Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant
Abstract
:1. Introduction
2. P. indica Promotes Nutrient Acquisition in Plant
3. P. indica Mediates Plant Tolerance to Abiotic Stress
3.1. P. indica Enhances Heavy Metal Tolerance in Plants
3.2. P. indica Mediates Plant Tolerance to Salinity Stress
3.3. The Colonization of P. indica Enhances Plant Tolerance to Waterlogging Stress
3.4. P. indica Colonization Enhances Plant Tolerance to Drought Stress
- Physiological enhancement: P. indica colonization has been shown to increase plant-relative water content (RWC) and proline content, contributing to improved plant-drought tolerance [62,63,64,65,66]. The regulating of root morphology and increased total root surface area, volume, and fresh weight were reported in plants under arid conditions as a result of the colonization of P. indica, which enhances plant water acquisition in drought conditions to resist environmental stress [57,58,67,68].
- Antioxidant enzyme activation: P. indica colonization improves the activity of antioxidant enzymes, including SOD, POD, and CAT in plants. These enhancements play a pivotal role in preserving the integrity of cellular biomembranes, regulating intracellular osmotic pressure, and mitigating the peroxidation of membrane lipids, as well as the generation of reactive oxygen species (ROS) under drought stress conditions [69,70,71,72].
- Regulation of drought-related genes: P. indica colonization up-regulated the expression of drought-related genes, such as BnGG2, BnD11, BnMPK3, and BnPKL in Brassica napus [70], LEA14, TAS14, GAI, and P5CS genes in tomato [66], DREB2A, CBL1, ANAC072, and RD29A in maize [71]. The regulatory response of these genes comprehensively enhanced the drought tolerance of plants. Furthermore, molecular mechanism analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways suggested that P. indica improves drought tolerance by promoting the genes involved in abscisic acid (ABA), auxin (IAA), salicylic acid (SA), and cytokinin (CTK) biosynthesis pathway [69,73].
- Impact on leaf photosynthesis: Despite its colonization on roots, P. indica can influence leaf photosynthesis, too. For example, P. indica has been found to enhance drought tolerance in rice by delaying leaf curl and increasing leaf temperature [73]. Moreover, the colonization of P. indica inhibits the decline in photosynthesis rate, as well as the degradation of chlorophyll and thylakoid proteins in Chinese cabbage caused by drought stress [69].
4. P. indica Mediates Plant Resistance to Biotic Stress
4.1. P. indica Can Improve Plant Resistance to Various Diseases
4.2. The Mechanism by Which P. indica Mediates Plant Disease Resistance
4.2.1. Maintenance of Cellular Integrity and Modulation of Defense Enzyme Activity
4.2.2. Induction of Defense Gene Expression
4.2.3. Modulation of Hormone Metabolism Pathways
4.2.4. Suppressing the Translation of Host mRNAs through RNA Interference
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleem, S.; Sekara, A.; Pokluda, R. Serendipita Indica—A Review from Agricultural Point of View. Plants 2022, 11, 3417. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, P.; Khatabi, B.; Kogel, K.-H. Root Cell Death and Systemic Effects of Piriformospora indica: A Study on Mutualism. FEMS Microbiol. Lett. 2007, 275, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Varma, A.; Rexer, K.-H.; Hassel, A.; Kost, G.; Sarbhoy, A.; Bisen, P.; Bütehorn, B.; Franken, P. Piriformospora indica, Gen. et sp. Nov., a New Root-Colonizing Fungus. Mycologia 1998, 90, 896–903. [Google Scholar] [CrossRef]
- Varma, A.; Bakshi, M.; Lou, B.; Hartmann, A.; Oelmueller, R. Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agric. Res. 2012, 1, 117–131. [Google Scholar] [CrossRef]
- Qiang, X.; Weiss, M.; Kogel, K.-H.; Schäfer, P. Piriformospora indica—A Mutualistic Basidiomycete with an Exceptionally Large Plant Host Range: Mutualistic Root Symbiosis. Mol. Plant Pathol. 2012, 13, 508–518. [Google Scholar] [CrossRef]
