Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Cultivation
2.2. RNA Isolation, cDNA Library Construction, and Illumina Hiseq X Ten/Nova seq 6000 Sequencing
2.3. Read Mapping
2.4. Differential Expression Analysis and Functional Enrichment
2.5. Metabolite Extraction
2.6. Non-Target Metabolomics
2.7. Differential Metabolite Analysis
2.8. Reactive Oxygen Species Detection and Growth Rate Measurement
2.9. Statistical Analysis
3. Results
3.1. H- and L-Type L. edodes Strains Differ in Their Transcriptional and Metabolic Profiles
3.2. Heat Stress Inhibited the Growth and Induced the Production of ROS in Both Temperature Types of L. edodes
3.3. H- and L-type L. edodes Strains Varied in Their Transcriptional Profiles in Response to Heat Stress
3.4. H- and L-type L. edodes Strains Showed Different Metabolic Profiles in Response to Heat Stress
3.5. Integrative Analysis of Transcriptome and Metabolome of L. edodes under Heat Stress
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, Q.; Adil, B.; Chen, Q.; Gu, Y.; Zeng, X.; Li, X. Shiitake Mushroom (Lentinula edodes (Berk.) Sing. Breeding in China. In Advances in Plant Breeding Strategies: Vegetable Crops, 1st ed.; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021; Volume 3, pp. 443–476. [Google Scholar]
- Xiang, X.; Li, C.; Li, L.; Bian, Y.; Kwan, H.S.; Nong, W.; Cheung, M.K.; Xiao, Y. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol. Prog. 2016, 15, 37. [Google Scholar] [CrossRef]
- Smith, C.A. Macrosynteny analysis between Lentinula edodes and Lentinula novae-zelandiae reveals signals of domestication in Lentinula edodes. Sci. Rep. 2021, 11, 9845. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, L.; Shang, X.; Peng, B.; Li, Y.; Xiao, S.; Tan, Q.; Fu, Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genom. 2022, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gong, W.; Zhang, L.; Yang, Z.; Nong, W.; Bian, Y.; Kwan, H.S.; Cheung, M.K.; Xiao, Y. Association mapping reveals genetic loci associated with important agronomic traits in Lentinula edodes, shiitake mushroom. Front. Microbiol. 2017, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finimundy, T.C.; Dillon, A.J.P.; Henriques, J.A.P.; Ely, M.R. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Sci. Nutr. 2014, 5, 1095–1105. [Google Scholar]
- Nam, M.; Choi, J.Y.; Kim, M.S. Metabolic profiles, bioactive compounds, and antioxidant capacity in Lentinula edodes cultivated on log versus sawdust substrates. Biomolecules 2021, 11, 1654. [Google Scholar] [CrossRef]
- Chowdhury, M.; Kubra, K.; Ahmed, S. Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Li, C.; Tan, Q.; Li, Q.; Ma, D.; Chen, M. The summary of resources of some cultivated strains of Lentinula edodes in China. J. Fungal Res. 2015, 13, 146–154, (In Chinese with an English abstract). [Google Scholar]
- Terashima, K.; Matsumoto, T.; Hasebe, K.; Fukumasa-Nakai, Y. Genetic diversity and strain-typing in cultivated strains of Lentinula edodes (the shiitake mushroom) in Japan by AFLP analysis. Rep. Tottori Mycol. Inst. 2002, 106, 34–39. [Google Scholar]
- Hasebe, K.; Ohira, I.; Arita, I. Genetic relationship between high-, medium-and low-temperature-type fruiting of Lentinula edodes in wood log culture. Rep. Tottori Mycol. Inst. 1998, 36, 21–28. [Google Scholar]
- Zhang, R.; Huang, C.; Zheng, S.; Zhang, J.; Ng, T.B.; Jiang, R.; Zuo, X.; Wang, H. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Appl. Microbiol. Biotechnol. 2007, 74, 140–145. [Google Scholar] [CrossRef]
- Ryu, S.R.; Bak, W.C.; Koo, C.D.; Lee, B.H. Studies on breeding and cultivation characteristics of Lentinula edodes strains for sawdust cultivation. Kor. J. Mycol. 2009, 37, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shen, N.; Li, C.; Xiang, X.; Liu, G.; Gui, Y.; Patev, S.; Hibbett, D.S.; Barry, K.; Andreopoulos, W. Population genomics provides insights into the genetic basis of adaptive evolution in the mushroom-forming fungus Lentinula edodes. J. Adv. Res. 2022, 38, 91–106. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Y.; Wang, C.; Zhou, Y.; Mou, C.; Kang, H.; Xiao, Y.; Bian, Y.; Gong, Y. Hsp40 protein LeDnaJ07 enhances the thermotolerance of Lentinula edodes and regulates IAA biosynthesis by interacting LetrpE. Front. Microbiol. 2020, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, S.; Wu, J.; Sun, X.; Ma, A. Heat stress in macrofungi: Effects and response mechanisms. Appl. Microbiol. Biotechnol. 2021, 105, 7567–7576. [Google Scholar] [CrossRef]
