Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of Porous Carbon
2.2.1. Synthesis of Wormwood Rod Residues Carbon (WR)
2.2.2. Synthesis of Carbon from White-Rot Fungi Treated Wormwood Rod Residues (FWR)
2.2.3. Synthesis of Carbon from White-Rot Fungi Treated Wormwood Rod Residues with NaCl Activated (FWRA)
2.3. Characterization
2.4. Electrochemical Tests
2.5. Adsorption Tests
3. Results
3.1. Morphology Characterization
3.2. Structure Characterization
3.3. Chemical Composition
3.4. Electrochemical Performance
3.5. Methyl Orange Adsorption Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, W.; Zhang, H.; Duan, X.; Sun, H.; Shao, G.; Wang, S. Porous Carbons: Structure-Oriented Design and Versatile Applications. Adv. Funct. Mater. 2020, 30, 1909265. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023. [Google Scholar] [CrossRef]
- Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Li, L.; Zhu, D.; Miao, L.; Duan, H.; Wang, Z.; Xiong, W.; Lv, Y.; Liu, M.; Gan, L. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A 2019, 7, 816–826. [Google Scholar] [CrossRef]
- Majumder, M.; Choudhary, R.B.; Thakur, A.K. Hemispherical nitrogen-doped carbon spheres integrated with polyindole as high performance electrode material for supercapacitor applications. Carbon 2019, 142, 650–661. [Google Scholar] [CrossRef]
- Sun, B.; Yuan, Y.; Li, H.; Li, X.; Zhang, C.; Guo, F.; Liu, X.; Wang, K.; Zhao, X. Waste-cellulose-derived porous carbon adsorbents for methyl orange removal. Chem. Eng. J. 2019, 371, 55–63. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, H.; Niu, Q.; Fu, M.; Huang, H.; Ye, D. Microbial Targeted Degradation Pretreatment: A Novel Approach to Preparation of Activated Carbon with Specific Hierarchical Porous Structures, High Surface Areas, and Satisfactory Toluene Adsorption Performance. Environ. Sci. Technol. 2019, 53, 7632–7640. [Google Scholar] [CrossRef]
- Cheng, J.; Gu, J.-J.; Tao, W.; Wang, P.; Liu, L.; Wang, C.-Y.; Li, Y.-K.; Feng, X.-H.; Qiu, G.-H.; Cao, F.-F. Edible fungus slag derived nitrogen-doped hierarchical porous carbon as a high-performance adsorbent for rapid removal of organic pollutants from water. Bioresour. Technol. 2019, 294, 122149. [Google Scholar] [CrossRef]
- Rawat, S.; Mishra, R.K.; Bhaskar, T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 2021, 286 Pt 3, 131961. [Google Scholar] [CrossRef]
- Wang, Z.-K.; Shen, X.-J.; Chen, J.-J.; Jiang, Y.-Q.; Hu, Z.-Y.; Wang, X.; Liu, L. Lignocellulose fractionation into furfural and glucose by AlCl3-catalyzed DES/MIBK biphasic pretreatment. Int. J. Biol. Macromol. 2018, 117, 721–726. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Q.; Wang, W.; Lin, C.S.K.; Hu, Y.; Qi, W. Enhancement of an efficient enzyme cocktail from Penicillium consortium on biodegradation of pretreated poplar. Chem. Eng. J. 2023, 452, 139352. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, X.; Li, J.; Wang, X. Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J. Mater. Chem. A 2015, 3, 6073–6081. [Google Scholar] [CrossRef]
- Wan, L.; Xiao, R.; Liu, J.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors. Appl. Surf. Sci. 2020, 518, 146265. [Google Scholar] [CrossRef]
- Wan, L.; Chen, D.; Liu, J.; Zhang, Y.; Chen, J.; Du, C.; Xie, M. Facile preparation of porous carbons derived from orange peel via basic copper carbonate activation for supercapacitors. J. Alloys Compd. 2020, 823, 153747. [Google Scholar] [CrossRef]