- SONG, F.; MAO, K.; WU, C.; LI, D. Biological functions of Piriformospora indica and its action mechanisms. J. Zhejiang Univ. Agric. Life Sci. 2011, 37, 332. [Google Scholar] [CrossRef]
- Yan, C.; Muhammad Rizwan, H.; Liang, D.; Reichelt, M.; Mithöfer, A.; Scholz, S.S.; Oelmüller, R.; Chen, F. The Effect of the Root-Colonizing Piriformospora indica on Passion Fruit (Passiflora edulis) Development: Initial Defense Shifts to Fitness Benefits and Higher Fruit Quality. Food Chem. 2021, 359, 129671. [Google Scholar] [CrossRef]
- Jisha, S.; Gouri, P.R.; Anith, K.N.; Sabu, K.K. Piriformospora indica Cell Wall Extract as the Best Elicitor for Asiaticoside Production in Centella asiatica (L.) Urban, Evidenced by Morphological, Physiological and Molecular Analyses. Plant Physiol. Biochem. 2018, 125, 106–115. [Google Scholar] [CrossRef]
- Das, A.; Kamal, S.; Shakil, N.A.; Sherameti, I.; Oelmüller, R.; Dua, M.; Tuteja, N.; Johri, A.K.; Varma, A. The Root Endophyte Fungus Piriformospora indica Leads to Early Flowering, Higher Biomass and Altered Secondary Metabolites of the Medicinal Plant, Coleus forskohlii. Plant Signal. Behav. 2012, 7, 103–112. [Google Scholar] [CrossRef]
- Sharma, P. Piriformospora indica Improves Micropropagation, Growth and Phytochemical Content of Aloe vera L. Plants. Symbiosis 2014, 64, 11–23. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, V.; Kumar, H.; Sharma, R.; Singh, A.; Tuteja, N.; Johri, A.K. Piriformospora Indica Enhances Plant Growth by Transferring Phosphate. Plant Signal. Behav. 2011, 6, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Jahandideh Mahjen Abadi, V.A.; Sepehri, M.; Khatabi, B.; Rezaei, M. Alleviation of Zinc Deficiency in Wheat Inoculated with Root Endophytic Fungus Piriformospora indica and Rhizobacterium Pseudomonas putida. Rhizosphere 2021, 17, 100311. [Google Scholar] [CrossRef]
- Mansotra, P.; Sharma, P.; Sharma, S. Bioaugmentation of Mesorhizobium cicer, Pseudomonas Spp. and Piriformospora indica for Sustainable Chickpea Production. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2015, 21, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Kumar Bhuyan, S.; Bandyopadhyay, P.; Kumar, P.; Kumar Mishra, D.; Prasad, R.; Kumari, A.; Chandra Upadhyaya, K.; Varma, A.; Kumar Yadava, P. Interaction of Piriformospora indica with Azotobacter chroococcum. Sci. Rep. 2015, 5, 13911. [Google Scholar] [CrossRef] [PubMed]
- Boorboori, M.R.; Zhang, H.-Y. The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. Biology 2022, 11, 952. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sakshi; Annapurna, K.; Shrivastava, N.; Varma, A. Symbiotic Interplay of Piriformospora indica and Azotobacter chroococcum Augments Crop Productivity and Biofortification of Zinc and Iron. Microbiol. Res. 2022, 262, 127075. [Google Scholar] [CrossRef]
- Li, H.; Fu, S.; Zhu, J.; Gao, W.; Chen, L.; Li, X.; Zhang, S.; Zheng, S.; Zhang, H.; Liu, Y. Nitric Oxide Generated by Piriformospora indica—Induced Nitrate Reductase Promotes Tobacco Growth by Regulating Root Architecture and Ammonium and Nitrate Transporter Gene Expression. J. Plant Interact. 2022, 17, 861–872. [Google Scholar] [CrossRef]
- Kundu, A.; Mishra, S.; Kundu, P.; Jogawat, A.; Vadassery, J. Piriformospora indica Recruits Host-Derived Putrescine for Growth Promotion in Plants. Plant Physiol. 2022, 188, 2289–2307. [Google Scholar] [CrossRef]
- Yang, L.; Zou, Y.-N.; Tian, Z.-H.; Wu, Q.-S.; Kuča, K. Effects of Beneficial Endophytic Fungal Inoculants on Plant Growth and Nutrient Absorption of Trifoliate Orange Seedlings. Sci. Hortic. 2021, 277, 109815. [Google Scholar] [CrossRef]
- Cao, M.-A.; Liu, R.-C.; Xiao, Z.-Y.; Hashem, A.; Abd Allah, E.F.; Alsayed, M.F.; Harsonowati, W.; Wu, Q.-S. Symbiotic Fungi Alter the Acquisition of Phosphorus in Camellia oleifera through Regulating Root Architecture, Plant Phosphate Transporter Gene Expressions and Soil Phosphatase Activities. J. Fungi 2022, 8, 800. [Google Scholar] [CrossRef]
