A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA
Abstract
:1. Introduction
2. Materials and Methods
2.1. The G. lucidum Strains and Growth Conditions
2.2. Analysis of NmrA and Ure2 and Construction of the nmrA Silenced Strains
2.3. Yeast Two-Hybrid Assay
2.4. Protein Extraction
2.5. Western Blot Analysis
2.6. Enzyme Activity Analysis
2.7. Quantification of Ganoderic Acid (GA)
2.8. Statistical Analysis
3. Results
3.1. A Homologous NmrA Protein Was Found in G. lucidum
3.2. The NmrA Interacted with the C-Terminal of AreA According to a Yeast Two-Hybrid Assay
3.3. Effect of NmrA on the Content of AreA Protein
3.4. Effect of NmrA on the Stability of the AreA Protein
3.5. Effect of NmrA on the Subcellular Localization of AreA
3.6. Effect of NmrA on the Expression Levels of Glutamine Synthase Gene and Nitrate Reductase Gene
3.7. Effect of NmrA on Mycelial Growth and Ganoderic Acid Biosynthesis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vidal, E.A.; Alvarez, J.M.; Araus, V.; Riveras, E.; Brooks, M.D.; Krouk, G.; Ruffel, S.; Lejay, L.; Crawford, N.M.; Coruzzi, G.M.; et al. Nitrate in 2020: Thirty years from transport to signaling networks. Plant Cell 2020, 32, 2094–2119. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chen, M.; Gao, L.; Wang, Y.; Bai, Y.; Yan, H.; Xu, C.; Zhou, Y.; Xu, Z.; Chen, J.; et al. Genome-wide association study of agronomic traits related to nitrogen use efficiency in wheat. Theor. Appl. Genet. 2022, 135, 4289–4302. [Google Scholar] [CrossRef] [PubMed]
- Tudzynski, B. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef] [PubMed]
- Marzluf, G.A. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 1997, 61, 17–32. [Google Scholar] [CrossRef]
- Milhomem Cruz-Leite, V.R.; Salem-Izacc, S.M.; Novaes, E.; Neves, B.J.; de Almeida Brito, W.; O’Hara Souza Silva, L.; Paccez, J.D.; Parente-Rocha, J.A.; Pereira, M.; de Almeida Soares, C.M.; et al. Nitrogen catabolite repression in members of paracoccidioides complex. Microb. Pathog. 2020, 149, 104281. [Google Scholar] [CrossRef] [PubMed]
- Hofman-Bang, J. Nitrogen Catabolite Repression in Saccharomyces cerevisiae. Mol. Biotechnol. 1999, 12, 35–74. [Google Scholar] [CrossRef]
- Georis, I.; Feller, A.; Vierendeels, F.; Dubois, E. The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol. Cell Biol. 2009, 29, 3803–3815. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Z.; Shi, D.; Song, S.; Lian, L.; Shi, L.; Ren, A.; Yu, H.; Zhao, M. Dual functions of AreA, a GATA transcription factor, on influencing ganoderic acid biosynthesis in Ganoderma lucidum. Environ. Microbiol. 2019, 21, 4166–4179. [Google Scholar] [CrossRef]
- Tao, Y.; Marzluf, G.A. The NIT2 nitrogen regulatory protein of Neurospora: Expression and stability of nit-2 mRNA and protein. Curr. Genet. 1999, 36, 153–158. [Google Scholar] [CrossRef]
- Kmetzsch, L.; Staats, C.C.; Simon, E.; Fonseca, F.L.; Oliveira, D.L.; Joffe, L.S.; Rodrigues, J.; Lourenco, R.F.; Gomes, S.L.; Nimrichter, L.; et al. The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet. Biol. 2011, 48, 192–199. [Google Scholar] [CrossRef]
- Giese, H.; Sondergaard, T.E.; Sorensen, J.L. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol. 2013, 117, 814–821. [Google Scholar] [CrossRef]
- Kim, E.; Goraksha-Hicks, P.; Li, L.; Neufeld, T.P.; Guan, K.L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 2008, 10, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.J.; Zeh, C.; Saur, A.; Sonnewald, S.; Sonnewald, U.; Voll, L.M. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth. Eukaryot. Cell 2012, 11, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Blinder, D.; Coschigano, P.W.; Magasanik, B. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae. J. Bacteriol. 1996, 178, 4734–4736. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Fu, Y.H.; Marzluf, G.A. The negative-acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 1995, 34, 8861–8868. [Google Scholar] [CrossRef] [PubMed]