- Arampatzidou, A.C.; Deliyanni, E.A. Comparison of activation media and pyrolysis temperature for activated carbons development by pyrolysis of potato peels for effective adsorption of endocrine disruptor bisphenol-A. J. Colloid Interface Sci. 2016, 466, 101–112. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, G.; Liu, W.; Wang, D.; Dong, Y. Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors. Mater. Lett. 2016, 176, 60–63. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Y.; Xue, H.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2021, 9, nwab197. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.; Chen, T.; Li, W.; Zheng, S.; Pi, Y.; Luo, Y.; Pang, H. MXene-Copper/Cobalt Hybrids via Lewis Acidic Molten Salts Etching for High Performance Symmetric Supercapacitors. Angew. Chem. Int. Ed. 2021, 60, 25318–25322. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Kim, J.I.; Tobimatsu, Y.; Ciesielski, P.N.; Anderson, N.A.; Ximenes, E.; Maeda, J.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; et al. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 2014, 509, 376–380. [Google Scholar] [CrossRef]
- Ding, S.Y.; Liu, Y.S.; Zeng, Y.; Himmel, M.E.; Baker, J.O.; Bayer, E.A. How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? Science 2012, 338, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.T.; Speranza, M.; Ruiz-Dueñas, F.J.; Ferreira, P.; Camarero, S.; Guillén, F.; Martínez, M.J.; Gutiérrez Suárez, A.; Río Andrade, J.C.D. Biodegradation of Lignocellulosics: Microbial, Chemical, and Enzymatic Aspects of the Fungal Attack of Lignin. Int. Microbiol. 2005, 8, 195–204. [Google Scholar] [PubMed]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef] [PubMed]
- Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R.A.; Henrissat, B.; Martínez, A.T.; Otillar, R.; Spatafora, J.W.; Yadav, J.S.; et al. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science 2012, 336, 1715–1719. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Ma, F.; Zeng, Y.; Zhang, X.; Yu, H. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresour. Technol. 2013, 135, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Guo, G.; Zhang, X.; Yan, K.; Xu, C. The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour. Technol. 2009, 100, 5170–5175. [Google Scholar] [CrossRef]
- Kong, W.; Fu, X.; Wang, L.; Alhujaily, A.; Zhang, J.; Ma, F.; Zhang, X.; Yu, H. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Biotechnol. Biofuels 2017, 10, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Ye, H.; Yin, Y.-X.; Chen, H.; Bian, Y.-B.; Wang, Z.-R.; Cao, F.-F.; Guo, Y.-G. Fungi-Enabled Synthesis of Ultrahigh-Surface-Area Porous Carbon. Adv. Mater. 2018, 31, e1805134. [Google Scholar] [CrossRef]
- Hakala, T.K.; Lundell, T.; Galkin, S.; Maijala, P.; Kalkkinen, N.; Hatakka, A. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzym. Microb. Technol. 2005, 36, 461–468. [Google Scholar] [CrossRef]
- Schubert, M.; Dengler, V.; Mourad, S.; Schwarze, F.W.M.R. Determination of Optimal Growth Parameters for the Bioincising Fungus Physisporinus Vitreus by Means of Response Surface Methodology. J. Appl. Microbiol. 2009, 106, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wang, H.; Wu, J. Traditional Chinese medicine residue act as a better fertilizer for improving soil aggregation and crop yields than manure. Soil Tillage Res. 2019, 195, 104386. [Google Scholar] [CrossRef]
- Guo, F.; Dong, Y.; Zhang, T.; Dong, L.; Guo, C.; Rao, Z. Experimental Study on Herb Residue Gasification in an Air-Blown Circulating Fluidized Bed Gasifier. Ind. Eng. Chem. Res. 2014, 53, 13264–13273. [Google Scholar] [CrossRef]