- Su, Z.-Z.; Wang, T.; Shrivastava, N.; Chen, Y.-Y.; Liu, X.; Sun, C.; Yin, Y.; Gao, Q.-K.; Lou, B.-G. Piriformospora indica Promotes Growth, Seed Yield and Quality of Brassica napus L. Microbiol. Res. 2017, 199, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Eliaspour, S.; Seyed Sharifi, R.; Shirkhani, A. Evaluation of Interaction between Piriformospora indica, Animal Manure and NPK Fertilizer on Quantitative and Qualitative Yield and Absorption of Elements in Sunflower. Food Sci. Nutr. 2020, 8, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Shukla, J.; Mohd, S.; Kushwaha, A.S.; Narayan, S.; Saxena, P.N.; Bahadur, L.; Mishra, A.; Shirke, P.A.; Kumar, M. Endophytic Fungus Serendipita indica Reduces Arsenic Mobilization from Root to Fruit in Colonized Tomato Plant. Environ. Pollut. 2022, 298, 118830. [Google Scholar] [CrossRef]
- Ghorbani, A.; Tafteh, M.; Roudbari, N.; Pishkar, L.; Zhang, W.; Wu, C. Piriformospora indica Augments Arsenic Tolerance in Rice (Oryza sativa) by Immobilizing Arsenic in Roots and Improving Iron Translocation to Shoots. Ecotoxicol. Environ. Saf. 2021, 209, 111793. [Google Scholar] [CrossRef]
- Mohd, S.; Shukla, J.; Kushwaha, A.S.; Mandrah, K.; Shankar, J.; Arjaria, N.; Saxena, P.N.; Narayan, R.; Roy, S.K.; Kumar, M. Endophytic Fungi Piriformospora indica Mediated Protection of Host from Arsenic Toxicity. Front. Microbiol. 2017, 8, 754. [Google Scholar] [CrossRef]
- Su, Z.; Zeng, Y.; Li, X.; Perumal, A.B.; Zhu, J.; Lu, X.; Dai, M.; Liu, X.; Lin, F. The Endophytic Fungus Piriformospora indica—Assisted Alleviation of Cadmium in Tobacco. J. Fungi 2021, 7, 675. [Google Scholar] [CrossRef]
- Xian, L. Piriformospora indica Effects on Growth and Physiology of Three Herbage under Cd Stress. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2023. [Google Scholar]
- Liu, B.; An, C.; Jiao, S.; Jia, F.; Liu, R.; Wu, Q.; Dong, Z. Impacts of the Inoculation of Piriformospora indica on Photosynthesis, Osmoregulatory Substances, and Antioxidant Enzymes of Alfalfa Seedlings under Cadmium Stress. Agriculture 2022, 12, 1928. [Google Scholar] [CrossRef]
- Sagonda, T.; Adil, M.F.; Sehar, S.; Rasheed, A.; Joan, H.I.; Ouyang, Y.; Shamsi, I.H. Physio-Ultrastructural Footprints and iTRAQ-Based Proteomic Approach Unravel the Role of Piriformospora indica—Colonization in Counteracting Cadmium Toxicity in Rice. Ecotoxicol. Environ. Saf. 2021, 220, 112390. [Google Scholar] [CrossRef]
- Guo, C.-T. Praliminary Study on Mechanism of Redncing Heavy Metal Contents in Nicoiana tabacum Leaves Conferred by Piriformospora indica. Master’s Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Dabral, S.; Yashaswee; Varma, A.; Choudhary, D.K.; Bahuguna, R.N.; Nath, M. Biopriming with Piriformospora indica Ameliorates Cadmium Stress in Rice by Lowering Oxidative Stress and Cell Death in Root Cells. Ecotoxicol. Environ. Saf. 2019, 186, 109741. [Google Scholar] [CrossRef] [PubMed]
- Shahabivand, S.; Parvaneh, A.; Aliloo, A.A. Root Endophytic Fungus Piriformospora indica Affected Growth, Cadmium Partitioning and Chlorophyll Fluorescence of Sunflower under Cadmium Toxicity. Ecotoxicol. Environ. Saf. 2017, 145, 496–502. [Google Scholar] [CrossRef]
- Nanda, R.; Agrawal, V. Piriformospora indica, an Excellent System for Heavy Metal Sequestration and Amelioration of Oxidative Stress and DNA Damage in Cassia angustifolia Vahl. under Copper Stress. Ecotoxicol. Environ. Saf. 2018, 156, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Saman, M.; Sepehri, A. Serendipita indica (Piriformospora indica) Inoculation Improves Photosynthetic Performance and Antioxidative Potential of Proso Millet (Panicum miliaceum L.) under Copper Stress Conditions. Braz. J. Bot. 2022, 45, 1177–1182. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Aghili, F.; Jafarinia, R. Soil-Indigenous Arbuscular Mycorrhizal Fungi and Zeolite Addition to Soil Synergistically Increase Grain Yield and Reduce Cadmium Uptake of Bread Wheat (through Improved Nitrogen and Phosphorus Nutrition and Immobilization of Cd in Roots). Environ. Sci. Pollut. Res. 2019, 26, 30794–30807. [Google Scholar] [CrossRef]
- Baghaie, A.H.; Jabari, A.G. Effect of Nano Fe-Oxide and Endophytic Fungus (P. indica) on Petroleum Hydrocarbons Degradation in an Arsenic Contaminated Soil under Barley Cultivation. J. Environ. Health Sci. Eng. 2019, 17, 853–861. [Google Scholar] [CrossRef]
