Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Rhizospheric Soil Analysis
2.3. Mycorrhizal Colonization of Pecan Trees
2.4. Sporocarp Collection—Molecular Genetic Identification
2.5. Phylogenetic Analysis of the ITS Region
2.6. Statistical Analysis
3. Results
3.1. Percentage of Ectomycorrhizal Colonization
3.2. Ectomycorrhization and Agronomic Management-Tree Age
3.3. Ectomycorrhization and Soil Properties
3.3.1. Phosphorus (P)
3.3.2. Influence of Organic Matter (OM) and Phosphorus (P) on ECM
3.3.3. Texture
3.3.4. pH
3.4. Ectomycorrhizal Morphological Structure
3.5. Sporocarps
3.6. Molecular-Genetic Identification
4. Discussion
4.1. Percentage of Ectomycorrhizal Colonization
4.2. Ectomycorrhization and Agronomic Management-Tree Age
4.3. Ectomycorrhization and Soil Properties
4.3.1. Phosphorus (P) and ECM
4.3.2. Influence of Organic Matter (OM) on ECM
4.3.3. Influence of Texture in ECM
4.3.4. pH
4.4. Ectomycorrhizal Morphological Structure
4.5. Sporocarps
4.6. Highlights
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benucci, G.M.; Bonito, G.; Baciarelli Falini, L.; Bencivenga, M. Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad and Tuber borchii Vittad. Mycorrhiza 2012, 22, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Marozzi, G.; Sã, S.; Benucci, G.M.; Bonito, G.; Falini, L.B.; Albertini, E.; Donnini, D. Mycorrhization of pecan (Carya illinoinensis) with black truffles: Tuber melanosporum and Tuber brumale. Mycorrhiza 2017, 27, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, X.; Wu, C.; Ye, L.; Kang, Z.; Zhang, X. Exogenous Nitric Oxide and Phosphorus Stress Affect the Mycorrhization, Plant Growth, and Associated Microbes of Carya illinoinensis Seedlings Colonized by Tuber indicum. Front. Microbiol. 2019, 10, 2634. [Google Scholar] [CrossRef] [PubMed]
- SIAP. Servicio de Información Agroalimentaria y Pesquera, México. Anuario Estadístico de la Producción Agrícola. 2022. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 20 March 2023).
- USDA. National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA). 2020. Available online: https://www.nass.usda.gov/Publications/Todays_Reports/reports/pecnpr20.pdf (accessed on 1 March 2023).
- SIAP. Servicio de Información Agroalimentaria y Pesquera. Producción Agrícola. 2021. Available online: https://www.gob.mx/siap (accessed on 23 January 2023).
- Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111118. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Xie, X.; Kim, H.I.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation. Planta 2012, 235, 1197–1207. [Google Scholar] [CrossRef] [Green Version]
- González-Escobedo, R.; Muñoz-Castellanos, L.N.; Muñoz-Ramírez, Z.Y.; Guigón-López, C.; Ávila-Quezada, G.D. Rhizosphere bacterial and fungal communities of healthy and wilted pepper (Capsicum annuum L.) in an organic farming system. Ciência Rural 2023, 53, 20220072. [Google Scholar] [CrossRef]
- Shrivastava, M.; Srivastava, P.C.; D’Souza, S.F. KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V., Maurya, B., Verma, J., Meena, R., Eds.; Springer: New Delhi, India, 2016; pp. 221–234. [Google Scholar] [CrossRef]
- Madrid-Delgado, G.; Orozco-Miranda, M.; Cruz-Osorio, M.; Hernández-Rodríguez, O.A.; Rodríguez-Heredia, R.; Roa-Huerta, M.; Ávila-Quezada, G.D. Pathways of phosphorus absorption and early signaling between the mycorrhizal fungi and plants. Phyton 2021, 90, 1321. [Google Scholar] [CrossRef]
- Landeweert, R.; Hoffland, E.; Finlay, R.D.; Kuyper, T.W.; Van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 2001, 16, 248–254. [Google Scholar] [CrossRef]
- Martin, F.; Kohler, A.; Murat, C.; Veneault-Fourrey, C.; Hibbett, D.S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016, 14, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Camarena-Gutiérrez, G. Interacción planta-hongos micorrízicos arbusculares. Rev. Chapingo Ser. Cienc. Forest. Ambiente 2012, 18, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Franken, P. Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza 2014, 24, 419–430. [Google Scholar] [CrossRef]
- Song, Y.; Chen, D.; Lu, K.; Sun, Z.; Zeng, R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 2015, 6, 786. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K. Ectomycorrhizal symbiosis: Possibilities and prospects. In Progress in Mycology; Rai, M., Kövics, G., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Bonito, G.; Brenneman, T.; Vilgalys, R. Ectomycorrhizal fungal diversity in orchards of cultivated pecan (Carya illinoinensis; Juglandaceae). Mycorrhiza 2011, 21, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Taber, R.A. Mycorrhyzal fungi associated with pecans. In 18th Western Pecan Conference Proceedings; CES-New Mexico State University: Las Cruces, NM, USA, 1984; pp. 135–136. [Google Scholar]
- Muñoz-Márquez, E.; Macías-López, C.; Franco-Ramírez, A.; Sánchez-Chávez, E.; Jiménez-Castro, J.; González-García, J. Identificación y colonización natural de hongos micorrízicos arbusculares en nogal. Terra Latinoam. 2009, 27, 355–361. Available online: https://www.scielo.org.mx/scielo.php?pid=S0187-57792009000400010&script=sci_arttext (accessed on 1 March 2023).