- Zhou, Y.; Selvam, A.; Wong, J.W.C. Evaluation of Humic Substances During Co-Composting of Food Waste, Sawdust and Chinese Medicinal Herbal Residues. Bioresour. Technol. 2014, 168, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Han, M.H.; Pin, M.W.; Koh, J.H.; Park, J.H.; Kim, J.; Min, B.K.; Lee, W.H.; Oh, H.-S. Improving the oxygen evolution reaction using electronic structure modulation of sulfur-retaining nickel-based electrocatalysts. J. Mater. Chem. A 2021, 9, 27034–27040. [Google Scholar] [CrossRef]
- Wang, X.; Yun, S.; Fang, W.; Zhang, C.; Liang, X.; Lei, Z.; Liu, Z.-H. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11397–11407. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Kim, N.R.; Yun, Y.S.; Song, M.Y.; Hong, S.J.; Kang, M.; Leal, C.; Park, Y.W.; Jin, H.-J. Citrus-Peel-Derived, Nanoporous Carbon Nanosheets Containing Redox-Active Heteroatoms for Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2016, 8, 3175–3181. [Google Scholar] [CrossRef]
- Ji, D.; Zhou, H.; Zhang, J.; Dan, Y.; Yang, H.; Yuan, A. Facile synthesis of a metal–organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 2016, 4, 8283–8290. [Google Scholar] [CrossRef]
- Liu, H.; Yu, T.; Su, D.; Tang, Z.; Zhang, J.; Liu, Y.; Yuan, A.; Kong, Q. Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceram. Int. 2017, 43, 14395–14400. [Google Scholar] [CrossRef]
- Chen, L.-F.; Lu, Y.; Yu, L.; Lou, X.W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 2017, 10, 1777–1783. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, W.; Zhang, G.; Liu, G.; Chen, H.; Yang, J. Large-scale synthesis of highly porous carbon nanosheets for supercapacitor electrodes. J. Alloys Compd. 2016, 677, 105–111. [Google Scholar] [CrossRef]
- Wu, D.; Hu, J.; Zhu, C.; Zhang, J.; Jing, H.; Hao, C.; Shi, Y. Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN4 sites for efficient oxygen reduction reaction. J. Colloid Interface Sci. 2020, 586, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Tian, C.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. Nitrogen-Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chem. Eur. J. 2013, 20, 564–574. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, C.; Xi, D.; Shi, Z.; He, C.; Xia, H.; Liu, G.; Qiao, G. Component-Controllable Synthesis of Co(Sxse1−X)2 Nanowires Supported by Carbon Fiber Paper as High-Performance Electrode for Hydrogen Evolution Reaction. Nano Energy 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Wang, K.; Xu, M.; Wang, X.; Gu, Z.; Fan, Q.H.; Gibbons, W.; Croat, J. Porous carbon derived from aniline-modified fungus for symmetrical supercapacitor electrodes. RSC Adv. 2017, 7, 8236–8240. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Lei, Y.; Li, Y.; Zhang, Y.; Xiao, W. Nitrogen-Doped Hierarchical Meso/Microporous Carbon from Bamboo Fungus for Symmetric Supercapacitor Applications. Molecules 2019, 24, 3677. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Li, N.; Li, X.; Chen, J.; Zhang, Y.; Xie, M.; Du, C. One-step synthesis of N, S-codoped porous graphitic carbon derived from lotus leaves for high-performance supercapacitors. Ionics 2019, 25, 4891–4903. [Google Scholar] [CrossRef]
- Yang, S.; Wang, S.; Liu, X.; Li, L. Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitors. Carbon 2019, 147, 540–549. [Google Scholar] [CrossRef]
- Liu, S.; Liang, Y.; Zhou, W.; Hu, W.; Dong, H.; Zheng, M.; Hu, H.; Lei, B.; Xiao, Y.; Liu, Y. Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 12046–12055. [Google Scholar] [CrossRef]
