New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Fungal Material
2.3. Fermentation, Extraction and Isolation
2.4. Quantum Chemical Calculation (ECD)
2.5. Specific Rotation Calculation (SRC)
2.6. Anti-Fungal Assay
2.7. Anti-Inflammatory Assay
2.8. Cytotoxicity and MDR Reversal Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Structure Identification of Compounds 1–7
3.2. Results of Bioactivity Assays
3.2.1. Anti-Fungal Evaluation of Compounds
3.2.2. Anti-Inflammatory Activities of Compounds
3.2.3. Anti-cancer and MDR Reversal Effects of Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, K.; Ai, H.L.; Liu, J.K. Identifcation and bioactivities of secondary metabolites derived from endophytic fungi isolated from ethnomedicinal plants of tujia in hubei province: A review. Nat. Prod. Bioprospect. 2021, 11, 185–205. [Google Scholar] [PubMed]
- Amirzakariya, B.Z.; Shakeri, A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). Phytochemistry 2022, 197, 113130. [Google Scholar]
- Zhao, P.; Li, Z.Y.; Qin, S.Y.; Xin, B.S.; Liu, Y.Y.; Lin, B.; Yao, G.D.; Huang, X.X.; Song, S.J. Three unusual sesquiterpenes with distinctive ring skeletons from Daphne penicillata uncovered by molecular networking strategies. J. Org. Chem. 2021, 86, 15298–15306. [Google Scholar]
- Ruan, Q.F.; Jiang, S.Q.; Zheng, X.Y.; Tang, Y.Q.; Yang, B.; Yi, T.; Jin, J.; Cui, H.; Zhao, Z.X. Pseudoguaianelactones A–C: Three unusual sesquiterpenoids from Lindera glauca with anti-inflammatory activities by inhibiting the LPS-induced expression of iNOS and COX-2. Chem. Commun. 2020, 56, 1517. [Google Scholar]
- Su, L.H.; Geng, C.A.; Li, T.Z.; Ma, Y.B.; Huang, X.Y.; Zhang, X.M.; Chen, J.J. Artatrovirenols A and B: Two cagelike sesquiterpenoids from Artemisia atrovirens. J. Org. Chem. 2020, 85, 13466–13471. [Google Scholar] [PubMed]
- Wu, S.H.; He, J.; Li, X.N.; Huang, R.; Song, F.; Chen, Y.W.; Miao, C.P. Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 2014, 105, 197–204. [Google Scholar] [PubMed]
- Li, H.M.; Fan, M.; Xue, Y.; Peng, L.Y.; Wu, X.D.; Liu, D.; Li, R.T.; Zhao, Q.S. Guaiane-type sesquiterpenoids from Alismatis Rhizoma and their anti-inflammatory activity. Chem. Pharm. Bull. 2017, 65, 403–407. [Google Scholar]
- Su, L.H.; Ma, Y.B.; Geng, C.A.; Li, T.Z.; Huang, X.Y.; Hu, J.; Zhang, X.; Tang, S.; Shen, C.; Gao, Z.; et al. Artematrovirenins A-P, guaiane-type sesquiterpenoids with cytotoxicities against two hepatoma cell lines from Artemisia atrovirens. Bioorgan. Chem. 2021, 114, 105072. [Google Scholar]
- Kim, S.E.; Kim, Y.H.; Kim, Y.C.; Lee, J.J. Torilin, a sesquiterpene from Torilis japonica, reverses multidrug-resistance in cancer cells. Planta. Med. 1998, 64, 333. [Google Scholar]
- Wang, J.; Liu, Q.B.; Hou, Z.L.; Shi, S.C.; Ren, H.; Yao, G.D.; Lin, B.; Huang, X.X.; Song, S.J. Discovery of guaiane-type sesquiterpenoids from the roots of Daphne genkwa with neuroprotective effects. Bioorgan. Chem. 2020, 95, 103545. [Google Scholar]
