Mycelium-Composite Materials—A Promising Alternative to Plastics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Reagents
2.2. Inoculum Preparation and Culture Conditions
2.3. Evaluation of Growth Rhythm on Low-Nutrient Media
2.4. Growth Substrates for MCM Production
2.5. Primary Assessment of MCMs
2.6. Evaluation of the Final Products
2.7. Viability of the Mycelium
2.8. Optical and Electronic Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Low Nutrient Media Growth
3.2. Primary Assessment of MCMs
3.3. Evaluation of the Final Products
3.4. Structure of the Material (Optical and Electronic Microscopy—SEM)
3.5. Viability of the Mycelium
4. Discussion
Final Considerations for Scalability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive (EU) 2019/904 of the European Parliament and of the Council of 5 June 2019 on the Reduction of the Impact of Certain Plastic Products on the Environment. Available online: http://data.europa.eu/eli/dir/2019/904/oj (accessed on 12 December 2022).
- Abhijith, R.; Ashoka, A.; Rejeesh, C.R. Sustainable packaging applications from mycelium to substitute polystyrene: A review. Mater. Today: Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S.; Suwannarach, N. Amazing fungi for eco-friendly composite materials: A comprehensive review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Asore, E.P. Green packaging: Mushroom based packaging for sustainable development in Nigeria (a descriptive perspective). CJMSE 2021, 21, 272–290. [Google Scholar]
- Aquino, M.; Rugolo, M.; Robledo, G.; Kuhar, F. Evaluation of mycelium composite materials produced by five Patagonian fungal species. Maderas-Cienc Tecnol 2022, 35, 1–14. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Van Wylick, A.; Ruytinx, J.; De Laet, L.; Peeters, E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020, 725, 138431. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Modanloo, B.; Ghazvinian, A.; Matini, M.; Andaroodi, E. Tilted Arch; Implementation of Additive. Manufacturing and bio-welding of mycelium-based composites. Biomimetics 2021, 6, 68. [Google Scholar] [CrossRef]
- Rafiee, K.; Kaur, G.; Brar, S.K. Fungal biocomposites: How process engineering affects composition and properties? Bioresour. Technol. Rep. 2021, 14, 100692. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and mechanical characterization of mycelium-based composites towards future bioremediation and food production in the material manufacturing cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of mycelium-bound composite materials in construction industry: A short review. SOJ Mater. Sci. Eng. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in mycelium-based composites: Usage and recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Park, D.; Qin, Z. Material function of mycelium-based bio-composite: A review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Angelova, G.; Brazkova, M.; Stefanova, P.; Blazheva, D.; Vladev, V.; Petkova, N.; Slavov, A.; Denev, P.; Karashanova, D.; Zaharieva, R.; et al. Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum. GA1M. J. Fungi 2021, 7, 866. [Google Scholar] [CrossRef]
