Genetic Diversity and Population Structure of Leptosphaeria biglobosa from the Winter Oilseed Rape Region in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and DNA Extraction
2.2. Fungal Species Determination
2.3. Design of SSR Primers
2.4. Determination of Genetic Diversity of L. biglobosa Strains
2.5. Pathogenicity Assays
3. Results
3.1. Species Identification and SSR Primer Design
3.2. Genetic Diversity and Population Structure Analysis
3.3. Pathogenicity of the L. biglobosa Strains in Different Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schoemaker, R.A.; Brun, H. The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans. Can. J. Bot. 2001, 7, 412–419. [Google Scholar] [CrossRef]
- Mendes-Pereira, E.; Balesdent, M.H.; Brun, H.; Rouxel, T. Molecular phylogeny of the Leptosphaeria maculans- L. biglobosa species complex. Mycol. Res. 2003, 107, 1287–1304. [Google Scholar] [CrossRef] [PubMed]
- Fitt, B.D.L.; Huang, Y.J.; van den Bosch, F.; West, J.S. Coexistence of related pathogen species on arable crops in space and time. Annu. Rev. Phytopathol. 2006, 44, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Yu, C.; Cai, X.; Wu, M.; Li, G. First report of Leptosphaeria biglobosa ‘brassicae’ causing blackleg on brassica juncea var. multiceps in China. Plant Dis. 2018, 103, 160. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Y.; Wu, M.; Li, G. First report of Leptosphaeria biglobosa causing blackleg of ornamental kale (brassica oleracea var. acephala) in China. Plant Dis. 2019, 103, 770. [Google Scholar] [CrossRef]
- Khangura, R.K.; Barbetti, M. Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia. Aust. J. Exp. Agric. 2001, 41, 71–80. [Google Scholar] [CrossRef]
- Fitt, B.D.L.; Brun, H.; Barbetti, M.J.; Rimmer, S.R. World-wide importance of phoma stem canker (Leptosphaeria maculans and Leptosphaeria biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 2006, 114, 3–15. [Google Scholar] [CrossRef]
- Harrison, L.M.; Kharbanda, P.D. Blackleg of Canola survey in Alberta, 1996. Can. Plant Dis. Sur. 1997, 77, 72. [Google Scholar]
- Allard, L.M.; Brun, H.; Jouffret, P.; Lagarde, F.; Penaud, A.; Pinochet, X.; Simonin, P.; Taverne, M. Les maladies du colza. In Points Techniques du CETIOM; Quae: Versailles, France, 2002; 80p. [Google Scholar]
- Barnes, A.P.; Wreford, A.; Butterworth, M.H.; Semonov, M.A.; Moran, D.; Evans, N.; Fitt, B.D.L. Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. J. Agricul. Sci. 2010, 148, 83–94. [Google Scholar] [CrossRef]
- Zhang, X.; White, R.P.; Demir, E.; Jedryczka, M.; Lange, R.M.; Islam, M.; Li, Z.Q.; Huang, Y.J.; Hall, A.; Zhou, G.; et al. Leptosphaeria spp., phoma stem canker and potential spread of L. maculans on oilseed rape crops in China. Plant Pathol. 2014, 63, 598–612. [Google Scholar] [CrossRef]
- West, J.S.; Kharbanda, P.D.; Barbetti, M.J.; Fitt, B.D.L. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 2001, 50, 10–27. [Google Scholar] [CrossRef]
