Population Genetic Analysis of Phytophthora colocasiae from Taro in Japan Using SSR Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates and DNA Extraction
2.2. Mating-Type Determination
2.3. SSR Markers Development and PCR Reactions
2.4. SSR Genotyping
2.5. Data and Population Structure Analysis
3. Results
3.1. SSR Markers Development and Polymorphism
3.2. Mating-Type Diversity
3.3. Population Genetic Differentiation
3.4. Clustering and Population Genetic Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kreike, C.M.; Van Eck, H.J.; Lebot, V. Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor. Appl. Genet. 2004, 109, 761–768. [Google Scholar] [CrossRef]
- Singh, D.; Jackson, G.; Hunter, D.; Fullerton, R.; Lebot, V.; Taylor, M.; Iosefa, T.; Okpul, T.; Tyson, J. Taro leaf blight-a threat to food security. Agriculture 2012, 2, 182–203. [Google Scholar] [CrossRef] [Green Version]
- Tchameni, S.N.; Mbiakeu, S.N.; Sameza, M.L.; Jazet, P.M.D.; Tchoumbougnang, F. Using Citrus aurantifolia essential oil for the potential biocontrol of Colocasia esculenta (taro) leaf blight caused by Phytophthora colocasiae. Environ. Sci. Pollut. Res. 2018, 25, 29929–29935. [Google Scholar] [CrossRef]
- Kurogi, S. The occurrences of taro leaf blight caused by Phytophthora colocasiae in Miyazaki prefecture and its control measures. Plant Prot. 2017, 71, 458–462. [Google Scholar]
- Brooks, F.E. Taro Leaf Blight. Plant Health Instr. 2005. Updated 2015. Available online: https://www.apsnet.org/edcenter/disandpath/oomycete/pdlessons/Pages/TaroLeafBlight.aspx (accessed on 1 December 2022). [CrossRef]
- Weste, G. Population dynamics and survival of Phytophthora. In Phytophthora: Its Biology, Taxonomy, Ecology and Pathology; Erwin, D.C., Barnticki-Garcia, S., Tsao, P.H., Eds.; American Phytopathological Society: St. Paul, MN, USA, 1983; pp. 237–257. [Google Scholar]
- Fan, G.; Zou, A.; Wang, X.; Huang, G.; Tian, J.; Ma, X.; Nie, S.; Cai, L.; Sun, X. Polymorphic Microsatellite Development, Genetic Diversity, Population Differentiation and Sexual State of Phytophthora capsici on Commercial Peppers in Three Provinces of Southwest China. Appl. Environ. Microb. 2022, 88, e01611-22. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yin, J.; Sun, J.; Ma, Y.; Wang, Q.; Quan, J.; Shan, W. Population genetic analysis of Phytophthora infestans in northwestern China. Plant Pathol. 2016, 65, 17–25. [Google Scholar] [CrossRef]
- Feng, W.; Hieno, A.; Otsubo, K.; Suga, H.; Kageyama, K. Emergence of self-fertile Phytophthora colocasiae is a possible reason for the widespread expansion and persistence of taro leaf blight in Japan. Mycol. Prog. 2022, 21, 49–58. [Google Scholar] [CrossRef]
- Wellings, C.R.; McIntosh, R.A. Puccinia striiformis f. sp. tritici in Australasia: Pathogenic changes during the first 10 years. Plant Pathol. 1990, 39, 316–325. [Google Scholar] [CrossRef]
- Wan, A.; Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis. 2014, 98, 1534–1542. [Google Scholar] [CrossRef] [Green Version]
- Abu-El Samen, F.M.; Secor, G.A.; Gudmestad, N.C. Genetic variation among asexual progeny of Phytophthora infestans detected with RAPD and AFLP markers. Plant Pathol. 2003, 52, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Carleson, N.C.; Fieland, V.J.; Scagel, C.F.; Weiland, J.E.; Grünwald, N.J. Population Structure of Phytophthora plurivora on Rhododendron in Oregon Nurseries. Plant Dis. 2019, 103, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, K. Conversion of existing AFLP markers to SCAR markers linked to Globodera rostochiensis and Phytophthora infestans resistance could be performed without using acrylamide gel electrophoresis. Potato Res. 2021, 64, 649–665. [Google Scholar] [CrossRef]