- Olivas-Tarango, A.L.; Tarango-Rivero, S.H.; Ávila-Quezada, G.D. Pecan production improvement by zinc under drip irrigation in calcareous soils. Terra Latinoam. 2021, 39, e992. [Google Scholar] [CrossRef]
- Marx, D.H. Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can. J. Microbiol. 1977, 23, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.M.; Cairney, J.W.G. Pisolithus. In Ectomycorrhizal Fungi Key Genera in Profile; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–31. [Google Scholar]
- Sánchez, E.; Muñoz, E.; Macias, B.C.; Sida, J.P. Importancia de las micorrizas en huertas nogaleras. PACANA 2020, 5, 32–35. [Google Scholar]
- Kluber, L.A.; Carrino-Kyker, S.R.; Coyle, K.P.; DeForest, J.L.; Hewins, C.R.; Shaw, A.N.; Smemo, K.A.; Burke, D.J. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests. PLoS ONE 2012, 7, e48946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.W.; Brenneman, T.; Bonito, G.; Smith, M.E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis). Plant Soil 2017, 418, 493–505. [Google Scholar] [CrossRef]
- Wallander, H.; Ekblad, A. The Importance of Ectomycorrhizal Networks for Nutrient Retention and Carbon Sequestration in Forest Ecosystems. In Mycorrhizal Networks. Ecological Studies (Analysis and Synthesis); Horton, T., Ed.; Springer: Dordrecht, The Netherlands, 2015; Volume 224. [Google Scholar] [CrossRef]
- Gottshall, C.B.; Cooper, M.; Emery, S.M. Activity, diversity and function of arbuscular mycorrhizae vary with changes in agricultural management intensity. Agric. Ecosyst. Environ. 2017, 241, 142–149. [Google Scholar] [CrossRef]
- Mullath, S.; Błaszkowski, J.; Govindan, B.; Dhaheri, L.; Symanczik, S.; Al-Yahya’ei, M. Organic farming practices in a desert habitat increased the abundance, richness, and diversity of arbuscular mycorrhizal fungi. Emir. J. Food Agric. 2020, 31, 969–979. [Google Scholar] [CrossRef]
- Tarango-Rivero, S.H.; Ávila-Quezada, G.D.; Jacobo-Cuellar, J.L.; Ramírez-Valdespino, C.A.; Orrantia-Borunda, E.; Rodríguez-Heredia, R.; Olivas-Tarango, A.L. Chelated zinc and beneficial microorganisms: A sustainable fertilization option for pecan production. Rev. Chapingo Ser. Hortic. 2022, 28, 145–159. [Google Scholar] [CrossRef]
- Dvořák, D.; Vašutová, M.; Hofmeister, J.; Beran, M.; Hošek, J.; Běťák, J.; Burel, J.; Deckerová, H. Macrofungal diversity patterns in central European forests affirm the key importance of old-growth forests. Fungal Ecol. 2017, 27, 145–154. [Google Scholar] [CrossRef]
- Leski, T.; Rudawska, M.; Kujawska, M.; Stasińska, M.; Janowski, D.; Karliński, L.; Wilgan, R. Both forest reserves and managed forests help maintain ectomycorrhizal fungal diversity. Biol. Conserv. 2019, 238, 108206. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Wilgan, R.; Karliński, L.; Kujawska, M.; Janowski, D. Mycorrhizal associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. Mycorrhiza 2018, 28, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Wilgan, R.; Leski, T.; Kujawska, M.; Karliński, L.; Janowski, D.; Rudawska, M. Ectomycorrhizal fungi of exotic Carya ovata in the context of surrounding native forests on Central European sites. Fungal Ecol. 2020, 44, 100908. [Google Scholar] [CrossRef]
- Wilgan, R.; Leski, T. Ectomycorrhizal Assemblages of Invasive Quercus rubra L. and Non-Invasive Carya Nutt. Trees under Common Garden Conditions in Europe. Forests 2022, 13, 676. [Google Scholar] [CrossRef]