- West, J.S.; Balesdent, M.H.; Rouxel, T.; Narcy, J.P.; Huang, Y.J.; Roux, J.; Steed, J.M.; Fitt, B.D.L.; Schmit, J. Colonization of winter oilseed rape tissues by A/Tox+ and B/Tox0 Leptosphaeria maculans (phoma stem canker) in France and England. Plant Pathol. 2002, 51, 311–321. [Google Scholar] [CrossRef]
- Fitt, B.D.L.; Evans, N.; Howlett, B.J.; Cooke, B.M. Sustainable Strategies for Managing Brassica napus (Oilseed Rape) Resistance to Leptosphaeria maculans (Phoma Stem Canker); Springer: Dordrecht, The Netherlands, 2006; 126p. [Google Scholar]
- Howlett, B.J.; Idnurm, A.; Pedras, M.S. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet. Biol. 2001, 33, 1–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Fitt, B.D.L.; Welha, S.J.; Gladders, P.; Sansford, C.E.; West, J.S. Effects of severity and timing of stem canker (Leptosphaeria maculans) symptoms on yield of winter oilseed rape (Brassica napus) in the UK. Eur. J. Plant Pathol. 1999, 105, 715–728. [Google Scholar] [CrossRef]
- West, J.S.; Evans, N.; Liu, S.; Hu, B.; Peng, L. Leptosphaeria maculans causing stem canker of oilseed rape in China. Plant Pathol. 2000, 49, 800. [Google Scholar] [CrossRef]
- Jedryczka, M.; Lewartowska, E.; Frencel, I. Properties of Phoma lingam (Tode ex Fr.) Desm. isolates from Poland. I. pathogenicity characterisation. Phytopathol. Pol. 1994, 7, 71–79. [Google Scholar]
- Karolewski, Z.; Kosiada, T.; Hylak-Nowosad, B.; Nowacka, K. Changes in population structure of Leptosphaeria maculans in Poland. Phytopathol. Pol. 2002, 25, 27–34. [Google Scholar]
- Deng, Y.; Li, J.C.; Lyv, X.; Xu, J.W.; Wu, M.D.; Zhang, J.; Yang, L.; Li, G.Q. Large-Scale Surveys of Blackleg of Oilseed Rape (Leptosphaeria biglobosa) Revealed New Insights into Epidemics of This Disease in China. Plant Dis. 2023, 107, 1408–1417. [Google Scholar] [CrossRef]
- Li, Q.S.; Rong, S.B.; Hu, B.C.; Jiang, Y.F.; Hou, S.M.; Fei, W.X.; Chen, F.X.; Wu, X.J.; Fan, Z.X.; Lei, W.X. Distribution of blackleg disease on oilseed rape in China and its pathogen identification. Chin. J. Oil Crop Sci. 2013, 35, 415. [Google Scholar]
- Fitt, B.D.L.; Hu, B.C.; Li, Z.Q.; Liu, S.Y.; Lange, R.M.; Kharbanda, P.D.; Butterworth, M.H.; White, R.P. Strategies to prevent the spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China, costs and benefits. Plant Pathol. 2008, 57, 652–664. [Google Scholar] [CrossRef]
- Stonard, J.F.; Latunde-Dada, A.O.; Huang, Y.J.; West, J.S.; Evans, N.; Fitt, B.D.L. Geographic variation in severity of phoma stem canker and Leptosphaeria maculans/L. biglobosa populations on UK winter oilseed rape (Brassica napus). Eur. J. Plant Pathol. 2010, 126, 97–109. [Google Scholar] [CrossRef]
- Van de Wouw, A.P.; Scanlan, J.L.; Al-Mamun, H.A.; Balesdent, M.H.; Bousset, L.; Burketová, L.; del Rio Mendoza, L.L.; Dilantha Fernando, W.G.; Franke, C.; Idnurm, A.; et al. A new set of international Leptosphaeria maculans isolates as a resource for elucidation of the basis and evolution of blackleg disease on Brassica napus. Plant Pathol. 2023, 1–16. [Google Scholar] [CrossRef]