- Zhou, Q.M.; Chen, M.H.; Li, X.H.; Peng, C.; Lin, D.S.; Li, X.N.; He, Y.; Xiong, L. Absolute configurations and bioactivities of guaiane-type sesquiterpenoids isolated from pogostemon cablin. J. Nat. Prod. 2018, 81, 1919–1927. [Google Scholar] [PubMed]
- Xie, Y.G.; Zhong, X.L.; Xiao, Y.Z.; Zhu, S.L.; Muhammad, I.; Yan, S.; Jin, H.Z.; Zhang, W.D. Vieloplains A-G, seven new guaiane-type sesquiterpenoid dimers from xylopia vielana. Bioorgan. Chem. 2019, 88, 102891. [Google Scholar]
- Pan, J.; Su, J.C.; Liu, Y.H.; Deng, B.; Hu, Z.F.; Wu, J.L.; Xia, R.F.; Chen, C.; He, Q.; Chen, J.-C.; et al. Stelleranoids A-M, guaiane-type sesquiterpenoids based on [5,7] bicyclic system from Stellera chamaejasme and their cytotoxic activity. Bioorgan. Chem. 2021, 115, 105251. [Google Scholar]
- Dong, W.; Li, T.Z.; Huang, X.Y.; He, X.F.; Geng, C.A.; Zhang, X.M.; Chen, J.J. Artemzhongdianolides A1-A21, antihepatic fibrosis guaiane-type sesquiterpenoid dimers from Artemisia zhongdianensis. Bioorgan. Chem. 2022, 128, 106056. [Google Scholar]
- Li, Y.H.; Liu, J.W.; Wu, Y.C.; Li, Y.M.; Guo, F.J. Guaiane-type sesquiterpenes from Curcuma wenyujin. Phytochemistry 2022, 198, 113164. [Google Scholar] [PubMed]
- Ma, X.Y.; Nontachaiyapoom, S.; Hyde, K.D.; Jeewon, R.; Doilom, M.K.; Chomnunti, P.; Kang, J.C. Biscogniauxia dendrobii sp. nov. and B. petrensis from Dendrobium orchids and the first report of cytotoxicity (towards A549 and K562) of B. petrensis (MFLUCC 14-0151) in vitro. S. Afr. J. Bot. 2020, 134, 382–393. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar]
- Lu, T. Molclus Program, Version 1.9.9.5. Available online: http://www.keinsci.com/research/molclus.html. (accessed on 3 September 2022).
- Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 2019, 15, 2847–2862. [Google Scholar] [PubMed]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar]
- Cordisco, E.; Petenatti, E.; Svetaz, L.; Sortino, M. Evaluation of the antifungal photodynamic activity of Thymophylla pentachaeta extracts against Candida albicans and its virulence factors. Phytomedicine 2021, 90, 153608. [Google Scholar] [PubMed]
- Iraji, A.; Yazdanpanah, S.; Alizadeh, F.; Mirzamohammadi, S.; Ghasemi, Y.; Pakshir, K.; Yang, Y.; Zomorodian, K. Screening the antifungal activities of monoterpenes and their isomers against Candida species. J. Appl. Microbiol. 2020, 129, 1541–1551. [Google Scholar] [PubMed]
- Niu, S.; Xie, C.L.; Xia, J.M.; Luo, Z.H.; Shao, Z.Z.; Yang, X.W. New anti-infammatory guaianes from the Atlantic hydrothermderived fungus Graphostroma sp. MCCC 3A00421. Sci. Rep. 2018, 8, 530. [Google Scholar] [PubMed] [Green Version]
- Yan, L.H.; Li, P.H.; Li, X.M.; Yang, S.Q.; Liu, K.C.; Wang, B.G.; Li, X. Chevalinulins A and B, proangiogenic alkaloids with a spiro[bicyclo[2.2.2]octane-diketopiperazine] skeleton from deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122. Org. Lett. 2022, 24, 2684–2688. [Google Scholar] [PubMed]