- Schritt, H.; Vidi, S.; Pleissner, D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 2021, 313, 127910. [Google Scholar] [CrossRef]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of mycelium-miscanthus composites as building insulation material. Results Mater. 2021, 10, 100189. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, J.; Fan, X.; Yu, X. Naturally grown mycelium-composite as sustainable building insulation materials. J. Clean. Prod. 2022, 342, 130784. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Ind. Crops Prod. 2013, 51, 480–485. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Lara, A.J.; Tapia-Carillo, A.; McIntyre, G.; Bayer, E. An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Ind. Crops Prod. 2017, 95, 342–347. [Google Scholar] [CrossRef]
- Walter, N.; Gürsoy, B. A Study on the sound absorption properties of mycelium-based composites cultivated on waste paper-based substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Joshi, K.; Meher, M.K.; Poluri, K.M. Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Appl. Biol. Mater. 2020, 3, 1884–1892. [Google Scholar] [CrossRef] [PubMed]
- Ongpeng, J.M.C.; Inciong, E.; Sendo, V.; Soliman, C.; Siggaoat, A. Using waste in producing bio-composite mycelium bricks. Appl. Sci. 2020, 10, 5303. [Google Scholar] [CrossRef]
- Vidholdová, Z.; Kormúthová, D.; Iždinský, J.; Lagaňa, R. Compressive resistance of the mycelium composite. Ann. WULS-SGGW For. Wood Technol. 2019, 107, 31–36. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Howell, C.; Hunt, C.G. Functionality of surface mycelium interfaces in wood bonding. ACS Appl. Mater. Interfaces 2020, 12, 57431–57440. [Google Scholar] [CrossRef]
- Sun, W.; Tajvidi, M.; Howell, C.; Hunt, C.G. Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. Compos.-A Appl. Sci. Manuf. 2022, 161, 107125. [Google Scholar] [CrossRef]
- Jauk, J.; Vašatko, H.; Gosch, L.; Christian, I.; Klaus, A.; Stavric, M. Digital fabrication of growth, projections. In Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong, China, 29 March 2021. [Google Scholar]
- Elsacker, E.; Søndergaard, A.; Van Wylick, A.; Peeters, E.; De Laet, L. Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Constr. Build. Mater. 2021, 283, 122732. [Google Scholar] [CrossRef]
- Elsacker, E.; Peeters, E.; De Laet, L. Large-scale robotic extrusion-based additive manufacturing with living mycelium materials. Sustain. Futures 2022, 4, 100085. [Google Scholar] [CrossRef]
- Elsacker, E.; De Laet, L.; Peeters, E. Functional grading of mycelium materials with inorganic particles: The effect of nanoclay on the biological, chemical and mechanical properties. Biomimetics 2022, 7, 57. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A. Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, 41292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stalpers, J.A. Identification of wood-inhabiting Aphyllophorales in pure culture. Stud. Mycol. 1978, 16, 1–248. [Google Scholar]
- Bernicchia, A. Fungi Europaei, Vol. X: Polyporaceae s.l; Candusso: Bologna, Italy, 2005; pp. 1–808. [Google Scholar]
- Neifar, M.; Jaouani, A.; Ellouze-Ghorbel, R.; Ellouze-Chaabouni, S. Purification, characterization and decolourization ability of Fomes fomentarius laccase produced in solid medium. J. Mol. Catal. 2010, 64, 68–74. [Google Scholar] [CrossRef]
- Cartabia, M.; Girometta, C.E.; Baiguera, R.M.; Buratti, S.; Babbini, S.; Bernicchia, A.; Savino, E. Lignicolous fungi collected in northern Italy: Identification and morphological description of isolates. Diversity 2022, 14, 413. [Google Scholar] [CrossRef]
- Tudryn, G.J.; Smith, L.C.; Freitag, J.; Bucinell, R.; Schadler, L.S. Processing and morphology impacts on mechanical properties of fungal based biopolymer composites. J. Polym. Environ. 2018, 26, 1473–1483. [Google Scholar] [CrossRef]
