Exploring the Potential Mechanism of Prothioconazole Resistance in Fusarium graminearum in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungicides, Isolates, and Media
2.2. Mycelial Growth, Sporulation, and Pathogenicity of Prothioconazole-Resistant Mutants of F. graminearum
2.3. Cloning and Sequencing of Three FgCYP51 Genes, Including FgCYP51A, FgCYP51B, and FgCYP51C
2.4. Relative Expression of Three FgCYP51 Genes in Prothioconazole-Resistant Mutants of F. graminearum
2.5. Cross-Resistance between Prothioconazole and Other Commonly Used Fungicides
2.6. Statistical Analysis
3. Results
3.1. Mycelial Growth, Sporulation, and Pathogenicity of Three Prothioconazole-Resistant Mutants of F. graminearum
3.2. Sequence Analysis of Three FgCYP51 Genes in Prothioconazole-Resistant Mutants of F. graminearum
3.3. Relative Expression of Three FgCYP51 Genes in Prothioconazole-Resistant Mutants of F. graminearum
3.4. Cross-Resistance between Prothioconazole and Other Commonly Used Fungicides
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, C.W.; Dong, Z.D.; Zhao, L.; Ren, Y.; Zang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Thao, N.; Khan, M.; Thu, N.; Hoang, X.; Asgher, M.; Khan, N.; Tran, L. Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol. 2015, 169, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Y.; Zheng, Y.S.; Duan, L.L.; Wang, M.M.; Li, H.; Li, R.Y.; Zhang, H. Artificial selection trend of wheat varieties released in Huang-huai-hai region in China evaluated using DUS testing characteristics. Front. Plant Sci. 2022, 13, 898102. [Google Scholar] [CrossRef]
- Rekanović, E.; Mihajlović, M.; Potočnik, I. In vitro sensitivity of Fusarium graminearum (Schwabe) to difenoconazole, prothioconazole and thiophanate-mythyl. Pestic. Fitomed. 2010, 25, 325–333. [Google Scholar] [CrossRef]
- Jia, H.Y.; Zhou, J.Y.; Xue, S.L.; Li, G.Q.; Yan, H.S.; Ran, C.F.; Zhang, Y.D.; Shi, J.X.; Jia, L.; Wang, X.; et al. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J. 2018, 6, 48–59. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, M.G. Sexual recombination of carbendazim resistance in Fusarium graminearum under field conditions. Pest. Manag. Sci. 2009, 65, 398–403. [Google Scholar] [CrossRef]
- Parry, D.W.; Jenkinson, P.; Mcleod, L. Fusarium ear blight (scab) in small grain cereals: A review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Gilbert, J.; Tekauz, A. Review: Recent developments in research on Fusarium head blight of wheat in Canada. Can. J. Plant Pathol. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Zhu, Z.W.; Chen, L.; Zhang, W.; Yang, L.J.; Gao, C.B. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front. Plant Sci. 2020, 11, 206. [Google Scholar] [CrossRef]
- Zhou, F.; Dai, L.; Wei, S.; Cheng, G.; Li, L. Toxicokinetics and tissue distribution of prothioconazole in male adult sprague-dawley rats following a single oral administration. Xenobiotica 2015, 45, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Gao, B.B.; He, Z.Z.; Li, L.S.; Zhang, Q.; Kaziem, A.E.; Wang, M.H. Stereo selective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. Pestic. Biochem. Physiol. 2019, 160, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hudson, O.; Waliullah, S.; Ji, P.; Ali, E. Molecular characterization of laboratory mutants of Fusarium oxysporum f. sp. niveum resistant to prothioconazole, a demethylation inhibitor (DMI) fungicide. J. Fungi. 2021, 7, 704. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; Callewaert, E.; Höfte, M.; De, S.S.; Haesaert, G. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol. 2010, 10, 112. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Reasoned opinion of EFSA: Modification of the existing MRLs for prothioconazole in various root vegetables. EFSA J. 2010, 8, 7. [Google Scholar]
