Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Morphological Features and Cultural Characteristics of the Selected Fungal Isolates
2.3. Sequencing and Phylogenetic Analysis for Species Identification
2.4. Pathogenicity Tests
2.5. Statistical Analyses
3. Results
3.1. Morphocultural Characterization of the Botryosphaeriaceous Isolates
3.2. Sequencing and Phylogenetic Analysis for Species Identification
3.3. Pathogenicity Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix
References
- Besnard, G.; Khadari, B.; Navascués, M.; Fernández-Mazuecos, M.; El Bakkali, A.; Arrigo, N.; Baali-Cherif, D.; Brunini-Bronzini de Caraffa, V.; Santoni, S.; Vargas, P.; et al. The complex history of the olive tree: From late quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B 2013, 280, 20122833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Market Situation in the Olive Oil and Table Olives Sectors—Production, Committee for the Common Organisation of the Agricultural Markets—Arable Crops and Olive Oil—30 September 2021—Consumption and Ending Stocks. Available online: https://www.originfood.info/wp-content/uploads/2020/01/marche-huile-olive-olive-table.pdf (accessed on 1 November 2021).
- Rigacci, S.; Stefani, M. Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. Int. J. Mol. Sci. 2016, 17, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol. 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Lima-Cueto, F.J.; Blanco-Sepúlveda, R.; Gómez-Moreno, M.L. Soil erosion and environmental regulations in the european agrarian policy for olive groves (Olea europaea) of southern Spain. Agrociencia 2018, 52, 293–308. [Google Scholar]
- Hopkins, D.L. Xylella fastidiosa: Xylem-limited bacterial pathogens of plants. Annu. Rev. Phytopathol. 1989, 27, 271–290. [Google Scholar] [CrossRef]
- Frisullo, S.; Camele, I.; Agosteo, G.E.; Boscia, D.; Martelli, G.P. Brief historical account of olive leaf scorch (“brusca”) in the Salento peninsula of Italy and state-of-the-art of the olive quick decline syndrome. J. Plant Pathol. 2014, 96, 441–449. [Google Scholar] [CrossRef]
- Scortichini, M. Predisposing Factors for “Olive Quick Decline Syndrome” in Salento (Apulia, Italy). Agronomy 2020, 10, 1445. [Google Scholar] [CrossRef]
- Moral, J.; Muñoz-Díez, C.; González, N.; Trapero, A.; Michailides, T.J. Characterization and pathogenicity of Botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology 2010, 100, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, A.; Raimondo, M.L.; Cibelli, F.; Phillips, A.J.; Lops, F. Pleurostomophora richardsiae, Neofusicoccum parvum and Phaeoacremonium aleophilum associated with a decline of olives in southern Italy. Phytopathol. Mediterr. 2013, 52, 517–527. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Peduto, F.; Vossen, P.M.; Krueger, W.H.; Gubler, W.D. Olive twig and branch dieback: Etiology, incidence, and distribution in California. Plant Dis. 2013, 97, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, A.; Lops, F.; Cibelli, F.; Raimondo, M.L. Phaeoacremonium species associated with olive wilt and decline in southern Italy. Eur. J. Plant Pathol. 2015, 141, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Moral, J.; Agustí-Brisach, C.; Pérez-Rodríguez, M.; Xaviér, C.; Raya, M.C.; Rhouma, A.; Trapero, A. Identification of fungal species associated with branch dieback of olive and resistance of table cultivars to Neofusicoccum mediterraneum and Botryosphaeria dothidea. Plant Dis. 2017, 101, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Ivic, D.; Tomic, Z.; Godena, S. First Report of Pleurostomophora richardsiae Causing Branch Dieback and Collar Rot of Olive in Istria, Croatia. Plant Dis. 2018, 102, 2648. [Google Scholar] [CrossRef]
