessed on 15 July 2021).
- Pfam: Family: Fungal_lectin (PF07938). Available online: https://pfam.xfam.org/family/PF07938 (accessed on 15 July 2021).
- Macedo, L.; Oliveira, C.; Oliveira, C. Insecticidal Activity of Plant Lectins and Potential Application in Crop Protection. Molecules 2015, 20, 2014–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, T.; Coates, C.; Dubovskiy, I.; Ratcliffe, N. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. Adv. Genet. 2016, 94, 307–364. [Google Scholar] [CrossRef]
- Feng, K.; Wang, L.; Liao, D.; Lu, X.; Hu, D.; Liang, X.; Zhao, J.; Mo, Z.; Li, S.P. Potential Molecular Mechanisms for Fruiting Body Formation of Cordyceps Illustrated in the Case of Cordyceps sinensis. Mycology 2017, 8, 231–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, J.; Wu, H.; Liu, J.; Lai, X.; Guo, J.; Li, D.; Zhang, G. Molecular Characterization and Expression of Six Heat Shock Protein Genes in Relation to Development and Temperature in Trichogramma Chilonis. PLoS ONE 2018, 13, e0203904. [Google Scholar] [CrossRef] [PubMed]
- Prodromou, C. Mechanisms of Hsp90 Regulation. Biochem. J. 2016, 473, 2439–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfam: Family: MAD (PF05557). Available online: https://pfam.xfam.org/family/PF05557 (accessed on 15 July 2021).
- Rosenberg, S.C.; Corbett, K.D. The Multifaceted Roles of the HORMA Domain in Cellular Signaling. J. Cell Biol. 2015, 211, 745–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.M.V.; Komives, E.A.; Corbett, K.D. Conformational Dynamics of the Hop1 HORMA Domain Reveal a Common Mechanism with the Spindle Checkpoint Protein Mad2. Nucleic Acids Res. 2018, 46, 279–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Wang, Y.; Shao, Y.; Zhou, Q.; Chen, S.; Wu, Y.; Chen, H.; Liu, E. Genes Involved in Beauveria Bassiana Infection to Galleria Mellonella. Arch. Microbiol. 2018, 200, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; St Leger, R.J. The MAD1 Adhesin of Metarhizium Anisopliae Links Adhesion with Blastospore Production and Virulence to Insects, and the MAD2 Adhesin Enables Attachment to Plants. Eukaryot. Cell 2007, 6, 808–816. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, M.A.E.; Castilho, A.M.C.; Fraga, M.E. Classification and Infection Mechanism of Entomopathogenic Fungi. Arq. Inst. Biológico 2018, 84, e0552015. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jiang, X.; Yang, Q. Glycoside Hydrolase Family 18 Chitinases: The Known and the Unknown. Biotechnol. Adv. 2020, 43, 107553. [Google Scholar] [CrossRef]
- CAZy—GH. Available online: http://www.cazy.org/Glycoside-Hydrolases.html (accessed on 15 July 2021).
- Boldo, J.T.; Junges, A.; do Amaral, K.B.; Staats, C.C.; Vainstein, M.H.; Schrank, A. Endochitinase CHI2 of the Biocontrol Fungus Metarhizium Anisopliae Affects Its Virulence toward the Cotton Stainer Bug Dysdercus Peruvianus. Curr. Genet. 2009, 55, 551–560. [Google Scholar] [CrossRef]
- Zibaee, A.; Ramzi, S. Cuticle-Degrading Proteases of Entomopathogenic Fungi: From Biochemistry to Biological Performance. Arch. Phytopathol. Plant Prot. 2018, 51, 779–794. [Google Scholar] [CrossRef]
- VitalSource Bookshelf: Bioquímica Dos Alimentos—Teoria e Aplicações Práticas, 2a Edição. Available online: https://online.vitalsource.com/#/books/9788527735254/cfi/6/30!/4/2/4@0:0 (accessed on 14 July 2021).