- Xavier, S.A.; Canteri, M.G.; Barros, D.C.M.; Godoy, C.V. Sensitivity of Corynespora cassiicola from soybean to carbendazim and prothioconazole. Trop. Plant Pathol. 2013, 38, 431–435. [Google Scholar] [CrossRef]
- Kandel, Y.R.; Wise, K.A.; Bradley, C.A.; Chilvers, M.L.; Tenuta, A.U.; Mueller, D.S. Fungicide and cultivar effects on sudden death syndrome and yield of soybean. Plant Dis. 2016, 100, 1339–1350. [Google Scholar] [CrossRef]
- Buchenauer, H. Mechanism of action of triazole fungicides and related compounds. In Modern Selective Fungicides: Properties, Applications, Mechanisms of Action; Lyr, H., Ed.; Longman Scientific and Technical, Co-Published in the United States with John Wiley and Sons, Inc.: New York, NY, USA, 1987; pp. 205–232. [Google Scholar]
- Kuck, K.H.; Mehl, A. Prothioconazole: Sensitivity profile and anti-resistance strategy. Pflanzenschutz-Nachr. Bayer. 2004, 57, 225–236. [Google Scholar]
- Liu, X.; Yu, F.W.; Schnabel, G.; Wu, J.B.; Wang, Z.Y.; Ma, Z.H. Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet. Biol. 2011, 48, 113–123. [Google Scholar] [CrossRef]
- Rehfus, A.; Matusinsky, P.; Strobel, D.; Bryson, R.; Stammler, G. Mutations in target genes of succinate dehydrogenase inhibitors and demethylation inhibitors in Ramularia collocygni in Europe. J. Plant Dis. Prot. 2019, 126, 447–459. [Google Scholar] [CrossRef]
- Liu, J.L.; Jiang, J.; Guo, X.H.; Qian, L.; Xu, J.Q.; Che, Z.P.; Chen, G.Q.; Liu, S.M. Sensitivity and resistance risk assessment of Fusarium graminearum from wheat to prothioconazole. Plant Dis. 2022, 106, 2097–2104. [Google Scholar] [CrossRef] [PubMed]
- Fungicide Resistance Action Committee (FRAC). FRAC Code List ©*2022: Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action [EB/OL]. Available online: https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022–final.pdf?sfvrsn=b6024e9a_2 (accessed on 3 September 2023).
- Becher, R.; Wirsel, S.G. Fungal cytochrome P450 sterol 14alpha-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biot. 2012, 95, 825–840. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.W.; Du, J.; Chi, M.Y.; Sun, X.M.; Liang, W.X.; Huang, J.Q.; Li, B.D. The Y137H mutation in the cytochrome P450 FgCYP51B protein confers reduced sensitivity to tebuconazole in Fusarium Graminearum. Pest. Manag. Sci. 2018, 74, 1472–1477. [Google Scholar] [CrossRef]
- Cools, H.J.; Bayon, C.; Atkins, S.; Lucas, J.L.; Fraaije, B.A. Overexpression of the sterol 14alpha-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype. Pest. Manag. Sci. 2012, 68, 1034–1040. [Google Scholar] [CrossRef]
- Stammler, G.; Cordero, J.; Koch, A.; Semar, M.; Schlehuber, S. Role of the Y134F mutation in cyp51 and overexpression of cyp51 in the sensitivity response of Puccinia triticina to epoxiconazole. Crop Prot. 2009, 28, 891–897. [Google Scholar] [CrossRef]