- Lawrence, D.P.; Holland, L.A.; Nouri, M.T.; Travadon, R.; Abramians, A.; Michailides, T.J.; Trouillas, F.P. Molecular phylogeny of Cytospora species associated with canker diseases of fruit and nut crops in California, with the descriptions of ten new species and one new combination. IMA Fungus 2018, 9, 333–370. [Google Scholar] [CrossRef]
- Spies, C.F.J.; Mostert, L.; Carlucci, A.; Moyo, P.; van Jaarsveld, W.J.; du Plessis, I.L.; van Dyk, M.; Halleen, F. Dieback and decline pathogens of olive trees in South Africa. Persoonia 2020, 45, 196–220. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Lawrence, D.P.; Hand, F.P.; Trouillas, F.P. Olive Twig and Branch Dieback in California Caused by Cytospora oleicola and the Newly Described Species Cytospora olivarum sp. nov. Plant Dis. 2020, 104, 1908–1917. [Google Scholar] [CrossRef]
- Manca, D.; Bregant, C.; Maddau, L.; Pinna, C.; Montecchio, L.; Linaldeddu, B.T. First report of canker and dieback caused by Neofusicoccum parvum and Diplodia olivarum on oleaster in Italy. Ital. J. Mycol. 2020, 49, 85–91. [Google Scholar] [CrossRef]
- Güney, I.G.; Özer, G.; Türkölmez, S.; Dervis, S. Canker and leaf scorch on olive (Olea europaea L.) caused by Neoscytalidium dimidiatum in Turkey. Crop Prot. 2022, 157, 105985. [Google Scholar] [CrossRef]
- Gerin, D.; Nigro, F.; Faretra, F.; Pollastro, S. Identification of Arthrinium marii as Causal Agent of Olive Tree Dieback in Apulia (Southern Italy). Plant Dis. 2020, 104, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, F.P.; Nouri, M.T.; Lawrence, D.P.; Moral, J.; Travadon, R.; Aegerter, B.J.; Lightle, D. Identification and characterization of Neofabraea kienholzii and Phlyctema vagabunda causing leaf and shoot Lesions of olive in California. Plant Dis. 2019, 103, 3018–3030. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, A.; Matere, A.; Lumia, V.; Pasciuta, V.; Fusco, V.; Sansone, D.; Marangi, P.; Cristella, N.; Faggioli, F.; Scortichini, M.; et al. Neofusicoccum mediterraneum is involved in a twig and branch dieback of olive trees observed in Salento (Apulia, Italy). Pathogens 2022, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Billones-Baaijens, R.; Savocchia, S. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australas. Plant Pathol. 2019, 48, 3–18. [Google Scholar] [CrossRef]
- Crous, P.; Slippers, B.; Wingfield, M.; Rheeder, J.; Marasas, W.; Philips, A.; Alves, A.; Burgess, T.; Barber, P.; Groenewald, J. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 2006, 55, 235–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Inc.: London, UK, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Alves, A.; Crous, P.W.; Correia, A.; Phillips, A.J.L. Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Divers. 2008, 28, 1–13. [Google Scholar]
- Glass, N.L.; Donaldson, G. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous. Mol. Phylogenet. Evol. 1997, 7, 103–116. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Phillips, A.J.L.; Alves, A. Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation. Fungal Biol. 2017, 121, 394–404. [Google Scholar] [CrossRef]
- Yang, T.; Johannes, Z.; Groenewald, J.Z.; Cheewangkoon, R.; Jami, F.; Abdollahzadeh, J.; Lombard, L.; Crous, P.W. Families, genera, and species of Botryosphaeriales. Fungal Biol. 2017, 121, 322–346. [Google Scholar] [CrossRef]