- Mondal, S.; Baksi, S.; Koris, A.; Vatai, G. Journey of Enzymes in Entomopathogenic Fungi. Pac. Rev. Nat. Sci. Eng. 2016, 18, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Vilcinskas, A. Coevolution between Pathogen-Derived Proteinases and Proteinase Inhibitors of Host Insects. Virulence 2010, 1, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, J.; Silva, M.S.; Figueiredo, A. Subtilisin-like Proteases in Plant Defence: The Past, the Present and Beyond. Mol. Plant Pathol. 2018, 19, 1017–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin, E.; Singh, A.; Ballester, A.-R.; Raphael, G.; Feigenberg, O.; Liu, Y.; Norelli, J.L.; González-Candelas, L.; Wisniewski, M.; Droby, S. Identification of Pathogenicity-Related Genes and the Role of a Subtilisin-Related Peptidase S8 (PePRT) in Authophagy and Virulence of Penicillium Expansum on Apples. Postharvest Biol. Technol. 2019, 149, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xie, J.; Fu, Y.; Jiang, D.; Chen, T.; Cheng, J. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis Cinerea. Int. J. Mol. Sci. 2020, 21, 603. [Google Scholar] [CrossRef] [Green Version]
- Tiago, P.V. O papel de proteases degradadoras de cutícula produzidas por fungos entomopatogênicos. Rev. Programa Ciências Agro-Ambient. 2003, 2, 40–51. [Google Scholar]
- Tian, H.; Fiorin, G.L.; Kombrink, A.; Mesters, J.R.; Thomma, B.P.H.J. Fungal LysM Effectors That Comprise Two LysM Domains Bind Chitin through Intermolecular Dimerization. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dubey, M.; Vélëz, H.; Broberg, M.; Jensen, D.F.; Karlsson, M. LysM Proteins Regulate Fungal Development and Contribute to Hyphal Protection and Biocontrol Traits in Clonostachys Rosea. Front. Microbiol. 2020, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Harishchandra, D.L.; Zhang, W.; Li, X.; Chethana, K.W.T.; Hyde, K.D.; Brooks, S.; Yan, J.; Peng, J. A LysM Domain-Containing Protein LtLysM1 Is Important for Vegetative Growth and Pathogenesis in Woody Plant Pathogen Lasiodiplodia Theobromae. Plant Pathol. J. 2020, 36, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Vallet, A.; Tian, H.; Rodriguez-Moreno, L.; Valkenburg, D.-J.; Saleem-Batcha, R.; Wawra, S.; Kombrink, A.; Verhage, L.; de Jonge, R.; van Esse, H.P.; et al. A Secreted LysM Effector Protects Fungal Hyphae through Chitin-Dependent Homodimer Polymerization. PLOS Pathog. 2020, 16, e1008652. [Google Scholar] [CrossRef] [PubMed]
- Will, I.; Das, B.; Trinh, T.; Brachmann, A.; Ohm, R.A.; Bekker, C. de Genetic Underpinnings of Host Manipulation by Ophiocordyceps as Revealed by Comparative Transcriptomics. G3 Genes Genomes Genet. 2020, 10, 2275–2296. [Google Scholar] [CrossRef]
- Köhler, G.A.; Brenot, A.; Haas-Stapleton, E.; Agabian, N.; Deva, R.; Nigam, S. Phospholipase A2 and Phospholipase B Activities in Fungi. Biochim. Biophys. Acta 2006, 1761, 1391–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Li, X.; Guo, H.; Guo, N.; Cheng, H. VdPLP, A Patatin-Like Phospholipase in Verticillium Dahliae, Is Involved in Cell Wall Integrity and Required for Pathogenicity. Genes 2018, 9, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Camera, S.; Geoffroy, P.; Samaha, H.; Ndiaye, A.; Rahim, G.; Legrand, M.; Heitz, T. A Pathogen-Inducible Patatin-like Lipid Acyl Hydrolase Facilitates Fungal and Bacterial Host Colonization in Arabidopsis. Plant J. Cell Mol. Biol. 2005, 44, 810–825. [Google Scholar] [CrossRef] [PubMed]
- Heggelund, J.E.; Heim, J.B.; Bajc, G.; Hodnik, V.; Anderluh, G.; Krengel, U. Specificity of Escherichia Coli Heat-Labile Enterotoxin Investigated by Single-Site Mutagenesis and Crystallography. Int. J. Mol. Sci. 2019, 20, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heggelund, J.E.; Mackenzie, A.; Martinsen, T.; Heim, J.B.; Cheshev, P.; Bernardi, A.; Krengel, U. Towards New Cholera Prophylactics and Treatment: Crystal Structures of Bacterial Enterotoxins in Complex with GM1 Mimics. Sci. Rep. 2017, 7, 2326. [Google Scholar] [CrossRef]
- Scanlon, K.; Skerry, C.; Carbonetti, N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. Adv. Exp. Med. Biol. 2019, 1183, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.-T.; Asokanathan, C.; Cook, S.; Lin, N.; Xing, D. Effect of Different Detoxification Procedures on the Residual Pertussis Toxin Activities in Vaccines. Vaccine 2016, 34, 2129–2134. [Google Scholar] [CrossRef]