- Cruz-Álvarez, O.; Hernández-Rodríguez, A.O.; Jacobo-Cuellar, J.L.; Ávila-Quezada, G.; Morales-Maldonado, E.; Parra-Quezada, R.A.; Robles-Hernández, L.; Ojeda-Barrios, D.L. Nitrogen fertilization in pecan and its effect on leaf nutrient concentration, yield and nut quality. Rev. Chapingo Ser. Horticul. 2020, 26, 163–173. [Google Scholar] [CrossRef]
- Bouyoucos, G.S. Directions for making mechanical analysis of soil by hydrometer method. Soil Sci. 1936, 4, 225–228. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington, DC, USA, 1954; Volume 939, p. 19.
- Walkley, A.; Black, I.A. An examination of the Degtjareff Method for Determining Soil Organic Matter, and a proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Marx, D.H.; Ruehle, J.L.; Kenney, D.S.; Cordell, C.E.; Riffle, J.W.; Molina, R.J.; Pawuk, W.H.; Navratil, S.; Tinus, R.W.; Goodwin, O.C. Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of ectomycorrhizae on container-grown tree seedlings. For. Sci. 1982, 28, 373–400. [Google Scholar] [CrossRef]
- Muñoz-Márquez, E.; Sánchez-Chávez, E.; Macias-López, B.; Flores-Córdova, M.; Ávila Quezada, G. Niveles de colonización natural, identificación y densidad de estructuras ectomicorrizicas en nogal pecanero. In Agricultura Orgánica; Octava parte; Osuna-Ávila, P., Ed.; Eco Agro: Tierra Verde, FL, USA, 2015. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, a Guide to Methods and Applications; Innis, M.A., Gelfan, D.H., Sninsky, J.J., White, T., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Sharma, V. Evaluation of Acacia species as honeybee forage potential. Int. J. Sci. Res. 2016, 5, 1726–1727. Available online: https://www.ijsr.net/get_abstract.php?paper_id=NOV153219 (accessed on 1 March 2023).
- Kimura, M.A. Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Razzaq, A.; Shahzad, S. Pisolithus tinctorius, a new record from Pakistan. Pak. J. Bot. 2004, 36, 449–451. [Google Scholar]
- Van Der Heijden, E.W. Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 2001, 10, 185–193. [Google Scholar] [CrossRef]
- Garcia, K.; Delaux, P.M.; Cope, K.R.; Ané, J.M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 2015, 208, 79–87. [Google Scholar] [CrossRef]
- Franklin, O.; Näsholm, T.; Högberg, P.; Högberg, M.N. Forests trapped in nitrogen limitation–an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 2014, 203, 657–666. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. Available online: http://www.jstor.org/stable/1514776 (accessed on 1 March 2023). [CrossRef] [Green Version]
- Becquer, A.; Trap, J.; Irshad, U.; Ali, M.A.; Claude, P. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front. Plant Sci. 2014, 5, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, J.M.; Keiffer, C.H.; Hiremath, S.; McCarthy, B.C. Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration. J. Appl. Ecol. 2013, 50, 721–729. [Google Scholar] [CrossRef]
- Glassman, S.I.; Peay, K.G.; Talbot, J.M.; Smith, D.P.; Chung, J.A.; Taylor, J.W.; Vilgalys, R.; Bruns, T.D. A continental view of pine-associated ectomycorrhizal fungal spore banks: A quiescent functional guild with a strong biogeographic pattern. New Phytol. 2015, 205, 1619–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agerer, R.; Rambold, G. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae. 2004–2015. Available online: http://www.deemy.de/ (accessed on 1 March 2023).