- Jones, M.P.; Lawrie, A.C.; Huynh, T.T.; Morrison, P.D.; Mautner, A.; Bismarck, A.; John, S. Agricultural by-product suitability for the production of chitinous composites and nanofibers utilising Trametes versicolor and Polyporus brumalis mycelial growth. Process. Biochem. 2019, 80, 95–102. [Google Scholar] [CrossRef]
- Liu, R.; Long, L.; Sheng, Y.; Xua, J.; Qiu, H.; Li, X.; Wang, Y.; Wu, H. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 2019, 141, 111732. [Google Scholar] [CrossRef]
- Silverman, J.; Cao, H.; Cobb, K. Development of mushroom mycelium composites for footwear products. Cloth. Text. Res. J. 2020, 38, 119–133. [Google Scholar] [CrossRef]
- Khoo, S.C.; Peng, W.X.; Yang, Y.; Gea, S.B.; Soond, C.F.; Mab, N.L.; Sonnef, C. Development of formaldehyde-free bio-board produced from mushroom mycelium and substrate waste. J. Hazard. Mater. 2020, 400, 123296. [Google Scholar] [CrossRef]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Lee, T.; Choi, J. Mycelium-composite panels for atmospheric particulate matter adsorption. Results Mater. 2021, 11, 100208. [Google Scholar] [CrossRef]
- Chulikavit, N.; Huynh, T.; Dekiwadia, C.; Khatibi, A.; Mouritz, A.; Kandare, E. Influence of growth rates, microstructural properties and biochemical composition on the thermal stability of mycelia fungi. Sci. Rep. 2022, 12, 15105. [Google Scholar] [CrossRef]
- Gan, J.K.; Soh, E.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Le Ferrand, H. Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Sci. Rep. 2022, 12, 19362. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, T.; Lankinen, P.; Hietala, S.; Mikkonen, K.S. Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Compos.-A Appl. Sci. Manuf. 2022, 152, 106688. [Google Scholar] [CrossRef]
- Balaeş, T.; Tănase, C. Culture description of some spontaneous lignicolous macromycetes species. JPD 2012, 19, 83–98. [Google Scholar]
- Petre, C.V.; Tănase, C. Culture characteristics of 20 lignicolous basidiomycetes species that synthesize volatile organic compounds. An. Ştiinţ. Al. I. Cuza Iaşi Sect. II Biol. Veget. 2013, 59, 37–51. [Google Scholar]
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wösten, H.A.B. Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Meyer, A.; Grote, R.; Polle, A.; Butterbech-Bahl, K. Simulating mycorrhizal contribution to forest C- and N cycling–the MYCOFON model. Plant Soil 2010, 327, 493–517. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Ong, Z.S.; Qu, D.; Fang, L.I.; Deng, L. Natural succession on abandoned cropland effectively decreases the soil erodibility and improves the fungal diversity. Ecol. Appl. 2017, 27, 2142–2154. [Google Scholar] [CrossRef]
- Hiscox, J.; Savoury, M.; Vaughan, I.P.; Müller, C.T.; Boddy, L. Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fungal Ecol. 2015, 14, 24–32. [Google Scholar] [CrossRef]
- Knežević, A.; Milovanović, I.; Stajić, M.; Vukojević, J. Trametes suaveolens as ligninolytic enzyme producer. Matica Srpska J. Nat. Sci. 2013, 124, 437–444. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Gürsoy, B. Mycelium-based composite graded materials: Assessing the effects of time and substrate mixture on mechanical properties. Biomimetics 2022, 7, 48. [Google Scholar] [CrossRef]