- Zhu, P.; Han, B.; Wang, X.; Zhang, Z.; Chang, L.; Li, L. Study on the Remediation of Cadmium Pollution in Soil by Combination of Medicago sativa and Piriformospora indica. Environ. Sci. Technol. 2019, 42, 21–27. [Google Scholar] [CrossRef]
- Li, L.; Zhu, P.; Wang, X.; Zhang, Z. Phytoremediation Effect of Medicago sativa Colonized by Piriformospora indica in the Phenanthrene and Cadmium Co-Contaminated Soil. BMC Biotechnol. 2020, 20, 20. [Google Scholar] [CrossRef]
- Qi, Q.; Ma, S.; Xu, W. Advances in the Effects of Salt Stress on Plant Growth and Physiological Mechanisms of Salt Tolerance. Mol. Plant Breed. 2020, 18, 2741–2746. [Google Scholar] [CrossRef]
- Singh, M.; Tiwari, N. Microbial Amelioration of Salinity Stress in HD 2967 Wheat Cultivar by Up-Regulating Antioxidant Defense. Commun. Integr. Biol. 2021, 14, 136–150. [Google Scholar] [CrossRef]
- Al-Absi, K.; Al-Ameiri, N. Physiological Responses of Tomato to Inoculation with Piriformospora indica under Osmotic Stress and Chloride Toxicity. Int. J. Agric. For. 2015, 5, 226–239. [Google Scholar]
- Wang, Y.; Tong, H.; Zhou, X.; Fan, R.; Tang, S. Effect of Piriformospora indica on Salt Resistance of Salvia leucantha Seedlings. J. Southwest Univ. Sci. Ed. 2018, 40, 54–59. [Google Scholar] [CrossRef]
- Yun, P. Research upon Salinity Tolerance Improvement Conferred by Piriformospora indica in Maize (Zea mays) Seedlings. Master’s Thesis, Yangtze University, Jingzhou, China, 2018. [Google Scholar]
- Ghorbani, A.; Omran, V.O.G.; Razavi, S.M.; Pirdashti, H.; Ranjbar, M. Piriformospora indica Confers Salinity Tolerance on Tomato (Lycopersicon esculentum Mill.) through Amelioration of Nutrient Accumulation, K+/Na+ Homeostasis and Water Status. Plant Cell Rep. 2019, 38, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Pehlivan, N.; Ghorbani, A.; Wu, C. Effects of Azorhizobium caulinodans and Piriformospora indica Co-Inoculation on Growth and Fruit Quality of Tomato (Solanum lycopersicum L.) under Salt Stress. Horticulturae 2022, 8, 302. [Google Scholar] [CrossRef]
- Abdelaziz, M.E.; Kim, D.; Ali, S.; Fedoroff, N.V.; Al-Babili, S. The Endophytic Fungus Piriformospora indica Enhances Arabidopsis Thaliana Growth and Modulates Na+/K+ Homeostasis under Salt Stress Conditions. Plant Sci. Int. J. Exp. Plant Biol. 2017, 263, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Pan, R.; Hu, A.; Zhang, W. Effect of Piriformospora indica on Growth and Salt Tolerance of Cotton Seedling. J. Yangtze Univ. 2018, 15, 1–6+93. [Google Scholar] [CrossRef]
- Nivedita; Gazara, R.K.; Khan, S.; Iqrar, S.; Ashrafi, K.; Abdin, M.Z. Comparative Transcriptome Profiling of Rice Colonized with Beneficial Endophyte, Piriformospora indica, under High Salinity Environment. Mol. Biol. Rep. 2020, 47, 7655–7673. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, X.; Wang, F.; Wang, X.; Qi, S. Piriformospora indica Confers Salt Tolerance in Medicago sativa Bystimulating Antioxidant Enzymes Activities Andthe Expression of P5CS Genes. J. Hebei Univ. Technol. 2016, 45, 29–36. [Google Scholar] [CrossRef]
- Chen, W.; Lin, F.; Lin, K.-H.; Chen, C.; Xia, C.; Liao, Q.; Chen, S.-P.; Kuo, Y.-W. Growth Promotion and Salt-Tolerance Improvement of Gerbera jamesonii by Root Colonization of Piriformospora indica. J. Plant Growth Regul. 2022, 41, 1219–1228. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; He, Y.; Ye, K.; Tian, Z. Effects of Endophytic Fungus Piriformospora indica on Salt Stress Tolerance of Rice Seedling. J. South. Agric. 2019, 50, 719–725. [Google Scholar]
- Zhang, D.; Wang, X.; Zhang, Z.; Li, C.; Xing, Y.; Luo, Y.; Li, D.; Ma, Z.; Cai, H. Symbiotic System Establishment between Piriformospora indica and Glycine Max and Its Effects on the Antioxidant Activity and Ion-Transporter-Related Gene Expression in Soybean under Salt Stress. Int. J. Mol. Sci. 2022, 23, 14961. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Shu, J.; Cai, Y.; Liu, B.; Wu, J. Analysis of nitrogen stress on DNA methylation by MSAP in tall fescue. Genom. Appl. Biol. 2015, 34, 2362–2371. [Google Scholar]