- Reimann, S.; Deising, H.B. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl. Environ. Microbiol. 2005, 71, 3269–3275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhou, H.H.; Han, A.H.; Guo, K.Y.; Liu, T.C.; Wu, Y.B.; Hu, H.Y.; Li, C.W. Mechanism of pydiflumetofen resistance in Fusarium graminearum in China. J. Fungi. 2023, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Chi, M.Y.; Sun, H.L.; Qian, H.W.; Jun, Y.; Huang, J.G. The FgCYP51B Y123H mutation confers reduced sensitivity to prochloraz and is important for conidiation and ascospore development in Fusarium graminearum. Phytopathology 2021, 111, 1420–1427. [Google Scholar] [CrossRef]
- Bai, G.; Su, Z.; Cai, J. Wheat resistance to Fusarium head blight. Can. J. Plant Pathol. 2018, 40, 336–346. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, X.; Chen, C.J.; Zhou, M.G.; Wang, H.C. Effects of fungicides JS399-19, azoxystrobin, tebuconazole, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pestic. Biochem. Physiol. 2010, 98, 151–157. [Google Scholar] [CrossRef]
- Wei, J.Q.; Guo, X.H.; Jiang, J.; Qian, L.; Xu, J.Q.; Che, Z.P.; Huang, X.B.; Liu, S.M. Resistance risk assessment of Fusarium pseudograminearum from wheat to prothioconazole. Pestic. Biochem. Physiol. 2023, 191, 105346. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.R.; Urban, M.; Parker, J.E.; Brewer, H.C.; Kelly, S.L.; Hammond-Kosack, K.E.; Fraaije, B.A.; Liu, X.L.; Cools, H.J. Characterization of the sterol 14-alpha-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. N. Phytol. 2013, 198, 821–835. [Google Scholar] [CrossRef] [PubMed]
Fungicide | Sensitive Parental Isolates | Prothioconazole-Resistant Mutants | ||||
---|---|---|---|---|---|---|
3-a | 4-a | SZ-1-3 | 3-aR | 4-aR | SZ-1-3R | |
Prothioconazole | 0.58 | 0.31 | 0.25 | 10.09 | 12.34 | 21.24 |
Tebuconazole | 0.02 | 0.04 | 0.03 | 0.04 | 0.04 | 0.02 |
Prochloraz | 0.003 | 0.003 | 0.003 | 0.004 | 0.003 | 0.002 |
Carbendazim | 0.24 | 0.21 | 0.20 | 0.26 | 0.26 | 0.25 |
Pyraclostrobin | 0.47 | 0.13 | 0.27 | 0.26 | 0.38 | 0.38 |
Fluazinam | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Mutant | Nucleotide Changes | Silent Mutations | Amino Acid Changes | Gene |
---|---|---|---|---|
3-aR | T46C, C103T | A1496G | L16F, S35P | FgCYP51A |
4-aR | / | T644C | / | |
SZ-1-3R | / | / | / | |
3-aR | C230A, T229C, G1381A | A54G, C753T | P74T, F77L, G405S | FgCYP51B |
4-aR | T857A | C138T, G1182A | Y230F | |
SZ-1-3R | T87C, A1144G | T522A | Y37N, Q326R | |
3-aR | G545A, T627C, T821G, T873C, T1326A | T975, C1243T | E164K, I191T, S256A, M273L, V424E | FgCYP51C |
4-aR | T975C | / | V307A | |
SZ-1-3R | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Han, A.; Jiao, Y.; Cao, Y.; Wang, L.; Hu, H.; Liu, R.; Li, C. Exploring the Potential Mechanism of Prothioconazole Resistance in Fusarium graminearum in China. J. Fungi 2023, 9, 1001. https://doi.org/10.3390/jof9101001
Zhou F, Han A, Jiao Y, Cao Y, Wang L, Hu H, Liu R, Li C. Exploring the Potential Mechanism of Prothioconazole Resistance in Fusarium graminearum in China. Journal of Fungi. 2023; 9(10):1001. https://doi.org/10.3390/jof9101001
Chicago/Turabian StyleZhou, Feng, Aohui Han, Yan Jiao, Yifan Cao, Longhe Wang, Haiyan Hu, Runqiang Liu, and Chengwei Li. 2023. "Exploring the Potential Mechanism of Prothioconazole Resistance in Fusarium graminearum in China" Journal of Fungi 9, no. 10: 1001. https://doi.org/10.3390/jof9101001
APA StyleZhou, F., Han, A., Jiao, Y., Cao, Y., Wang, L., Hu, H., Liu, R., & Li, C. (2023). Exploring the Potential Mechanism of Prothioconazole Resistance in Fusarium graminearum in China. Journal of Fungi, 9(10), 1001. https://doi.org/10.3390/jof9101001