- Sisti, L.; Gioia, C.; Totaro, G.; Verstichel, S.; Cartabia, M.; Camere, S.; Celli, A. Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind. Crops Prod. 2021, 170, 113742. [Google Scholar] [CrossRef]
- European Commission. Available online: https://rea.ec.europa.eu/funding-and-grants/horizon-europe-cluster-6-food-bioeconomy-natural-resources-agriculture-and-environment/circular-economy-and-bioeconomy-sectors_en (accessed on 14 December 2022).
- Xie, C.; Gong, W.; Yan, L.; Zhu, Z.; Hu, Z.; Peng, Y. Biodegradation of ramie stalk by Flammulina velutipes: Mushroom production and substrate utilization. AMB Expr. 2017, 7, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaishnavi, M.; Prasad, D.; Sharma, A.; Tiwari, J.; Singh, S.; Sharma, S. Production of edible mushrooms to meet the food security: A review. J. Posit. Sch. Psychol. 2022, 6, 4316–4325. [Google Scholar]
- Balaeş, T.; Tănase, C. Description of in vitro cultures for some spontaneous lignicolous basidiomycetes species. An. Ştiinţ. Al. I. Cuza Iaşi Sect. II Biol. Veget. 2012, 58, 19–29. [Google Scholar]
- Răut, I.; Călin, M.; Vuluga, Z.; Oancea, F.; Paceagiu, J.; Radu, N.; Doni, M.; Alexandrescu, E.; Purcar, V.; Gurban, A.-M.; et al. Fungal based biopolymer composites for construction materials. Materials 2021, 14, 2906. [Google Scholar] [CrossRef]
- Hoenerloh, A.; Ozkan, D.; Scott, J. Multi-organism composites: Combined growth potential of mycelium and bacterial cellulose. Biomimetics 2022, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kamal, S.; Sharma, V.P. Species and region-wise mushroom production in leading mushroom producing countries-China, Japan, USA, Canada and India. Mushroom Res. 2021, 30, 99–108. [Google Scholar] [CrossRef]
- Singh, M.; Kamal, S.; Sharma, V.P. Status and trends in world mushroom production-III World production of different mushroom species in 21st century. Mushroom Res. 2020, 29, 75–111. [Google Scholar] [CrossRef]
Nr. | Tested Fungal Strains | Average Colony Diameter (mm) | Mycelium Mat | Resistance |
---|---|---|---|---|
1 | Abortiporus biennis RECOSOL73 | 90 | compact, thick, fluffy at surface | resistant |
2 | Amaroostia stiptica RECOSOL42 | 45 | thin, fluffy | fragile |
3 | Apioperdon pyriforme RECOSOL27 | 28 | tenuous | fragile |
4 | Auricularia mesenterica RECOSOL3 | 45 | tenuous | fragile |
5 | Bjerkandera adusta RECOSOL20 | 90 | very fluffy | resistant |
6 | B. fumosa RECOSOL90 | 90 | tenuous | fragile |
7 | Cerioporus squamosus RECOSOL64 | 70 | very tenuous | fragile |
8 | C. varius RECOSOL101 | 40 | tenuous | fragile |
9 | Coprinellus micaceus RECOSOL95 | 90 | fluffy | fragile |
10 | Coriolopsis gallica RECOSOL6 | 90 | tenuous | fragile |
11 | Crepidotus applanatus RECOSOL93 | 10 | tenuous | fragile |
12 | Crucibulum laeve RECOSOL91 | 65 | tenuous | fragile |
13 | Cyathus striatus RECOSOL7 | 65 | tenuous, fluffy | fragile |
14 | Daedalea quercina RECOSOL83 | 65 | tenuous | fragile |
15 | Daedaleopsis confragosa RECOSOL80 | 90 | thin, fluffy | resistant |
16 | D. tricolor RECOSOL10 | 90 | tenuous, fluffy | resistant |
17 | D. tricolor RECOSOL60 | 90 | thick, fluffy | resistant |
18 | Flammula alnicola RECOSOL35 | 20 | tenuous | fragile |
19 | Flammulina velutipes RECOSOL11 | 45 | very tenuous | fragile |
20 | Fomes fomentarius RECOSOL61 | 90 | compact, thick | resistant |
21 | Fomitopsis pinicola RECOSOL13 | 90 | tenuous | fragile |
22 | Ganoderma adspersum RECOSOL14 | 88 | compact | resistant |
23 | G. applanatum RECOSOL15 | 48 | compact | resistant |