- Eckert, M.; Gout, L.; Rouxel, T.; Blaise, F.; Li, M.; Fitt, B.D.L. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans. Curr. Genet. 2005, 47, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Gout, L.; Eckert, M.; Rouxel, T.; Balesdent, M.H. Genetic variability and distribution of mating type alleles in field populations of Leptosphaeria maculans from France. Appl. Environ. Microb. 2006, 72, 185–191. [Google Scholar] [CrossRef]
- Pongam, P.; Osborn, T.C.; Williams, P.H. Assessment of genetic variation among Leptosphaeria maculans isolates using pathogenicity data and AFLP analysis. Plant Dis. 1999, 83, 149–154. [Google Scholar] [CrossRef]
- Purwantara, A.; Barrins, J.M.; Cozijnsen, A.J.; Ades, P.K.; Howlett, B.J. Genetic diversity of isolates of the Leptosphaeria maculans species complex from Australia, Eu- rope and North America using amplified fragment length polymorphism analysis. Mycol. Res. 2000, 104, 772–781. [Google Scholar] [CrossRef]
- Voigt, K.; Schleier, S.; Wostemeyer, J. RAPD-based molecular probes for the blackleg fungus Leptosphaeria maculans (Phoma lingam): Evidence for pathogenicity group-specific sequences in the fungal genomes. J. Phytopathol. 1998, 146, 567–576. [Google Scholar] [CrossRef]
- Liu, Z.; Latunde-Dada, A.; Hall, A.; Fitt, B.D.L. Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’. Eur. J. Plant Pathol. 2014, 140, 841–857. [Google Scholar] [CrossRef]
- Hao, L.F.; Song, P.L.; Li, Z.Q.; Huangpu, H.Y.; Li, Q.S. Genetic diversity of phoma stem canker pathogen Leptosphaeria biglobosa by ISSR. Chin. J. Oil Crop Sci. 2014, 36, 98. [Google Scholar]
- Tautz, D.; Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984, 12, 4127–4138. [Google Scholar] [CrossRef]
- Song, Z.P.; Xu, X.; Wang, B.; Chen, J.K.; Lu, B.R. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers. Theor. Appl. Genet. 2003, 107, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Balyan, S.; Edwards, J.; Isaac, P.; Korzun, V.; Röder, M.; Gautier, M.F.; Joudrier, P.; Schlatter, R.; Dubcovsky, J.; et al. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 2002, 105, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Harris-Shultz, K.; Wang, H.; Wadl, P.A.; Ji, P. Population structure and genetic diversity of phytophthora nicotianae from tobacco in georgia. Plant Dis. 2017, 101, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Schlotterer, C.; Tautz, D. Slippage sysnthesis of simple sequence DNA. Nucleic Acids Res. 1992, 20, 211–215. [Google Scholar] [CrossRef]
- Elameen, A.; de Labrouhe, D.T.; Bret-Mestries, E.; Delmotte, F. Spatial genetic structure and pathogenic race composition at the field scale in the sunflower downy mildew pathogen, Plasmopara halstedii. J. Fungi 2022, 8, 1084. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lai, M.H.; Wu, C.Y.; Lin, T.C.; Cheng, A.H.; Yang, C.C.; Wu, H.Y.; Chu, S.C.; Kuo, C.C.; Wu, Y.F.; et al. The genetic structure, virulence, and fungicide sensitivity of fusarium fujikuroi in Taiwan. Phytopathology 2016, 106, 624–635. [Google Scholar] [CrossRef]
- Möller, E.M.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res. 1992, 20, 6115–6116. [Google Scholar] [CrossRef]