- Shrestha, S.K.; Miyasaka, S.C.; Shintaku, M.; Kelly, H.; Lamour, K. Phytophthora colocasiae from Vietnam, China, Hawaii and Nepal: Intra-and inter-genomic variations in ploidy and a long-lived, diploid Hawaiian lineage. Mycol. Prog. 2017, 16, 893–904. [Google Scholar] [CrossRef]
- Bukhari, T.; Rana, R.M.; Hassan, M.U.; Naz, F.; Sajjad, M. Genetic diversity and marker trait association for Phytophthora resistance in chilli. Mol. Biol. Rep. 2022, 49, 5717–5728. [Google Scholar] [CrossRef]
- Nath, V.S.; Senthil, M.; Hegde, V.M.; Jeeva, M.L.; Misra, R.S.; Veena, S.S.; Raj, M. Genetic diversity of Phytophthora colocasiae isolates in India based on AFLP analysis. 3 Biotech 2013, 3, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Galindo, C.L.; McIver, L.J.; McCormick, J.F.; Skinner, M.A.; Xie, Y.; Gelhausen, R.A.; Ng, K.; Kumar, N.M.; Garner, H.R. Global microsatellite content distinguishes humans, primates, animals, and plants. Mol. Biol. Evol. 2009, 26, 2809–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Gupta, V.K.; Misra, A.K.; Modi, D.R.; Pandey, B.K. Potential of molecular markers in plant biotechnology. Plant Omics 2009, 2, 141–162. [Google Scholar]
- Belaj, A.; Satovic, Z.; Cipriani, G.; Baldoni, L.; Testolin, R.; Rallo, L.; Trujillo, I. Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor. Appl. Genet. 2003, 107, 736–744. [Google Scholar] [CrossRef]
- Singh, L.; Sharma, D.; Parmar, N.; Singh, K.H.; Jain, R.; Rai, P.K.; Wani, S.H.; Thakur, A.K. Genetic Diversity Studies in Indian Mustard (Brassica juncea L. Czern & Coss) Using Molecular Markers. In Brassica Improvement; Springer: Berlin/Heidelberg, Germany, 2020; pp. 215–244. [Google Scholar]
- Ma, S.; Zhao, J.; Su, W.; Zheng, J.; Zhang, S.; Zhao, W.; Su, S. Transcriptome-derived SSR markers for DNA fingerprinting and inter-populations genetic diversity assessment of Atractylodes chinensis. Nucleus 2022, 65, 321–329. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, J.; Han, Z.; Chen, S.; Liu, Y.; He, W.; He, P. Development of SSR markers and genetic diversity analysis based on RAD-seq technology among Chinese populations of Daphnia magna. Mol. Biol. Rep. 2022, 49, 4389–4397. [Google Scholar] [CrossRef]
- Singh, K.H.; Singh, L.; Parmar, N.; Kumar, S.; Nanjundan, J.; Singh, G.; Thakur, A.K. Molecular characterization and genetic diversity analysis in Indian mustard (Brassica juncea L. Czern & Coss.) varieties using SSR markers. PLoS ONE 2022, 17, e0272914. [Google Scholar]
- Sagwal, V.; Sihag, P.; Singh, Y.; Mehla, S.; Kapoor, P.; Balyan, P.; Kumar, A.; Mir, R.R.; Dhankher, O.P.; Kumar, U. Development and characterization of nitrogen and phosphorus use efficiency responsive genic and miRNA derived SSR markers in wheat. Heredity 2022, 128, 391–401. [Google Scholar] [CrossRef]
- Cregan, P.B.; Akkaya, M.S.; Bhagwat, A.A.; Lavi, U.; Rongwen, J. Length polymorphisms of simple sequence repeat (SSR) DNA as molecular markers in plants. In Plant Genome Analysis; CRC Press: Boca Raton, FL, USA, 2020; pp. 47–56. [Google Scholar]