24 | G. lucidum RECOSOL16 | 47 | compact | resistant |
25 | G. resinaceum RECOSOL17 | 90 | tenuous, fluffy | resistant |
26 | Gymnopilus junonius RECOSOL18 | 46 | compact, fluffy | fragile |
27 | Gymnopus dryophilus RECOSOL100 | 15 | tenuous | fragile |
28 | Hericium coralloides RECOSOL55 | 85 | tenuous, fluffy | fragile |
29 | Heterobasidion annosum RECOSOL107 | 45 | tenuous | fragile |
30 | Hymenopellis radicata RECOSOL76 | 90 | very tenuous | fragile |
31 | Hypholoma fasciculare RECOSOL21 | 20 | tenuous | fragile |
32 | H. lateritium RECOSOL22 | 30 | fluffy | fragile |
33 | Inonotus cuticularis RECOSOL23 | 15 | very tenuous | fragile |
34 | I. hispidus RECOSOL24 | 55 | compact, fluffy | resistant |
35 | Irpex lacteus RECOSOL25 | 90 | compact, fluffy | resistant |
36 | I. lacteus RECOSOL32 | 90 | tenuous, fluffy | resistant |
37 | Laetiporus sulphureus RECOSOL81 | 90 | fluffy | fragile |
38 | Lentinus arcularius RECOSOL40 | 90 | compact, thick | resistant |
39 | L. substrictus RECOSOL57 | 88 | compact, thin | resistant |
40 | L. tigrinus RECOSOL70 | 87 | compact, fluffy | resistant |
41 | Lenzites betulinus RECOSOL56 | 90 | tenuous | fragile |
42 | L. betulinus RECOSOL36 | 90 | tenuous, fluffy | fragile |
43 | Leptoporus mollis RECOSOL92 | 90 | tenuous | fragile |
44 | Megacollybia platyphylla RECOSOL71 | 18 | tenuous | fragile |
45 | Meripilus giganteus RECOSOL85 | 90 | fluffy | fragile |
46 | Mucidula mucida RECOSOL86 | 63 | compact, fluffy | fragile |
47 | Mycetinis scorodonius RECOSOL109 | 38 | compact | fragile |
48 | Panus neostrigosus RECOSOL69 | 90 | compact, fluffy | fragile |
49 | Peniophora incarnata RECOSOL29 | 90 | tenuous | fragile |
50 | P. quercina RECOSOL30 | 85 | compact, thin | fragile |
51 | Phellinopsis conchata RECOSOL31 | 70 | fluffy | resistant |
52 | Phellinus igniarius RECOSOL33 | 57 | compact, fluffy | resistant |
53 | P. pomaceus RECOSOL34 | 70 | compact | resistant |
54 | Phlebia tremellosa RECOSOL28 | 14 | very tenuous | fragile |
55 | Pholiota aurivella RECOSOL37 | 20 | tenuous | fragile |
56 | Picipes badius RECOSOL43 | 12 | compact | resistant |
57 | P. melanopus RECOSOL110 | 90 | tenuous | fragile |
58 | Pleurotus eryngii RECOSOL105 | 40 | tenuous | fragile |
59 | P. ostreatus RECOSOL111 | 90 | fluffy | resistant |
60 | P. ostreatus RECOSOL159 | 90 | compact, fluffy | resistant |
61 | Plicaturopsis crispa RECOSOL39 | 51 | tenuous | fragile |
62 | Schizophyllum commune RECOSOL77 | 90 | fluffy | fragile |
63 | Skeletocutis alutacea RECOSOL45 | 47 | tenuous | fragile |
64 | Stereum hirsutum RECOSOL78 | 90 | compact, fluffy | fragile |
65 | S. subtomentosum RECOSOL89 | 90 | tenuous | fragile |
66 | Trametes gibbosa RECOSOL47 | 90 | tenuous | fragile |
67 | T. gibbosa RECOSOL59 | 90 | fluffy | fragile |
68 | T. hirsuta RECOSOL65 | 87 | compact, fluffy | resistant |
69 | T. ochracea RECOSOL88 | 88 | compact, fluffy | resistant |
70 | T. pubescens RECOSOL49 | 88 | tenuous | fragile |
71 | T. pubescens RECOSOL79 | 90 | tenuous | fragile |
72 | T. suaveolens RECOSOL50 | 85 | compact, thin | resistant |
73 | T. trogii RECOSOL104 | 87 | fluffy, thick | resistant |
74 | T. versicolor RECOSOL94 | 90 | compact, thick, fluffy | resistant |
75 | Xylobolus frustulatus RECOSOL54 | 15 | tenuous | fragile |
Isolates | Substrates | Colonisation Time (Days) |
---|---|---|
A. biennis RECOSOL73 | WB, WS, S, WB+WS, WB+S | 20 |
CH, WB+CH | 32 | |
B. adusta RECOSOL20 | WB, WS, S, CH, WB+WS, WB+S, WB+CH | 32 |