- Paulick, M.G.; Bertozzi, C.R. The Glycosylphosphatidylinositol Anchor: A Complex Membrane-Anchoring Structure for Proteins. Biochemistry 2008, 47, 6991–7000. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.N.; Mortensen, O.H.; Peters, G.H.; Drake, P.G.; Iversen, L.F.; Olsen, O.H.; Jansen, P.G.; Andersen, H.S.; Tonks, N.K.; Møller, N.P.H. Structural and Evolutionary Relationships among Protein Tyrosine Phosphatase Domains. Mol. Cell. Biol. 2001, 21, 7117–7136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollu, L.R.; Mazumdar, A.; Savage, M.I.; Brown, P.H. Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 2136–2142. [Google Scholar] [CrossRef] [PubMed]
- van Houte, S.; Ros, V.I.D.; Oers, M.M. van Walking with Insects: Molecular Mechanisms behind Parasitic Manipulation of Host Behaviour. Mol. Ecol. 2013, 22, 3458–3475. [Google Scholar] [CrossRef] [PubMed]
- Wichadakul, D.; Kobmoo, N.; Ingsriswang, S.; Tangphatsornruang, S.; Chantasingh, D.; Luangsa-ard, J.J.; Eurwilaichitr, L. Insights from the Genome of Ophiocordyceps Polyrhachis-Furcata to Pathogenicity and Host Specificity in Insect Fungi. BMC Genom. 2015, 16, 881. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.-L.; Guo, T.-T.; Ren, Z.-X.; Zhang, N.-S.; Wang, M.-L. Diversity and Antioxidant Activity of Culturable Endophytic Fungi from Alpine Plants of Rhodiola Crenulata, R. Angusta, and R. Sachalinensis. PLoS ONE 2015, 10, e0118204. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Rao, Z.-C.; Cao, L.; De Clercq, P.; Han, R.-C. Infection of Ophiocordyceps Sinensis Fungus Causes Dramatic Changes in the Microbiota of Its Thitarodes Host. Front. Microbiol. 2020, 11, 577268. [Google Scholar] [CrossRef] [PubMed]
CCMB661 | Map64 | |
---|---|---|
Longest Scaffold | 491,455 | 427,808 |
Number of contigs | 774 | 594 |
Genome length | 30,311,510 | 23,324,075 |
N50 | 92,624 | 112,405 |
L50 | 90 | 59 |
% GC | 46.36 | 53.13 |
Sequence ID | CAZy Family | Product Information |
---|---|---|
NODE_200_length_47715 NODE_272_length_31825 | GH1 | Cellulose, hemicellulose (galactomannan) |
NODE_113_length_83284 NODE_26_length_194473 NODE_28_length_188649 NODE_58_length_135625 NODE_63_length_123432 NODE_94_length_88402 | GH3 | Cellulose, hemicellulose (galactomannan, xylan), pectin |
NODE_229_length_41116 NODE_327_length_25465 NODE_58_length_135625 NODE_5_length_312948 | GH5 | Cellulose, hemicellulose (galactomannan), pectin |
NODE_186_length_51079 NODE_57_length_137212 NODE_62_length_124067 | GH31 | Hemicellulose (xyloglucan), starch |
NODE_120_length_78160 NODE_152_length_64882 NODE_20_length_205932 NODE_275_length_30979 | GH2 | Hemicellulose (galactomannan, xylan, xyloglucan), pectin |
NODE_196_length_48790 | GH36 | Hemicellulose (galactomannan, xylan, xyloglucan) |
NODE_232_length_40978 | GH28 | Pectin |
NODE_6_length_286604 | GH35 | Hemicellulose (galactomannan, xylan, xyloglucan), pectin |
NODE_120_length_78160 | GH78 | Pectin |
NODE_33_length_181024 NODE_82_length_100911 | GH13 | Starch |
NODE_91_length_92211 | GH15 | Starch |
NODE_521_length_6169 | GH32 | Inulin |
NODE_58_length_135625 | GH115 | Hemicellulose (xylan) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Menezes, T.A.; Aburjaile, F.F.; Quintanilha-Peixoto, G.; Tomé, L.M.R.; Fonseca, P.L.C.; Mendes-Pereira, T.; Araújo, D.S.; Melo, T.S.; Kato, R.B.; Delabie, J.H.C.; et al. Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. J. Fungi 2023, 9, 110. https://doi.org/10.3390/jof9010110
de Menezes TA, Aburjaile FF, Quintanilha-Peixoto G, Tomé LMR, Fonseca PLC, Mendes-Pereira T, Araújo DS, Melo TS, Kato RB, Delabie JHC, et al. Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. Journal of Fungi. 2023; 9(1):110. https://doi.org/10.3390/jof9010110
Chicago/Turabian Stylede Menezes, Thaís Almeida, Flávia Figueira Aburjaile, Gabriel Quintanilha-Peixoto, Luiz Marcelo Ribeiro Tomé, Paula Luize Camargos Fonseca, Thairine Mendes-Pereira, Daniel Silva Araújo, Tarcisio Silva Melo, Rodrigo Bentes Kato, Jacques Hubert Charles Delabie, and et al. 2023. "Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles" Journal of Fungi 9, no. 1: 110. https://doi.org/10.3390/jof9010110
APA Stylede Menezes, T. A., Aburjaile, F. F., Quintanilha-Peixoto, G., Tomé, L. M. R., Fonseca, P. L. C., Mendes-Pereira, T., Araújo, D. S., Melo, T. S., Kato, R. B., Delabie, J. H. C., Ribeiro, S. P., Brenig, B., Azevedo, V., Drechsler-Santos, E. R., Andrade, B. S., & Góes-Neto, A. (2023). Unraveling the Secrets of a Double-Life Fungus by Genomics: Ophiocordyceps australis CCMB661 Displays Molecular Machinery for Both Parasitic and Endophytic Lifestyles. Journal of Fungi, 9(1), 110. https://doi.org/10.3390/jof9010110