- Liu, S.Y.; Liu, Z.; Fitt, B.D.L.; Evans, N.; Foster, S.J.; Huang, Y.J.; Latunde-Dada, A.O.; Lucas, J.A. Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathol. 2006, 55, 401–412. [Google Scholar] [CrossRef]
- Karan, M.; Evans, D.S.; Reilly, D.; Schulte, K.; Wright, C.; Innes, D.; Holton, T.A.; Nikles, D.G.; Dickinson, G.R. Rapid microsatellite marker development for African mahogany (Khaya senegalensis, Meliaceae) using next-generation sequencing and assessment of its intra-specific genetic diversity. Mol. Ecol. Resour. 2012, 12, 344–353. [Google Scholar] [CrossRef]
- Holland, M.M.; Parson, W. GeneMarker HID: A reliable software tool for the analysis of forensic STR data. J. Forensic Sci. 2011, 26, 29–35. [Google Scholar] [CrossRef]
- Liu, K.; Muse, S.V. PowerMarker: Integrate analysis environment for genetic marker data. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Hubisz, M.; Falush, D.; Stephens, M.; Pritchard, J. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 2009, 9, 1322–1332. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, K.; Wu, M.; Zhang, J.; Yang, L.; Chen, W.; Li, G. Viral cross-class transmission results in disease of a phytopathogenic fungus. ISME J. 2020, 16, 2763–2774. [Google Scholar] [CrossRef] [PubMed]
- Flier, W.G.; Grünwald, N.J.; Kroon, L.P.N.M.; Sturbaum, A.K.; van den Bosch, T.B.M.; Garay-Serrano, E.; Lozoya-Saldaña, H.; Fry, W.E.; Turkensteen, L.J. The population structure of Phytophthora infestans from the Toluca Valley of Central Mexico suggests genetic differentiation between populations from cultivated potato and wild Solanum spp. Phytopathology 2003, 93, 382–390. [Google Scholar] [CrossRef]
- Tyler, K.D.; Wang, G.; Tyler, S.D.; Johnson, W.M. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J. Clin. Microbiol. 1997, 35, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Grünwald, N.J.; Goodwin, S.B.; Milgroom, M.G.; Fry, W.E. Analysis of genotypic diversity data for populations of microorganisms. Phytopathology 2003, 93, 738–746. [Google Scholar] [CrossRef]
- Bernaschina, Y.; Leoni, C.; Alaniz, S. Genetic diversity evidence a mixed reproduction mode in Venturia oleaginea populations in Uruguay. J. Plant Pathol. 2020, 102, 123–133. [Google Scholar] [CrossRef]
- Rouxel, T.; Balesdent, M.H. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Mol. Plant Pathol. 2005, 6, 225–241. [Google Scholar] [CrossRef]
- King, K.M.; Canning, G.; Zhou, K.; Liu, Z.; Wu, M.; West, J.S. Indirect evidence based on mating-type ratios for the role of sexual reproduction in European and Chinese populations of Plenodomus biglobosus (Blackleg of Oilseed Rape). Pathogens 2022, 12, 3. [Google Scholar] [CrossRef]
- Williams, R.; Fitt, B.D.L. Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol. 1999, 48, 161–175. [Google Scholar] [CrossRef]
- Bradley, C.A.; Parks, P.S.; Chen, Y.; Fernando, W.G.D. First report of pathogenicity groups 3 and 4 of Leptosphaeria maculans on Canola in North Dakota. Plant Dis. 2005, 89, 776. [Google Scholar] [CrossRef] [PubMed]
- Nepal, A.; Markell, S.; Knodel, J.; Bradley, C.A.; Mendoza, L.E.D.R. Prevalence of blackleg and pathogenicity groups of Leptosphaeria maculans in north dakota. Plant Dis. 2014, 98, 328–335. [Google Scholar] [CrossRef] [PubMed]