D. tricolor RECOSOL10 | WB, WS, S, WB+WS, WB+S | 20 |
CH, WB+CH | 32 | |
F. fomentarius RECOSOL111 | WB, WS, S, CH, WB+WS, WB+S, WB+CH | 32 |
I. lacteus RECOSOL61 | WB | 12 |
WS, S, WB+WS, WB+S | 20 | |
CH, WB+CH | 32 | |
P. ostreatus RECOSOL32 | WB, S, WB+S | 20 |
WS, WB+WS | 32 | |
CH, WB+CH | 12 | |
L. arcularius RECOSOL40 | WB, S, WB+S | 20 |
WS, WB+WS | 32 | |
CH, WB+CH | 12 | |
T. versicolor RECOSOL94 | WB | 12 |
WS, S, WB+WS, WB+S | 20 | |
CH, WB+CH | 32 |
Strain | Substrate | Scm (%) | Firmness | Resistance | Elasticity | Perm. | Strain |
---|---|---|---|---|---|---|---|
AB | WB | 100 | compact | medium | elastic | low | AB |
AB | WS | 100 | compact | low | brittle | low | AB |
AB | S | 100 | compact | medium | elastic | low | AB |
AB | WB+WS | 100 | compact | low | brittle | low | AB |
AB | WB+S | 100 | compact | high | elastic | low | AB |
BA | WB | 100 | compact | low | elastic | low | BA |
BA | WS | 100 | compact | low | brittle | low | BA |
BA | S | 90 | compact | low | elastic | low | BA |
BA | WB+WS | 90 | compact | low | brittle | low | BA |
BA | WB+S | 100 | compact | low | brittle | low | BA |
DT | WB | 80 | lax | low | brittle | low | DT |
DT | WS | 60 | lax | low | brittle | high | DT |
DT | S | 80 | compact | low | brittle | low | DT |
DT | WB+WS | 70 | compact | low | brittle | low | DT |
DT | WB+S | 75 | compact | medium | elastic | low | DT |
FF | WB | 90 | compact | low | elastic | low | FF |
FF | WS | 80 | compact | low | elastic | high | FF |
FF | S | 50 | lax | low | elastic | low | FF |
FF | WB+WS | 90 | compact | low | elastic | low | FF |
FF | WB+S | 70 | compact | low | elastic | low | FF |
IL | WB | 98 | compact | high | elastic | low | IL |
IL | WS | 60 | lax | medium | elastic | high | IL |
IL | S | 40 | lax | low | brittle | low | IL |
IL | WB+WS | 100 | compact | low | brittle | low | IL |
IL | WB+S | 60 | lax | low | brittle | low | IL |
LA | WB | 100 | compact | high | elastic | low | LA |
LA | WS | 80 | lax | low | brittle | low | LA |
LA | S | 20 | lax | low | brittle | high | LA |
LA | WB+WS | 90 | lax | low | brittle | low | LA |
LA | WB+S | 100 | compact | high | elastic | low | LA |
PO | WB | 85 | compact | low | elastic | high | PO |
PO | WS | 40 | lax | low | brittle | high | PO |
PO | S | 20 | lax | low | brittle | low | PO |
PO | WB+WS | 50 | lax | low | brittle | high | PO |
PO | WB+S | 75 | compact | low | brittle | high | PO |
TV | WB | 85 | compact | medium | elastic | low | TV |
TV | WS | 10 | lax | low | brittle | high | TV |
TV | S | 15 | lax | low | brittle | high | TV |
TV | WB+WS | 85 | lax | low | brittle | low | TV |
TV | WB+S | 15 | lax | low | brittle | low | TV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaeș, T.; Radu, B.-M.; Tănase, C. Mycelium-Composite Materials—A Promising Alternative to Plastics? J. Fungi 2023, 9, 210. https://doi.org/10.3390/jof9020210
Balaeș T, Radu B-M, Tănase C. Mycelium-Composite Materials—A Promising Alternative to Plastics? Journal of Fungi. 2023; 9(2):210. https://doi.org/10.3390/jof9020210
Chicago/Turabian StyleBalaeș, Tiberius, Bianca-Mihaela Radu, and Cătălin Tănase. 2023. "Mycelium-Composite Materials—A Promising Alternative to Plastics?" Journal of Fungi 9, no. 2: 210. https://doi.org/10.3390/jof9020210
APA StyleBalaeș, T., Radu, B. -M., & Tănase, C. (2023). Mycelium-Composite Materials—A Promising Alternative to Plastics? Journal of Fungi, 9(2), 210. https://doi.org/10.3390/jof9020210