- Zhang, W.; Groenewald, J.Z.; Lombard, L.; Schumacher, R.K.; Phillips, A.J.L.; Crous, P.W. Evaluating species in Botryosphaeriales. Persoonia 2021, 46, 63–115. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press Inc.: Oxford, UK, 2000; p. 333. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Guarnaccia, V.; Polizzi, G.; Papadantonakis, N.; Gullino, M.L. Neofusicoccum species causing branch cankers on avocado in Crete (Greece). J. Plant Pathol. 2020, 102, 1251–1255. [Google Scholar] [CrossRef]
- Van Niekerk, J.M.; Crous, P.W.; Groenewald, J.Z.; Fourie, P.H.; Halleen, F. DNA phylogeny and morphological characterization of Botryosphaeria species occurring on grapevines. Mycologia 2004, 96, 781–798. [Google Scholar] [CrossRef]
- Mojeremane, K.; Lebenya, P.; Duplessis, I.L.; Van Der Rjist, M.; Mostert, L.; Josep Armengol, J.; Haleen, F. Cross pathogenicity of Neofusicoccum australe and Neofusicoccum stellenboschiana on grapevine and selected fruit and ornamental trees. Phytopathol. Mediterr. 2020, 59, 581–593. [Google Scholar] [CrossRef]
- Mahamedi, A.E.; Phillips, A.J.L.; Lopes, A.; Djellid, Y.; Arkam, M.; Eichmeier, A.; Zitouni, A.; Alves, A.; Berraf-Tebbal, A. Diversity, distribution and host association of Botryosphaeriaceae species causing oak decline across different ecosystem in Algeria. Eur. J. Plant Pathol. 2020, 158, 745–765. [Google Scholar] [CrossRef]
- Phillips, A.J.L.; Alves, A.; Abdollahzadeh, J.; Slippers, B.; Wingfield, M.J.; Groenewald, J.Z.; Crous, P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013, 76, 51–167. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, A.J.; Phillips, A.J.L.; Li, X.H.; Hyde, K.D. Botryosphaeriaceae: Current status of genera and species. Mycosphere 2016, 7, 1001–1073. [Google Scholar] [CrossRef]
- Slippers, B.; Crous, P.W.; Jami, F.; Groenewald, J.Z.; Wingfield, M.J. Diversity in the Botryosphaeriales: Looking back, looking forward. Fungal Biol. 2017, 121, 307–321. [Google Scholar] [CrossRef]
- Deidda, A.; Buffa, F.; Linaldeddu, B.D.; Pinna, C.; Scanu, B.; Deiana, V.; Satta, A.; Franceschini, A.; Floris, I. Emerging pests and diseases threaten Eucalyptus camaldulensis plantations in Sardinia, Italy. iForest—Biogeosci. For. 2016, 9, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Giambra, S.; Piazza, G.; Alves, A.; Mondello, V.; Berbegal, M.; Armengol, J.; Burruano, S. Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov. Mycosphere 2016, 7, 978–989. [Google Scholar] [CrossRef]
- Olmo, D.; Armengol, J.; Léon, M.; Gramaje, D. Characterization and pathogenicity of Botryospaeraceae species isolated from almond trees on the island of mallorca (Spain). Plant Dis. 2016, 100, 2483–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linaldeddu, B.T.; Maddau, L.; Franceschini, A.; Alves, A.; Phillips, A.J.L. Botryosphaeriaceae species associated with lentisk dieback in Italy and description of Diplodia insularis sp. nov. Mycosphere 2016, 7, 962–977. [Google Scholar] [CrossRef]
- Bezerra, J.D.P.; Crous, P.W.; Aiello, D.; Gullino, M.L.; Polizzi, G.; Guarnaccia, V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. Plants 2021, 10, 492. [Google Scholar] [CrossRef]
- Fiorenza, A.; Aiello, D.; Costanzo, M.B.; Gusella, G.; Polizzi, G. A new disease for Europe of Ficus microcarpa caused by Botryosphaeriaceae species. Plants 2022, 11, 727. [Google Scholar] [CrossRef]
- Slippers, B.; Wingfield, M.J. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 2007, 21, 90–106. [Google Scholar] [CrossRef]
- Batista, E.; Lopes, A.; Alves, A. What Do We Know about Botryosphaeriaceae? An overview of a worldwide cured dataset. Forests 2021, 12, 313. [Google Scholar] [CrossRef]
- Scortichini, M. The epidemiology and control of “olive quick decline syndrome” in Salento (Apulia, Italy). Agronomy 2022, 12, 2475. [Google Scholar] [CrossRef]