- Yun, P.; Ren, M.; Gong, Q.; Xu, Y.; Ralf, O.; Zhang, W. Great Influence of Piriformospora indica upon DNA Methylation of Maize Seedling under NaCl Stress. Mol. Plant Breed. 2019, 17, 6033–6040. [Google Scholar] [CrossRef]
- Yang, Y.; Zha, F.; Zhang, J.; Zhu, J.; Dong, S. Effect of Piriformospora indica on Yield, Quality and Physiological Changes of Waterlogging Brassica chinensis. Hubei Agric. Sci. 2014, 53, 3516–3519. [Google Scholar] [CrossRef]
- Hu, L.; He, X.; Wei, P.; Sun, B.; Fei, Y.; Hu, D. Effects of Piriformospora indica on the Respiration of Taxus chinensis Var. Mairei under Water Stress. Phyton-Int. J. Exp. Bot. 2021, 90, 1661–1672. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, S.; Wang, Y.; Luo, Z.; Zhu, J. Effects of Adding Pirformaspora Indica to Soli at Different Growth Stages of Oilseed on the Prevention of Waterlogged Disaster. Hubei Agric. Sci. 2015, 54, 790–794. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Z.; Dong, S.; Zhang, J.; Zhu, J. Effects of Pirformaspora Indica on Yield and Resistance to Waterlogging of Cotton. J. Henan Agric. Sci. 2015, 44, 46–49. [Google Scholar] [CrossRef]
- Tsai, H.-J.; Shao, K.-H.; Chan, M.-T.; Cheng, C.-P.; Yeh, K.-W.; Oelmüller, R.; Wang, S.-J. Piriformospora indica Symbiosis Improves Water Stress Tolerance of Rice through Regulating Stomata Behavior and ROS Scavenging Systems. Plant Signal. Behav. 2020, 15, 1722447. [Google Scholar] [CrossRef]
- Ghabooli, M.; Khatabi, B.; Ahmadi, F.S.; Sepehri, M.; Mirzaei, M.; Amirkhani, A.; Jorrín-Novo, J.V.; Salekdeh, G.H. Proteomics Study Reveals the Molecular Mechanisms Underlying Water Stress Tolerance Induced by Piriformospora indica in Barley. J. Proteomics 2013, 94, 289–301. [Google Scholar] [CrossRef]
- Zarea, M.J.; Chordia, P.; Varma, A. Piriformospora indica Versus Salt Stress. In Piriformospora indica: Sebacinales and Their Biotechnological Applications; Varma, A., Kost, G., Oelmüller, R., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 263–281. ISBN 978-3-642-33802-1. [Google Scholar]
- Hui, F.; Liu, J.; Gao, Q.; Lou, B. Effects of Piriformospora indica on Drought Resistance of Nicotiana tabacum. Tob. Sci. Technol. 2017, 50, 1–7. [Google Scholar] [CrossRef]
- Tariq, A.; Pan, K.; Olatunji, O.A.; Graciano, C.; Li, Z.; Sun, F.; Sun, X.; Song, D.; Chen, W.; Zhang, A.; et al. Phosphorous Application Improves Drought Tolerance of Phoebe zhennan. Front. Plant Sci. 2017, 8, 1561. [Google Scholar] [CrossRef]
- Saddique, M.A.B.; Ali, Z.; Khan, A.S.; Rana, I.A.; Shamsi, I.H. Inoculation with the Endophyte Piriformospora indica Significantly Affects Mechanisms Involved in Osmotic Stress in Rice. Rice 2018, 11, 34. [Google Scholar] [CrossRef]
- Yang, R. In Response to Drought and Low Temperaturestress Induced by Piriformospora indica. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2019. [Google Scholar]
- Azizi, M.; Fard, E.M.; Ghabooli, M. Piriformospora indica Affect Drought Tolerance by Regulation of Genes Expression and Some Morphophysiological Parameters in Tomato (Solanum lycopersicum L.). Sci. Hortic. 2021, 287, 110260. [Google Scholar] [CrossRef]
- Hosseini, F.; Mosaddeghi, M.R.; Dexter, A.R. Effect of the Fungus Piriformospora indica on Physiological Characteristics and Root Morphology of Wheat under Combined Drought and Mechanical Stresses. Plant Physiol. Biochem. 2017, 118, 107–120. [Google Scholar] [CrossRef]
- Hosseini, F.; Mosaddeghi, M.R.; Dexter, A.R.; Sepehri, M. Maize Water Status and Physiological Traits as Affected by Root Endophytic Fungus Piriformospora indica under Combined Drought and Mechanical Stresses. Planta 2018, 247, 1229–1245. [Google Scholar] [CrossRef]
- Sun, C.; Johnson, J.M.; Cai, D.; Sherameti, I.; Oelmüller, R.; Lou, B. Piriformospora indica Confers Drought Tolerance in Chinese Cabbage Leaves by Stimulating Antioxidant Enzymes, the Expression of Drought-Related Genes and the Plastid-Localized CAS Protein. J. Plant Physiol. 2010, 167, 1009–1017. [Google Scholar] [CrossRef]