- Qiu, Z.; Wu, X.; Gao, W.; Zhang, J.; Huang, C. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl. Microbiol. Biotechnol. 2018, 102, 6627–6636. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, R.; Bhandari, K.; Nayyar, H. Temperature stress and redox homeostasis in agricultural crops. Front. Env. Sci-Switz. 2015, 3, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yu, C.; Ren, Y.; Chen, M.; Cha, L.; Yang, H.; Song, X.; Zhao, Y. Effect of heat stress on fatty acids in Stropharia rugosoan-nulata mycelia. Acta Edulis Fungi. 2020, 27, 45–50, (In Chinese with an English abstract). [Google Scholar]
- Yan, Z.; Zhao, M.; Wu, X.; Zhang, J. Metabolic response of Pleurotus ostreatus to continuous heat stress. Front Microbiol. 2020, 10, 3148. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, H.; Chen, M.; Song, X.; Yu, C.; Zhao, Y.; Wu, Y. Reference gene selection for quantitative real-time PCR of mycelia from Lentinula edodes under high-temperature stress. Biomed. Res. Int. 2018, 2018, 1670328. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Sun, J.; Ning, H.; Qin, Z.; Miao, Y.; Sun, T.; Zhang, X. De novo transcriptome sequencing and comprehensive analysis of the heat stress response genes in the basidiomycetes fungus Ganoderma lucidum. Gene 2018, 661, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Krah, F.; Hess, J.; Hennicke, F.; Kar, R.; Bässler, C. Transcriptional response of mushrooms to artificial sun exposure. Ecol. Evol. 2021, 11, 10538–10546. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Bian, Y.; Xiao, X.; Li, J.; Wang, G. Effect of heat stress on Lentinula edodes mycelial growth recovery and resistance to Trichoderma harzianum. Acta Edulis Fungi. 2015, 22, 81–85. [Google Scholar]
- Xu, R.; Zhou, S.; Song, J.; Zhong, H.; Zhu, T.; Gong, Y.; Zhou, Y.; Bian, Y. Comparative transcriptome analysis provides insights into the mechanism by which 2, 4-Dichlorophenoxyacetic acid improves thermotolerance in Lentinula edodes. Front. Microbiol. 2022, 13, 910255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, M.; Zhao, Y.; Zha, L.; Yang, H.; Wu, Y. GC–MS-based nontargeted and targeted metabolic profiling identifies changes in the Lentinula edodes mycelial metabolome under high-temperature stress. Int. J. Mol. Sci. 2019, 20, 2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Huang, C.; Chen, Q.; Zou, Y.; Zhang, J. Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal. Genet. Biol. 2012, 49, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Vihervaara, A.; Duarte, F.M.; Lis, J.T. Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet. 2018, 19, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhou, S.; Luo, Y.; Ma, C.; Gong, Y.; Zhou, Y.; Gao, S.; Huang, Z.; Yan, L.; Hu, Y. The heat shock protein 40 LeDnaJ regulates stress resistance and indole-3-acetic acid biosynthesis in Lentinula edodes. Fungal Genet. Biol. 2018, 118, 37–44. [Google Scholar] [CrossRef]
- Wang, G.; Ma, C.; Luo, Y.; Zhou, S.; Zhou, Y.; Ma, X.; Cai, Y.; Yu, J.; Bian, Y.; Gong, Y. Proteome and transcriptome reveal involvement of heat shock proteins and indoleacetic acid metabolism process in Lentinula edodes thermotolerance. Cell. Physiol. Biochem. 2018, 50, 1617–1637. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, G.; Luo, Y.; Ma, C.; Gong, Y.; Bian, Y.; Zhou, Y. Auxin and auxin analogues enhancing the thermotolerance of Lentinula edodes. Mycosystema 2018, 37, 1723–1730. [Google Scholar]
- Chittaragi, A.; Kumar, A.; Muniraju, K. Evaluation of various lignocellulosic products for the cultivation of shiitake mushroom [Lentinula edodes (Berk.) Pegler]. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 2199–2203. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J R. Stat. Soc. Series. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef]
- Domingo-Almenara, X.; Montenegro-Burke, J.R. Annotation: A computational solution for streamlining metabolomics analysis. Anal. Chem. 2018, 90, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr. Metab. 2013, 1, 92–107. [Google Scholar]
- Ren, A.; Liu, R.; Miao, Z.G.; Zhang, X.; Cao, P.F.; Chen, T.X.; Li, C.Y.; Shi, L.; Jiang, A.L.; Zhao, M.W. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ. Microbiol. 2017, 19, 566–583. [Google Scholar] [CrossRef]