- Manion, P.D. Tree Disease Concepts, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981; 399p. [Google Scholar]
- Sinclair, W.A.; Hudler, G.W. Tree declines: Four concepts of causality. J. Arboric. 1988, 14, 29–35. [Google Scholar]
Fungal Isolates under Study | Abbreviated Code * (Origin) | Multi-Locus Sequencing | Microscopic Observations | In Vitro Growth | In Vitro Growth at 30 °C vs. Daily Summer Temperatures | Pathogenicity Trials |
---|---|---|---|---|---|---|
Neofusicoccum mediterraneum | OL.427 (Apulia) | [22] | [22] | [22] | ✓ | [22] and ✓ |
Neofusicoccum sp. 1 | OL.431 (Apulia) | ✓ | ✓ | ✓ | ✓ | ✓ |
Neofusicoccum sp. 2 | OL.438 (Apulia) | ✓ | ✓ | |||
Neofusicoccum sp. 3 | OL.60 (Latium) | ✓ | ✓ | ✓ | ✓ | |
Neofusicoccum sp. 4 | OL.453 (Tuscany) | ✓ | ✓ | ✓ |
Pathogenicity Trials | Cultivar | Age of the Trees (Year) | Inoculation Time | Duration in Months (mo) | Average Diameter at the Inoculation Point |
---|---|---|---|---|---|
Stem trials | |||||
N. stellenboschiana OL.60 | Leccino | 2/3 | 20 June 2019 | 12 mo | 1.12 |
N. stellenboschiana OL.60 | Leccino | 2/3 | 2 October 2019 | 12 mo | 1.70 |
N. stellenboschiana OL.60 vs. N. stellenboschiana OL.431 | Frantoio | 3/4 | 15 October 2020 | 18 mo | 1.76 |
N. stellenboschiana OL.431 vs. N. mediterraneum OL.427 * | Frantoio | 3/4 | 17 June 2021 | 4 mo | 1.50 |
N. stellenboschiana OL.431 vs. N. mediterraneum OL.427 | Frantoio | 3/4 | 18 October 2021 | 4 mo | 1.56 |
Twig trials | |||||
N. stellenboschiana OL.60 vs. N. stellenboschiana OL.431 | Frantoio | 2/3 | 15 May 2020 | 8 mo | 0.52 |
N. stellenboschiana OL.60 vs. N. stellenboschiana OL.431 | Frantoio | 2/3 | 15 July 2020 | 8 mo | 0.51 |
N. stellenboschiana OL.60 vs. N. stellenboschiana OL.431 | Frantoio | 2/3 | 14 October 2020 | 8 mo | 0.54 |
N. stellenboschiana OL.431 vs. N. mediterraneum OL.427 * | Frantoio | 2/3 | 17 May 2021 | 10 mo | 0.41 |
Neofusicoccum stellenboschiana Isolate | Length * Mean (Range, SD) (µm) | Width * Mean (Range, SD) (µm) | Length/Width |
---|---|---|---|
CREA-DC TPR OL.431 (Apulia) | 22.6 (19.1–25.0, 1.3) | 6.1 (5.0–6.7, 0.4) | 3.7 |
CREA-DC TPR OL.438 (Apulia) | 23.3 (18.3–29.4, 2.5) | 6.9 (6.2–7.6, 0.3) | 3.4 |
CREA-DC TPR OL.60 (Latium) | 24.2 (19.3–29.0, 2.0) | 6.8 (5.4–8.2, 0.7) | 3.6 |
CREA-DC TPR OL.453 (Tuscany) | 20.9 (18.2–24.5, 1.1) | 6.6 (5.7–8.3, 0.5) | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manetti, G.; Brunetti, A.; Lumia, V.; Sciarroni, L.; Marangi, P.; Cristella, N.; Faggioli, F.; Reverberi, M.; Scortichini, M.; Pilotti, M. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. J. Fungi 2023, 9, 292. https://doi.org/10.3390/jof9030292
Manetti G, Brunetti A, Lumia V, Sciarroni L, Marangi P, Cristella N, Faggioli F, Reverberi M, Scortichini M, Pilotti M. Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. Journal of Fungi. 2023; 9(3):292. https://doi.org/10.3390/jof9030292
Chicago/Turabian StyleManetti, Giuliano, Angela Brunetti, Valentina Lumia, Lorenzo Sciarroni, Paolo Marangi, Nicola Cristella, Francesco Faggioli, Massimo Reverberi, Marco Scortichini, and Massimo Pilotti. 2023. "Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum" Journal of Fungi 9, no. 3: 292. https://doi.org/10.3390/jof9030292
APA StyleManetti, G., Brunetti, A., Lumia, V., Sciarroni, L., Marangi, P., Cristella, N., Faggioli, F., Reverberi, M., Scortichini, M., & Pilotti, M. (2023). Identification and Characterization of Neofusicoccum stellenboschiana in Branch and Twig Dieback-Affected Olive Trees in Italy and Comparative Pathogenicity with N. mediterraneum. Journal of Fungi, 9(3), 292. https://doi.org/10.3390/jof9030292