- Chen, Y.; Lou, B.; Gao, Q.; Lin, F. Preliminary Study on Mechanisms of Drought Resistance in Brassica napus L. Conferred by Piriformospora indica. J. Agric. Biotechnol. 2013, 21, 272–281. [Google Scholar]
- Xu, L.; Wang, A.; Wang, J.; Wei, Q.; Zhang, W. Piriformospora indica Confers Drought Tolerance on Zea mays L. through Enhancement of Antioxidant Activity and Expression of Drought-Related Genes. Crop J. 2017, 5, 251–258. [Google Scholar] [CrossRef]
- Mu, H.; Wang, W.; Fan, L.; Wu, C.; Guo, X.; Sun, T. Effects of Piriformospora indica on Growth and Drought Resistance in Osmanthus fragrans under Water Deficit Stress. J. Nanjing For. Univ. Sci. Ed. 2023, 47, 101–106. [Google Scholar] [CrossRef]
- Wei, Q.; Wu, M.; Zhang, W.; Xu, L.; Chen, J.; Pan, R.; Tian, X. Effect of the Endophytic Fungus Piriformospora indica on the Growth and Drought Tolerance of Rice Seedling under Drought Stress. Chin. J. Ecol. 2018, 37, 2642–2648. [Google Scholar] [CrossRef]
- Khalid, M.; Rahman, S.-U.; Huang, D. Molecular Mechanism Underlying Piriformospora indica—Mediated Plant Improvement/Protection for Sustainable Agriculture. Acta Biochim. Biophys. Sin. 2019, 51, 229–242. [Google Scholar] [CrossRef]
- Jisha, S.; Sabu, K.K.; Manjula, S. Multifunctional Aspects of Piriformospora indica in Plant Endosymbiosis. Mycology 2019, 10, 182–190. [Google Scholar] [CrossRef]
- Culshaw-Maurer, M.; Sih, A.; Rosenheim, J.A. Bugs Scaring Bugs: Enemy-Risk Effects in Biological Control Systems. Ecol. Lett. 2020, 23, 1693–1714. [Google Scholar] [CrossRef] [PubMed]
- Anwaar, H.A.; Perveen, R.; Mansha, M.Z.; Aatif, H.M.; Sarwar, Z.M.; Umar, U.U.D.; Hanif, C.M.S.; Sajid, M.; Rehman, A.; Alam, M.M.; et al. Potential of Fungal Endophytes to Antagonise puccinia Striiformis Causing Wheat Yellow Rust. J. Anim. Plant Sci. 2020, 31. [Google Scholar]
- Roylawar, P.; Khandagale, K.; Randive, P.; Shinde, B.; Murumkar, C.; Ade, A.; Singh, M.; Gawande, S.; Morelli, M. Piriformospora indica Primes Onion Response against Stemphylium Leaf Blight Disease. Pathogens 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Trzewik, A.; Maciorowski, R.; Klocke, E.; Orlikowska, T. The Influence of Piriformospora indica on the Resistance of Two Rhododendron Cultivars to Phytophthora cinnamomi and P. plurivora. Biol. Control 2020, 140, 104121. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, G.; Deng, R.; Hu, X.; Tan, H.; Chen, Y.; Tian, Z.; Li, J. Spatiotemporal Biocontrol and Rhizosphere Microbiome Analysis of Fusarium Wilt of Banana. Commun. Biol. 2023, 6, 27. [Google Scholar] [CrossRef]
- Dehghanpour-Farashah, S.; Taheri, P.; Falahati-Rastegar, M. Effect of Polyamines and Nitric Oxide in Piriformospora indica-Induced Resistance and Basal Immunity of Wheat against Fusarium pseudograminearum. Biol. Control 2019, 136, 104006. [Google Scholar] [CrossRef]
- Hui, F.; Ma, J.; Liu, J.; Nie, C.; Gao, Q.; Lou, B. Disease Resistance Analysis of Nicotiana tabacum Induced by Piriformospora indica. Tob. Sci. Technol. 2014, 74–79. [Google Scholar]
- Li, L.; Guo, N.; Feng, Y.; Duan, M.; Li, C. Effect of Piriformospora indica—Induced Systemic Resistance and Basal Immunity Against Rhizoctonia cerealis and Fusarium graminearum in Wheat. Front. Plant Sci. 2022, 13, 836940. [Google Scholar] [CrossRef]
- Rabiey, M.; Shaw, M.W. Piriformospora indica Reduces Fusarium Head Blight Disease Severity and Mycotoxin DON Contamination in Wheat under UK Weather Conditions. Plant Pathol. 2016, 65, 940–952. [Google Scholar] [CrossRef]
- Narayan, O.P.; Verma, N.; Singh, A.K.; Oelmüller, R.; Kumar, M.; Prasad, D.; Kapoor, R.; Dua, M.; Johri, A.K. Antioxidant Enzymes in Chickpea Colonized by Piriformospora indica Participate in Defense against the Pathogen Botrytis cinerea. Sci. Rep. 2017, 7, 13553. [Google Scholar] [CrossRef]
- Harrach, B.D.; Baltruschat, H.; Barna, B.; Fodor, J.; Kogel, K.-H. The Mutualistic Fungus Piriformospora indica Protects Barley Roots from a Loss of Antioxidant Capacity Caused by the Necrotrophic Pathogen Fusarium culmorum. Mol. Plant-Microbe Interact. 2013, 26, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Nassimi, Z.; Taheri, P. Endophytic Fungus Piriformospora indica Induced Systemic Resistance against Rice Sheath Blight via Affecting Hydrogen Peroxide and Antioxidants. Biocontrol Sci. Technol. 2017, 27, 252–267. [Google Scholar] [CrossRef]