Locus Name | Repeat Motif | Primer Sequence (5′-3′) | Size (bp) | Allele No. |
---|---|---|---|---|
ssr-1 | (CCT)n | CTCTCTACCTCCTCCCCCTC | 278 | 1 |
CGCAGCGTTTAGGCTTTATC | ||||
ssr-7 | (AGC)n | GGCGTTTGGATGTGAGAAGT | 178 | 1 |
CGTTCACTTTGGGGACAAGT | ||||
ssr-8 | (GATGGA)n | CTGGGCCTAGAGCAAGAACA | 242 | 1 |
TAGAATTCCATGTCCAGCCC | ||||
ssr-12 | (CTT)n | GCAAGACAGACGGACAGACA | 270 | 1 |
GCGGGGTGAGAATTCTTGTA | ||||
ssr-14 | (CTA)n | GCCGTAGAAATAGGCCTTCC | 241–301 | 15 |
CAACGGAACCCTTCCAACTA | ||||
ssr-16 | (GGC)n | GATTGGCGAGCCTAGAAGTG | 262 | 1 |
AGTATTGAATGCAGACCCGC | ||||
ssr-17 | (GGA)n | GACGACTGCACGACAACATC | 178–199 | 5 |
ACTCGCCTACCAACATGGAC | ||||
ssr-23 | (GAGT)n | CGCAAGTATGAATGCGAAAA | 155 | 1 |
CCTTGCAAAGTCGGTCAAGT | ||||
ssr-24 | (AGC)n | TCGCTGCTGAACAAGTGAGT | 245 | 1 |
TAGGCGAATACACGGGAAAC | ||||
ssr-26 | (CAG)n | GGGCAAAACCAGAGAAGACA | 224 | 1 |
GACGACGGCGAGAGACTTAC | ||||
ssr-31 | (TTG)n | AGGAGTGGGAGAGGCATTTT | 274 | 1 |
TGTAAGTCGACTGCGTTTGG | ||||
ssr-34 | (TGGA)n | TTTGGTGTGATGTCAGGGAG | 202 | 1 |
TGTGACAATCTTGCCAAAGC | ||||
ssr-36 | (TCG)n | GCAACTTGTCGATTCCGACT | 271 | 1 |
ACCCAAGTCCTCTGCAGCTA | ||||
ssr-43 | (ACCT)n | GCTTTGCGAGGTCAAATGTT | 204 | 1 |
GCTAGTCAGGACGGGGTAGG | ||||
ssr-44 | (CGG)n | TTTGAGCTCGACGACATGAG | 176 | 1 |
TTTTGGTCTGCCAGCTTCTT | ||||
ssr-45 | (GGC)n | GGTCTCGTGTGCAATTGATG | 268 | 1 |
GCGCAGGCGAGTACATAGTT | ||||
ssr-47 | (CTG)n | ATCGTCGTCTTGAGCTGGTT | 200 | 1 |
AAAGTCTGCATGTCCATCCC | ||||
ssr-52 | (GCC)n | GAAGTGTCTGCGCCATGTTA | 246 | 1 |
ACCTCCGACACCACCTCTC | ||||
ssr-53 | (TGG)n | GTATGGGTGTTGATTTGGGG | 254–281 | 6 |
AAGACACAGCACAATGCTCG | ||||
ssr-56 | (TGA)n | ACCGTCAGAGAACATACCCG | 234 | 1 |
GAGCTTGATCTCCGCTGACT |
Source | df | Sum of Squares | Mean Squares | Estimated Variative (%) | FST a | p | Nm b |
---|---|---|---|---|---|---|---|
Among populations | 10 | 34.21 | 3.42 | 4.0% | 0.043 | 0.042 | 5.639 |
Within populations | 203 | 377.28 | 1.86 | 96% | … | … | … |
Total | 213 | 411.49 | 5.28 | 100% | … | … | … |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Zhang, J.; Yang, L.; Li, G.; Wu, M. Genetic Diversity and Population Structure of Leptosphaeria biglobosa from the Winter Oilseed Rape Region in China. J. Fungi 2023, 9, 1092. https://doi.org/10.3390/jof9111092
Zhou K, Zhang J, Yang L, Li G, Wu M. Genetic Diversity and Population Structure of Leptosphaeria biglobosa from the Winter Oilseed Rape Region in China. Journal of Fungi. 2023; 9(11):1092. https://doi.org/10.3390/jof9111092
Chicago/Turabian StyleZhou, Kang, Jing Zhang, Long Yang, Guoqing Li, and Mingde Wu. 2023. "Genetic Diversity and Population Structure of Leptosphaeria biglobosa from the Winter Oilseed Rape Region in China" Journal of Fungi 9, no. 11: 1092. https://doi.org/10.3390/jof9111092
APA StyleZhou, K., Zhang, J., Yang, L., Li, G., & Wu, M. (2023). Genetic Diversity and Population Structure of Leptosphaeria biglobosa from the Winter Oilseed Rape Region in China. Journal of Fungi, 9(11), 1092. https://doi.org/10.3390/jof9111092