- Mu, D.; Li, C.; Zhang, X.; Li, X.; Shi, L.; Ren, A.; Zhao, M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: An essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ. Microbiol. 2014, 16, 1709–1728. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Triba, M.N.; Le Moyec, L.; Amathieu, R.; Goossens, C.; Bouchemal, N.; Nahon, P.; Rutledge, D.N.; Savarin, P. PLS/OPLS models in metabolomics: The impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol. Biosyst. 2015, 11, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Gower, J.C. Generalized procrustes analysis. Psychometrika 1975, 40, 33–51. [Google Scholar] [CrossRef]
- Priya, S.; Burns, M.B.; Ward, T.; Mars, R.A.T.; Adamowicz, B.; Lock, E.F.; Kashyap, P.C.; Knights, D.; Blekhman, R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat. Microbiol. 2022, 7, 780–795. [Google Scholar] [CrossRef]
- Lê Cao, K.A.; Rossouw, D.; Robert-Granié, C.; Besse, P. A sparse PLS for variable selection when integrating omics data. Stat. Appl. Genet. Mol. Biol. 2008, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.; Kwan, H.; Kang, Y. Collection, characterization, and utilization of germ plasm of Lentinula edodes. Canad. J. Bot. 1995, 73, 955–961. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, R.; Qiu, Y.; Wu, H.; Xiang, Q.; Yu, X.; Zhao, K.; Zhang, X.; Chen, Q.; Penttinen, P. RNA-seq profiling showed divergent carbohydrate-active enzymes (CAZymes) expression patterns in Lentinula edodes at brown film formation stage under blue light induction. Front. Microbiol. 2020, 11, 1044. [Google Scholar] [CrossRef]
- Tang, L.; Tan, Q.; Bao, D.; Zhang, X.; Jian, H.; Li, Y.; Wang, Y. Comparative proteomic analysis of light-induced mycelial brown film formation in Lentinula edodes. Biomed. Res. Int. 2016, 2016, 5837293. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kim, D.Y.; Park, Y.J.; Jang, M.J. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS ONE 2020, 15, e0230680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ren, A.; Li, M.; Cao, P.; Chen, T.; Zhang, G.; Shi, L.; Jiang, A.; Zhao, M. Heat stress modulates mycelium growth, heat shock protein expression, ganoderic acid biosynthesis, and hyphal branching of Ganoderma lucidum via cytosolic Ca2+. Appl. Environ. Microbiol. 2016, 82, 4112–4125. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Ye, Z.; Shen, G.; Bian, Y.; Xu, Z. Effects of mycovirus LeV-HKB on resistance of heat stress challenged Lentinula edodes mycelia against Trichoderma atroviride. Acta Edulis Fungi. 2020, 27, 143. [Google Scholar]
- Ling, Y.; Ling, Z.; Zhao, R. Construction of a heat-resistant strain of Lentinus edodes by fungal Hsp20 protein overexpression and genetic transformation. Front. Microbiol. 2022, 13, 1009885. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tang, L.; Xiong, Y.; Jiang, L.; Xian, L. Test on thermophilic stability of mycelium and fruitbody growth of Lentinula edodes. J. Jilin Agric. Univ. 2004, 26, 145–147. [Google Scholar]
- Wu, X.; Deng, B.; Chen, W.; Xie, X. Breeding thermo-tolerant strains of Lentinula edodes by UV mutation. Acta Agric. Zhejiangensis 2017, 29, 2015–2022. [Google Scholar]
- Park, C.J.; Seo, Y.S. Heat shock proteins: A review of the molecular chaperones for plant immunity. Plant Pathol. J. 2015, 31, 323. [Google Scholar] [CrossRef] [Green Version]
- Tereshina, V. Thermotolerance in fungi: The role of heat shock proteins and trehalose. Microbiology 2005, 74, 247–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Gao, Q.; Fan, Y.; Song, S.; Yan, D.; Zhao, J.; Chen, Y.; Liu, Y.; Wang, S. Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress. J. Fungi 2023, 9, 179. https://doi.org/10.3390/jof9020179
Guo Y, Gao Q, Fan Y, Song S, Yan D, Zhao J, Chen Y, Liu Y, Wang S. Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress. Journal of Fungi. 2023; 9(2):179. https://doi.org/10.3390/jof9020179
Chicago/Turabian StyleGuo, Yuan, Qi Gao, Yangyang Fan, Shuang Song, Dong Yan, Jing Zhao, Yulin Chen, Yu Liu, and Shouxian Wang. 2023. "Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress" Journal of Fungi 9, no. 2: 179. https://doi.org/10.3390/jof9020179
APA StyleGuo, Y., Gao, Q., Fan, Y., Song, S., Yan, D., Zhao, J., Chen, Y., Liu, Y., & Wang, S. (2023). Two Strains of Lentinula edodes Differ in Their Transcriptional and Metabolic Patterns and Respond Differently to Thermostress. Journal of Fungi, 9(2), 179. https://doi.org/10.3390/jof9020179