- Peng, B.; Liu, J.; Hui, F.; Wang, Y.; Gao, Q.; Lou, B. Piriformospora indica Inducing Tobacco Resistance to Black Shank and Its Preliminary Mechanism. J. Agric. Biotechnol. 2015, 23, 432–440. [Google Scholar]
- Sun, C. Disease Resistance, Growth Promotion and Stress Tolerance in Chinese Cabbage Conferred by Piriformospora indica and the Preliminary Study of Mechanisms. Master’s Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Atia, M.A.M.; Abdeldaym, E.A.; Abdelsattar, M.; Ibrahim, D.S.S.; Saleh, I.; Elwahab, M.A.; Osman, G.H.; Arif, I.A.; Abdelaziz, M.E. Piriformospora indica Promotes Cucumber Tolerance against Root-Knot Nematode by Modulating Photosynthesis and Innate Responsive Genes. Saudi J. Biol. Sci. 2020, 27, 279–287. [Google Scholar] [CrossRef]
- Molitor, A.; Zajic, D.; Voll, L.M.; Pons-Kühnemann, J.; Samans, B.; Kogel, K.-H.; Waller, F. Barley Leaf Transcriptome and Metabolite Analysis Reveals New Aspects of Compatibility and Piriformospora indica—Mediated Systemic Induced Resistance to Powdery Mildew. Mol. Plant-Microbe Interact. 2011, 24, 1427–1439. [Google Scholar] [CrossRef]
- Luo, F.; Wang, X.; Wei, C.; Liu, S.; Xu, B.; Sun, W. Preliminary Exploration on Piriformospora indica Induced Resistance to ‘Yunyan 87’ under Bacterial Wilt Stress. Mol. Plant Breed. 2023. Available online: https://kns.cnki.net/kcms/detail//46.1068.S.20230131.0958.002.html (accessed on 25 July 2023).
- Wu, J. Growth Promotion, Stress Tolerance and Disease Resistance in Rice Conferred by Piriformospora indica and the Preliminarystudy of Mechanisms. Master’s Thesis, Zhejiang University, Hangzhou, China, 2015. [Google Scholar]
- Li, L.; Hao, R.; Yang, X.; Feng, Y.; Bi, Z. Piriformospora indica Increases Resistance to Fusarium pseudograminearum in Wheat by Inducing Phenylpropanoid Pathway. Int. J. Mol. Sci. 2023, 24, 8797. [Google Scholar] [CrossRef]
- Cheng, C.; Li, D.; Wang, B.; Liao, B.; Qu, P.; Liu, W.; Zhang, Y.; Lü, P. Piriformospora indica Colonization Promotes the Root Growth of Dimocarpus longan Seedlings. Sci. Hortic. 2022, 301, 111137. [Google Scholar] [CrossRef]
- Kundu, A.; Vadassery, J. Molecular Mechanisms of Piriformospora indica Mediated Growth Promotion in Plants. Plant Signal. Behav. 2022, 17, 2096785. [Google Scholar] [CrossRef]
- Jacobs, S.; Zechmann, B.; Molitor, A.; Trujillo, M.; Petutschnig, E.; Lipka, V.; Kogel, K.-H.; Schäfer, P. Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus Piriformospora indica. Plant Physiol. 2011, 156, 726–740. [Google Scholar] [CrossRef]
- Panda, S.; Busatto, N.; Hussain, K.; Kamble, A. Piriformospora indica—Primed Transcriptional Reprogramming Induces Defense Response against Early Blight in Tomato. Sci. Hortic. 2019, 255, 209–219. [Google Scholar] [CrossRef]
- Hu, Y. Study on the Mechanism of Piriformospora indica Enhanced Plant Resistance to Verticillium wilt Based on iTRAQ Technology. Master’s Thesis, Shanxi Agricultural University, Jinzhong, China, 2020. [Google Scholar]
- Lin, H.-F.; Xiong, J.; Zhou, H.-M.; Chen, C.-M.; Lin, F.-Z.; Xu, X.-M.; Oelmüller, R.; Xu, W.-F.; Yeh, K.-W. Growth Promotion and Disease Resistance Induced in Anthurium Colonized by the Beneficial Root Endophyte Piriformospora indica. BMC Plant Biol. 2019, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Jiang, J.; Lin, Y.; Yeh, K.-W.; Lai, Z.; Xu, X.; Oelmüller, R. Colonisation of Oncidium Orchid Roots by the Endophyte Piriformospora indica Restricts Erwinia Chrysanthemi Infection, Stimulates Accumulation of NBS-LRR Resistance Gene Transcripts and Represses Their Targeting Micro-RNAs in Leaves. BMC Plant Biol. 2019, 19, 601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Y.; Hong, Y.-H.; Liu, Y.-R.; Cui, J.; Luan, Y.-S. Function Identification of miR394 in Tomato Resistance to Phytophthora infestans. Plant Cell Rep. 2021, 40, 1831–1844. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, J.; Ma, H.; Liu, F.; Liu, B.; Liu, X. Colonization Strategy and Growth Promotion Mechanism of Serendipita indica: Research Progress. Chin. Agric. Sci. Bull. 2023, 39, 119–126. [Google Scholar] [CrossRef]