- Ren, Q.; Zhao, W.Y.; Shi, S.C.; Han, F.Y.; Zhang, Y.Y.; Liu, Q.B.; Yao, G.D.; Lin, B.; Huang, X.X.; Song, S.J. Guaiane-type sesquiterpenoids from the roots of Daphne genkwa and evaluation of their neuroprotective effects. J. Nat. Prod. 2019, 82, 1510–1517. [Google Scholar] [PubMed]
- Huang, R.; Xie, X.S.; Fang, X.W.; Ma, K.X.; Wu, S.H. Five new guaiane sesquiterpenes from the endophytic fungus Xylaria sp. YM 311647 of Azadirachta indica. Chem. Biodivers. 2015, 12, 1281–1286. [Google Scholar]
- Liu, T.; Chen, X.Y.; Hu, Y.Z.; Li, M.H.; Wu, Y.T.; Dai, M.H.; Huang, Z.L.; Sun, P.H.; Zheng, J.X.; Ren, Z.; et al. Sesquiterpenoids and triterpenoids with anti-inflammatory effects from Artemisia vulgaris L. Phytochemistry 2022, 204, 113428. [Google Scholar] [PubMed]
- Su, L.H.; Zhang, X.T.; Ma, Y.B.; Geng, C.G.; Huang, X.Y.; Hu, J.; Li, T.Z.; Tang, S.; Shen, C.; Gao, Z.; et al. New guaiane-type sesquiterpenoid dimers from Artemisia atrovirens and their antihepatoma activity. Acta. Pharm. Sin. B. 2021, 11, 1648–1666. [Google Scholar]
- Zhang, Y.L.; Xu, Q.Q.; Zhou, X.W.; Wu, L.; Wang, X.B.; Yang, M.H.; Luo, J.; Luo, J.G.; Kong, L.Y. Rare dimeric guaianes from Xylopia vielana and their multidrug resistance reversal activity. Phytochemistry 2019, 158, 26–34. [Google Scholar]
No. | 1 (In DMSO-d6) | 2 (In CD3OD) | 3 (In CD3OD) | |||
---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | |
1 | 147.0, CH | 5.93 d (5.7) | 62.75, CH | 2.03 dd (9.8, 7.5) | 52.72, CH | 2.06 m |
2 | 130.7, CH | 5.60 d (5.8) | 75.33, CH | 4.23 q (7.0) | 37.04, CH2 | 2.09 m 1.53 m |
3 | 85.7, C | 43.10, CH2 | 1.66 m | 74.26, CH | 4.07 m | |
4 | 76.5, C | 37.15, CH | 2.18 m | 44.75, CH | 1.94 m | |
5 | 32.3, CH2 | 1.61 m 1.43 m | 46.50, CH | 2.27 m | 45.88, CH | 2.02 m |
6 | 22.5, CH2 | 1.97 m 1.54 m | 28.50, CH2 | 1.31 m 1.05 m | 27.58, CH2 | 1.57 m 1.19 m |
7 | 36.6, CH | 1.87 m | 41.14, CH | 1.66 m | 46.75, CH | 1.69 m |
8 | 26.9, CH2 | 1.83 m 1.5 m | 30.01, CH2 | 1.63 m 1.38 m | 25.44, CH2 | 1.91 m 1.34 m |
9 | 56.2, CH | 2.44 dd (12.2, 8.0) | 41.85, CH2 | 1.82 m | 39.24, CH2 | 1.92 m 1.52 m |
10 | 80.1, C | 75.72, C | 75.37, C | |||
11 | 23.3, CH3 | 1.16 s | 43.47, CH | 1.54 m | 76.59, C | |
12 | 25.7, CH3 | 1.15 s | 66.29, CH2 | 3.46 dd (10.8, 6.7) 3.33 dd (10.8, 7.1) | 68.61, CH2 | 3.44 d (7.1) |
13 | 72.1, C | 12.88, CH3 | 0.82 d (7.0) | 20.81, CH3 | 1.07 s | |
14 | 71.1, CH2 | 3.87 d (8.9) 3.27 d (8.9) | 28.25, CH3 | 1.29 s | 28.58, CH3 | 1.18 s |
15 | 25.0, CH3 | 1.08 s | 16.79, CH3 | 0.88 d (7.2) | 10.15, CH3 | 0.92 d (7.3) |
10-OH | -OH | 4.67 s |
No. | 4 (In CD3OD) | 5 (In CD3OD) | 6 (In CDCl3) | 7 (In CD3OD) | ||||
---|---|---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | δC | δH | |