- Voiblet, C.; Duplessis, S.; Encelot, N.; Martinet, F. Identification of symbiosis-regulated genes in Eucalyptus globulus–Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J. 2001, 25, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.; Martins, A.; Pais, M.S.; Tavares, R.M.; Lino-Neto, T. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 2007, 17, 185–193. [Google Scholar] [CrossRef] [Green Version]
Orchard Name | Municipality | Latitude N/Longitude W Coordinates | Tree Age (Years) | Management Type | Soil Texture |
---|---|---|---|---|---|
El General | Saucillo | 28°14′48″ 105°30′17″ | 3 | Conventional | Sandy clay |
El Escondido CM | Saucillo | 28°04′42″ 105°19′53″ | 8 | Conventional | Sandy clay |
El Escondido SM | Saucillo | 28°05′47″ 105°18′61″ | 8 | Conventional | Sandy clay |
San Jorge | Delicias | 28°13′46″ 105°25′8″ | 10 | Conventional | Sandy clay |
La Reyna | Meoqui | 28°14′47″ 105°30′20″ | 30 | Conventional | Sandy crumb |
La Carpintería | San Francisco de Conchos | 27°33′4″ 105°24′18″ | 38 | Conventional | Sandy crumb |
Parcela Escolar | Aldama | 28°45′50″ 105°57′54″ | 40 | Conventional | Loam |
4H | Saucillo | 28°02′24″ 105°16′39″ | 6 | Organic | Sandy crumb |
El Maguey | Delicias | 28°04′48″ 105°31′20″ | 9 | Organic | Clayey crumb |
Gaby | Meoqui | 28°15′51″ 105°28′17″ | 40 | Organic | Sandy crumb |
Don Miguel | Saucillo | 28°06′53″ 105°20′46″ | 47 | Organic | Sandy crumb |
Carmen MA | Jiménez | 27°18′28″ 104°50′20″ | 48 | Organic | Sandy clay crumb |
Carmen SG | Jiménez | 27°17′55″ 10°50′9″ | 48 | Organic | Sandy clay crumb |
La Concha | Chihuahua | 9°03′26″ 106°11′55″ | 17 | Organic | Sandy clay loam |
Texture | % Ectomycorrhization | n = Number of Orchards |
---|---|---|
Clay–sandy | 47.44 | n = 1 |
Loamy sand | 49.00 | n = 3 |
Loam | 31.44 | n = 1 |
Loam–clay–sand | 49.56 | n = 1 |
Sandy crumb | 48.65 | n = 5 |
Sandy clay crumb | 55.17 | n = 2 |
Clayey crumb | 34.11 | n = 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáenz-Hidalgo, H.K.; Jacobo-Cuellar, J.L.; Zúñiga-Rodríguez, E.; Avila-Quezada, G.D.; Olalde-Portugal, V.; Hashem, A.; Abd_Allah, E.F. Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico. J. Fungi 2023, 9, 440. https://doi.org/10.3390/jof9040440
Sáenz-Hidalgo HK, Jacobo-Cuellar JL, Zúñiga-Rodríguez E, Avila-Quezada GD, Olalde-Portugal V, Hashem A, Abd_Allah EF. Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico. Journal of Fungi. 2023; 9(4):440. https://doi.org/10.3390/jof9040440
Chicago/Turabian StyleSáenz-Hidalgo, Hilda Karina, Juan Luis Jacobo-Cuellar, Erick Zúñiga-Rodríguez, Graciela Dolores Avila-Quezada, Víctor Olalde-Portugal, Abeer Hashem, and Elsayed Fathi Abd_Allah. 2023. "Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico" Journal of Fungi 9, no. 4: 440. https://doi.org/10.3390/jof9040440
APA StyleSáenz-Hidalgo, H. K., Jacobo-Cuellar, J. L., Zúñiga-Rodríguez, E., Avila-Quezada, G. D., Olalde-Portugal, V., Hashem, A., & Abd_Allah, E. F. (2023). Soil Structure and Ectomycorrhizal Root Colonization of Pecan Orchards in Northern Mexico. Journal of Fungi, 9(4), 440. https://doi.org/10.3390/jof9040440