- Kiiker, R.; Skrabule, I.; Ronis, A.; Cooke, D.E.L.; Hansen, J.; Williams, I.H.; Mänd, M.; Runno-Paurson, E. Diversity of populations of Phytophthora infestans in relation to patterns of potato crop management in Latvia and Lithuania. Plant Pathol. 2019, 68, 1207–1214. [Google Scholar] [CrossRef]
- Morita, Y.; Tojo, M. Modifications of PARP medium using fluazinam, miconazole, and nystatin for detection of Pythium spp. in soil. Plant Dis. 2007, 91, 1591–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baten, M.A.; Asano, T.; Motohashi, K.; Ishiguro, Y.; Rahman, M.Z.; Inaba, S.; Suga, H.; Kageyama, K. Phylogenetic relationships among Phytopythium species, and re-evaluation of Phytopythium fagopyri comb. nov., recovered from dampedoff buckwheat seedlings in Japan. Mycol. Prog. 2014, 13, 1145–1156. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hieno, A.; Wibowo, A.; Subandiyah, S.; Shimizu, M.; Suga, H.; Kageyama, K. Genetic diversity of Phytophthora palmivora isolates from Indonesia and Japan using rep-PCR and microsatellite markers. J. Gen. Plant Pathol. 2019, 85, 367–381. [Google Scholar]
- Huang, K.; Dunn, D.W.; Ritland, K.; Li, B. POLYGENE: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods Ecol. Evol. 2020, 11, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Wang, T.; Dunn, D.W.; Zhang, P.; Sun, H.; Li, B. A generalized framework for AMOVA with multiple hierarchies and ploidies. Integr. Zool. 2021, 16, 33–52. [Google Scholar] [CrossRef]
- Clark, L.V.; Jasieniuk, M. polysat: An R package for poly-ploid microsatellite analysis. Mol. Ecol. Resour. 2011, 11, 562–566. [Google Scholar] [CrossRef]
- Clark, L.V.; Schreier, A.D. Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables. Mol. Ecol. Resour. 2017, 17, 1090–1103. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Nakashima, C.; Kitabata, S.; Naito, K.; Hieno, A.; Alvarez, L.V.; Motohashi, K. Identification of the Colletotrichum species associated with mango diseases and a universal LAMP detection method for C. gloeosporioides species complex. Plant Fungal Res. 2021, 4, 2–13. [Google Scholar] [CrossRef]
- Cockerham, C.C. Analyses of gene frequencies. Genetics 1973, 74, 679–700. [Google Scholar] [CrossRef] [PubMed]
- Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Banks, S.C.; Peakall, R.O.D. Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol. Ecol. 2012, 21, 2092–2105. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2011. [Google Scholar]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [Green Version]
- Stroud, J.A.; Shaw, D.S.; Hale, M.D.; Steele, K.A. SSR assessment of Phytophthora infestans populations on tomato and potato in British gardens demonstrates high diversity but no evidence for host specialization. Plant Pathol. 2016, 65, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Afandi, A.; Hieno, A.; Wibowo, A.; Subandiyah, S.; Suga, H.; Tsuchida, K.; Kageyama, K. Genetic diversity of Phytophthora nicotianae reveals pathogen transmission mode in Japan. J. Gen. Plant Pathol. 2019, 85, 189–200. [Google Scholar] [CrossRef]
- Afandi, A.; Murayama, E.; Yin, L.; Hieno, A.; Suga, H.; Kageyama, K. Population structures of the water-borne plant pathogen Phytopythium helicoides reveal its possible origins and transmission modes in Japan. PLoS ONE 2018, 13, e0209667. [Google Scholar] [CrossRef] [Green Version]
- Biasi, A.; Martin, F.N.; Cacciola, S.O.; di San Lio, G.M.; Grünwald, N.J.; Schena, L. Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers. Phytopathology 2016, 106, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Zhang, Q.; Ding, W.; Shan, W. Phytophthora parasitica: A model oomycete plant pathogen. Mycology 2014, 5, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef] [PubMed]