1 | 63.06, CH | 2.01 m | 50.34, CH | 2.16 m | 53.38, CH | 2.00 m | 49.84, CH | 2.23 m |
2 | 75.33, CH | 4.19 m | 27.52, CH2 | 1.81 m | 73.90, CH | 4.15 m | 36.99, CH2 | 2.09 m 1.58 m |
3 | 43.19, CH2 | 1.64 m 1.70 m | 33.78, CH2 | 1.60 m 1.39 m | 37.14, CH2 | 2.23 m 1.48 m | 78.75, CH | 3.44 m |
4 | 37.28, CH | 2.19 m | 40.09, CH | 2.06 m | 43.77, CH | 1.97 m | 49.52, CH | 1.24 s |
5 | 47.14, CH | 2.25 m | 46.13, CH | 2.12 m | 45.87, CH | 1.95 m | 47.20, CH | 1.60 m |
6 | 27.45, CH2 | 0.99 m 1.55 m | 29.82, CH2 | 1.63 m 1.09 m | 24.64, CH2 | 1.77 m 1.19 m | 38.52, CH2 | 1.75 m 1.44 m |
7 | 46.40, CH | 1.72 m | 44.58, CH | 1.59 m | 44.92, CH | 1.75 m | 44.54, CH | 1.97 m |
8 | 25.53, CH2 | 1.32 m 1.91 m | 34.90, CH2 | 2.20 m 1.30 m | 23.69, CH2 | 1.77 m 1.17 m | 33.34, CH2 | 1.73 m 1.51 m |
9 | 40.49, CH2 | 1.61 m 1.85 m | 81.10, CH | 3.37 m | 74.62, C | 46.51, CH2 | 1.86 m 1.67 m | |
10 | 75.60, C | 78.17, C | 33.86, CH2 | 1.95 m 1.52 m | 75.95, C | |||
11 | 76.47, C | 75.90, C | 75.82, C | 157.27, C | ||||
12 | 68.55, CH2 | 3.43 d (3.7) | 68.77, CH2 | 3.44 m | 68.54, CH2 | 3.38 d (10.95) 3.56 d (10.95) | 65.09, CH2 | 4.01 s |
13 | 21.08, CH3 | 1.06 s | 20.60, CH3 | 1.06 s | 18.43, CH3 | 1.04 s | 107.51, CH2 | 4.95 m 4.82 s |
14 | 29.08, CH3 | 1.29 s | 18.43, CH3 | 1.14 s | 30.92, CH3 | 1.19 s | 23.70, CH3 | 1.25 s |
15 | 16.66, CH3 | 0.90 d (7.0) | 16.04, CH3 | 0.83 d (7.1) | 10.01, CH3 | 1.01 d (6.95) | 16.34, CH3 | 0.96 d (6.4) |
Compounds | MIC (μM) |
---|---|
1 | 1.60 |
2 | 6.25 |
3 | 23.53 |
4 | 12.50 |
5 | 11.76 |
6 | 47.06 |
7 | 6.30 |
Amphotericin B a | 0.43 |
Fluconazole b | 2.61 |
Compounds | IC50 (μM) | CC50 (μM) |
---|---|---|
1 | 4.60 ± 0.42 | >80 |
2 | 20.00 ± 1.54 | >100 |
3 | 60.20 ± 0.81 | >80 |
4 | 62.48 ± 1.23 | >100 |
5 | 50.76 ± 0.68 | >100 |
6 | 75.50 ± 0.73 | >100 |
7 | 18.38 ± 1.12 | >100 |
Indomethacin a | 22.94 ± 1.42 | >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Zheng, W.; Qian, S.-Y.; Yang, M.-F.; Lu, Y.-Z.; He, Z.-J.; Kang, J.-C. New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis. J. Fungi 2023, 9, 393. https://doi.org/10.3390/jof9040393
Han L, Zheng W, Qian S-Y, Yang M-F, Lu Y-Z, He Z-J, Kang J-C. New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis. Journal of Fungi. 2023; 9(4):393. https://doi.org/10.3390/jof9040393
Chicago/Turabian StyleHan, Long, Wen Zheng, Sheng-Yan Qian, Ming-Fei Yang, Yong-Zhong Lu, Zhang-Jiang He, and Ji-Chuan Kang. 2023. "New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis" Journal of Fungi 9, no. 4: 393. https://doi.org/10.3390/jof9040393
APA StyleHan, L., Zheng, W., Qian, S. -Y., Yang, M. -F., Lu, Y. -Z., He, Z. -J., & Kang, J. -C. (2023). New Guaiane-Type Sesquiterpenoids Biscogniauxiaols A–G with Anti-Fungal and Anti-Inflammatory Activities from the Endophytic Fungus Biscogniauxia Petrensis. Journal of Fungi, 9(4), 393. https://doi.org/10.3390/jof9040393