- Li, X.; Su, Z.; Liang, P.; Zhang, J. Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor. Biomass Convers. Biorefinery 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Ma, Z.; Li, H.; Dong, Y.; Yang, H.; Yang, L.; Bai, L.; Wei, D.; Wang, W. A lignin dissolution-precipitation strategy for porous biomass carbon materials derived from cherry stones with excellent capacitance. J. Alloys Compd. 2020, 832, 155029. [Google Scholar] [CrossRef]
- Meng, S.; Mo, Z.; Li, Z.; Guo, R.; Liu, N. Oxygen-rich porous carbons derived from alfalfa flowers for high performance supercapacitors. Mater. Chem. Phys. 2020, 246, 122830. [Google Scholar] [CrossRef]
- Kim, M.; Lim, H.; Xu, X.; Hossain, S.A.; Na, J.; Awaludin, N.N.; Shah, J.; Shrestha, L.K.; Ariga, K.; Nanjundan, A.K.; et al. Sorghum biomass-derived porous carbon electrodes for capacitive deionization and energy storage. Microporous Mesoporous Mater. 2020, 312, 110757. [Google Scholar] [CrossRef]
Samples | SBET (m2 g−1) | Smicro (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) |
---|---|---|---|---|
WR | 336.7 ± 9.2 | 296.7 ± 7.2 | 0.28 ± 0.02 | 0.14 ± 0.01 |
FWR | 608.5 ± 11.6 | 476.8 ± 7.9 | 0.56 ± 0.02 | 0.23 ± 0.02 |
FWRA | 1165.7 ± 12.4 | 778.5 ± 8.2 | 1.02 ± 0.03 | 0.39 ± 0.02 |
Electrode Materials | Precursor | Electrolyte | Specific Capacitance (F g−1) | Cycling Stability | Ref. |
---|---|---|---|---|---|
Hollow tubular porous carbon | Straw cellulose waste | 6 M KOH | 312.57 F g−1 at 0.5 A g−1 | 92.93 % after 20,000 cycles | [35] |
Porous carbon | Aniline-modified fungus | 6 M KOH | 218 F g−1 at 0.1 A g−1 | 100 % after 5000 cycles | [45] |
Nitrogen-Doped Hierarchical Meso/Microporous Carbon | Bamboo Fungus | 2 M KOH | 228 F g−1 at 0.5 A g−1 | 100 % after 10,000 cycles | [46] |
Hierarchically porous carbon nanosheets | Hierarchically porous carbon nanosheets | 6 M KOH | 283 F g−1 at 0.5 A g−1 | 95 % after 20,000 cycles | [47] |
Hierarchical micro-meso-macro-porous carbon | Shaddock endotheliums | 1 M H2SO4 | 550 F g−1 at 0.2 A g−1 | 93.7 % after 10,000 cycles | [48] |
Porous carbon | Rape pollen | Rape pollen | 390 F g−1 at 0.5 A g−1 | 92.9 % after 10,000 cycles | [49] |
Porous N-Doped Carbon-Zinc Manganese Oxide Nanocomposite | Fungus Bran | 3 M KOH | 537 F g−1 at 1 A g−1 | - | [15] |
Biomass-derived carbons | Flammulina velutipes | 1 M Na2SO4 | 167 F g−1 at 0.5 A g−1 | 98.7 % after 10,000 cycles | [50] |
Porous biomass carbon materials | Cherry stones | 6 M KOH | 370.5 F g−1 at 0.5 A g−1 | 99.1 % after 5000 cycles | [51] |
Oxygen-rich porous carbons | Alfalfa flowers | 6 M KOH | 350.1 F g−1 at 0.5 A g−1 | - | [52] |
Porous carbon | Sorghum | 2 M KOH | 257.2 F g−1 at 0.1 A g−1 | - | [53] |
FWRA | wormwood rod | 6 M KOH | 443.2 F g−1 at 0.5 A g−1 | 99.6 % after 20,000 cycles | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, W.; Wang, S.; Zhang, X.; Fu, X.; Zhang, W. Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. J. Fungi 2023, 9, 43. https://doi.org/10.3390/jof9010043
Kong W, Wang S, Zhang X, Fu X, Zhang W. Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. Journal of Fungi. 2023; 9(1):43. https://doi.org/10.3390/jof9010043
Chicago/Turabian StyleKong, Wen, Shuhui Wang, Xinyu Zhang, Xiao Fu, and Wanju Zhang. 2023. "Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon" Journal of Fungi 9, no. 1: 43. https://doi.org/10.3390/jof9010043
APA StyleKong, W., Wang, S., Zhang, X., Fu, X., & Zhang, W. (2023). Evaluation of Biological Pretreatment of Wormwood Rod Reies with White Rot Fungi for Preparation of Porous Carbon. Journal of Fungi, 9(1), 43. https://doi.org/10.3390/jof9010043