No. | Markers | Size Range (bp) | Number of Alleles | Effective Number of Alleles | Ho | He | PIC | Sequence (5′-3′) | Dye | Annealing Temperature (°C) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Forward Primer | Reverse Primer | ||||||||||
1 | TAT_66 | 160–172 | 4 | 2.04 | 0.57 | 0.51 | 0.39 | TTGCTAAAGCGCAGATTACGC | GTGTCTTACAGTGCTGCCATCCTACTC | HEX | 60 |
2 | CCT_4368 | 198–222 | 4 | 3.00 | 0.81 | 0.67 | 0.59 | TCAGCGTGGGTATGTAGTCC | GTGTCTTATGATGGTGACGCAGAGGAA | HEX | 63 |
3 | CTT_270 | 129–153 | 3 | 2.08 | 0.60 | 0.52 | 0.40 | GCCACGAATAGACGACAGTC | GTGTCTTGCAACTTTACCTGGGGTTGC | FAM | 63 |
4 | CTT_1936 | 128–134 | 2 | 1.94 | 0.50 | 0.49 | 0.37 | TCTACTGTAACGTCCGTCGC | GTGTCTTATCTCCAGTGCCGAAGAGTC | FAM | 60 |
5 | GCT_5986 | 170–182 | 4 | 4.00 | 1.00 | 0.75 | 0.70 | CGCTTAGACTTGCGACTACG | GTGTCTTTCCAGAAGACGGGAAACGAC | HEX | 60 |
6 | TCC_502 | 162–168 | 2 | 2.00 | 0.56 | 0.50 | 0.38 | TCAGCGTGGGTATGTAGTCC | GTGTCTTGCGTATTAAAGCGGACAGGG | FAM | 63 |
7 | CTA_421 | 212–227 | 5 | 2.12 | 0.56 | 0.53 | 0.42 | CGCTTTGTTGAGTTGGACGA | GTGTCTTTCCAATCCGATCACCACCAA | FAM | 63 |
8 | TAG_1296 | 168–180 | 4 | 2.16 | 0.55 | 0.54 | 0.44 | ACAGCCATCCAACCATGTAA | GTGTCTTACACTCACACCAAAGTAACGC | HEX | 63 |
9 | GA_106 | 90–100 | 5 | 1.01 | 0.012 | 0.01 | 0.01 | GCTATTGTCTTACACAGACACG | GTGTCTTGAAGCCCATCCACCTAATGG | FAM | 58 |
10 | TCC_1066 | 78–103 | 4 | 2.02 | 0.57 | 0.51 | 0.38 | GCCACGAATAGACGACAGTC | GTGTCTTGGGAAGCGACATGGAAGAAG | FAM | 60 |
11 | AGAC_2040 | 213–217 | 2 | 1.01 | 0.004 | 0.01 | 0.01 | GATGGGAGAAAAAGGTGTCG | GTGTCTTGAGATGTGCTCATCCCATTC | HEX | 58 |
Mean | 3.55 | 2.13 | 0.52 | 0.46 | 0.37 |
Partitioning | d.f. | SS | MS | Var | % Var | F-Statistics |
---|---|---|---|---|---|---|
IAM | ||||||
Within individuals | 1058 | 3101.19 | 2.931 | 2.931 | 116.191 | FIT = −0.162 |
Among individuals within populations | 341 | 363.364 | 1.066 | 0 | 0 | FIS = −0.19 |
Among populations | 16 | 93.471 | 5.842 | −0.408 | −16.191 | FST = 0.024 |
Total | 1415 | 3558.025 | 2.515 | 2.523 | 100 | |
SMM | ||||||
Within Individuals | 1058 | 348,136.087 | 329.051 | 329.1 | 117.422 | FIT = −0.174 |
Among individuals within populations | 341 | 39,142.098 | 114.786 | 0 | 0 | FIS = −0.196 |
Among populations | 16 | 8323.266 | 520.204 | −48.82 | −17.422 | FST = 0.018 |
Total | 1415 | 395,601.451 | 279.577 | 280.2 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hieno, A.; Otsubo, K.; Feng, W.; Kageyama, K. Population Genetic Analysis of Phytophthora colocasiae from Taro in Japan Using SSR Markers. J. Fungi 2023, 9, 391. https://doi.org/10.3390/jof9040391
Zhang J, Hieno A, Otsubo K, Feng W, Kageyama K. Population Genetic Analysis of Phytophthora colocasiae from Taro in Japan Using SSR Markers. Journal of Fungi. 2023; 9(4):391. https://doi.org/10.3390/jof9040391
Chicago/Turabian StyleZhang, Jing, Ayaka Hieno, Kayoko Otsubo, Wenzhuo Feng, and Koji Kageyama. 2023. "Population Genetic Analysis of Phytophthora colocasiae from Taro in Japan Using SSR Markers" Journal of Fungi 9, no. 4: 391. https://doi.org/10.3390/jof9040391
APA StyleZhang, J., Hieno, A., Otsubo, K., Feng, W., & Kageyama, K. (2023). Population Genetic Analysis of Phytophthora colocasiae from Taro in Japan Using SSR Markers. Journal of Fungi, 9(4), 391. https://doi.org/10.3390/jof9040391