- Šečić, E.; Zanini, S.; Wibberg, D.; Jelonek, L.; Busche, T.; Kalinowski, J.; Nasfi, S.; Thielmann, J.; Imani, J.; Steinbrenner, J.; et al. A Novel Plant-Fungal Association Reveals Fundamental sRNA and Gene Expression Reprogramming at the Onset of Symbiosis. BMC Biol. 2021, 19, 171. [Google Scholar] [CrossRef]
- Li, L.; Guo, N.; Zhang, Y.; Yuan, Z.; Lu, A.; Li, S.; Wang, Z. Reprogramming of Fundamental miRNA and Gene Expression during the Barley—Piriformospora indica Interaction. J. Fungi 2022, 9, 24. [Google Scholar] [CrossRef]
- Akum, F.N.; Steinbrenner, J.; Biedenkopf, D.; Imani, J.; Kogel, K.-H. The Piriformospora indica Effector PIIN_08944 Promotes the Mutualistic Sebacinalean Symbiosis. Front. Plant Sci. 2015, 6, 906. [Google Scholar] [CrossRef]
- Cao, Y. Study on Resistance of Tobacco Bacterial Wilt Induced by Piriformospora indica. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Kumar, M.; Yadav, V.; Tuteja, N.; Johri, A.K. Antioxidant Enzyme Activities in Maize Plants Colonized with Piriformospora indica. Microbiology 2009, 155, 780–790. [Google Scholar] [CrossRef]
- Rabiey, M.; Ullah, I.; Shaw, M.W. The Endophytic Fungus Piriformospora indica Protects Wheat from Fusarium Crown Rot Disease in Simulated UK Autumn Conditions. Plant Pathol. 2015, 64, 1029–1040. [Google Scholar] [CrossRef]
Plant | Nutrient Absorption | Response to Abiotic Stress | Response to Biotic Stress |
---|---|---|---|
Wheat [77,87,88,91] | - | Ascorbic acid ↑; Glutathione activity ↑; Antioxidant enzyme activity ↑; relative water content ↑; membrane stability index ↑; POD content ↑; CAT activity ↑ | Incidence of Fusarium head blight ↓; Incidence of sharp eyespot and root rot diseases ↓; Incidence of Fusarium crown rot ↓ |
Chickpea [107] | - | Glutathione activity ↑; CTA activity ↑; SOD activity ↑; H2O2 content ↓; | Botrytis cinerea activity ↓ |
Tobacco [78,79,80] | N ↑; P ↑; Zn ↑ | Pro content ↑; MDA content ↓; SOD activity ↑; POD activity ↑; CAT activity ↑ | Incidence of tobacco black shank ↓; Incidence of tobacco bacterial wilt ↓ |
Onion [81] | - | CTA activity ↑; Phenylalanine ammonia-lyase activity ↑; SOD activity ↑; MDA content ↓ | Incidence of Stemphylium leaf blight disease ↓ |
Banana [108] | N ↑; P ↑; Fe ↓ | SOD activity ↑; CAT activity ↑; POD activity ↑; Phenylalanine ammonia-lyase activity ↑; IAA ↑; Pro content ↑ | Incidence of Fusarium wilt of banana ↓ |
Barley [62,86] | - | Glutamine content ↑; Alanine content ↑; Ascorbic acid ↑; Glutathione activity ↑ | Incidence of root rot diseases ↓; Incidence of powdery mildew ↓ |
Maize [43,84,109] | P ↑ | ABA ↑; IAA ↑; CTK ↑; SA ↑; CAT activity ↑; Glutathione reductase activity ↑; Glutathione S-transferase activity ↑; SOD activity ↑; ROS ↓ | Incidence of root rot ↓; Incidence of seedling blight disease ↓ |
Rice [18] | - | MDA content ↓; Chlorophyll ↑; Soluble sugar ↑; Soluble protein ↑; Antioxidant enzyme activity ↑; Pro ↑; | Incidence of bacterial blight ↓ |
Brassica napus L [60] | N ↑; P ↑; S ↑; Zn ↑; Mn ↑ | CAT activity ↑; MDA content ↓; Membrane permeability ↑; Pro content ↑ | Incidence of root rot ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Feng, Y.; Qi, F.; Hao, R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. J. Fungi 2023, 9, 965. https://doi.org/10.3390/jof9100965
Li L, Feng Y, Qi F, Hao R. Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. Journal of Fungi. 2023; 9(10):965. https://doi.org/10.3390/jof9100965
Chicago/Turabian StyleLi, Liang, Yu Feng, Fuyan Qi, and Ruiying Hao. 2023. "Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant" Journal of Fungi 9, no. 10: 965. https://doi.org/10.3390/jof9100965
APA StyleLi, L., Feng, Y., Qi, F., & Hao, R. (2023). Research Progress of Piriformospora indica in Improving Plant Growth and Stress Resistance to Plant. Journal of Fungi, 9(10), 965. https://doi.org/10.3390/jof9100965