- Lamb, H.K.; Ren, J.; Park, A.; Johnson, C.; Leslie, K.; Cocklin, S.; Thompson, P.; Mee, C.; Cooper, A.; Stammers, D.K.; et al. Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed mutagenesis. Protein Sci. 2004, 13, 3127–3138. [Google Scholar] [CrossRef]
- Kotaka, M.; Johnson, C.; Lamb, H.K.; Hawkins, A.R.; Ren, J.; Stammers, D.K. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J. Mol. Biol. 2008, 381, 373–382. [Google Scholar] [CrossRef]
- Andrianopoulos, A.; Kourambas, S.; Sharp, J.A.; Davis, M.A.; Hynes, M.J. Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J. Bacteriol. 1998, 180, 1973–1977. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Q.; Xia, Y.; Jin, K. MaNmrA, a negative transcription regulator in nitrogen catabolite repression pathway, contributes to nutrient utilization, stress resistance, and virulence in entomopathogenic fungus Metarhizium acridum. Biology 2021, 10, 1167. [Google Scholar] [CrossRef]
- Todd, R.B.; Fraser, J.A.; Wong, K.H.; Davis, M.A.; Hynes, M.J. Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot. Cell 2005, 4, 1646–1653. [Google Scholar] [CrossRef]
- Zhao, X.; Hume, S.L.; Johnson, C.; Thompson, P.; Huang, J.; Gray, J.; Lamb, H.K.; Hawkins, A.R. The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases. Protein Sci. 2010, 19, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Hynes, M.J.; Davis, M.A. Recent advances in nitrogen regulation: A comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot. Cell 2008, 7, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ren, A.; Mu, D.; Zhao, M. Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl. Microbiol. Biotechnol. 2010, 88, 1243–1251. [Google Scholar] [CrossRef]
- Ye, L.; Liu, S.; Xie, F.; Zhao, L.; Wu, X. Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage. PLoS ONE 2018, 13, e0196287. [Google Scholar] [CrossRef] [PubMed]
- Calvino, E.; Manjon, J.L.; Sancho, P.; Tejedor, M.C.; Herraez, A.; Diez, J.C. Ganoderma lucidum induced apoptosis in NB4 human leukemia cells: Involvement of Akt and Erk. J. Ethnopharmacol. 2010, 128, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Li, H.J.; Zhang, D.H.; Han, L.L.; Yu, X.; Zhao, P.; Li, T.; Zhong, J.J.; Xu, J.W. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition. Bioprocess Biosyst. Eng. 2016, 39, 75–80. [Google Scholar] [CrossRef]
- Hu, G.; Zhai, M.; Niu, R.; Xu, X.; Liu, Q.; Jia, J. Optimization of culture condition for ganoderic acid production in Ganoderma lucidum liquid static culture and design of a suitable bioreactor. Molecules 2018, 23, 2563. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.W.; Zhong, J.J. Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions. Bioresour. Technol. 2011, 102, 8185–8190. [Google Scholar] [CrossRef]
- Mu, D.; Shi, L.; Ren, A.; Li, M.; Wu, F.; Jiang, A.; Zhao, M. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum. PLoS ONE 2012, 7, e43737. [Google Scholar] [CrossRef]
- Mu, D.; Li, C.; Zhang, X.; Li, X.; Shi, L.; Ren, A.; Zhao, M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family in Ganoderma lucidum: An essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ. Microbiol. 2014, 16, 1709–1728. [Google Scholar] [CrossRef]
- Hong, H.; Xiao, H.; Yuan, H.; Zhai, J.; Huang, X. Cloning and characterisation of JAZ gene family in Hevea brasiliensis. Plant Biol. 2015, 17, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Song, S.; Sun, Z.; Lian, L.; Shi, L.; Ren, A.; Zhao, M. Regulation of glutamine synthetase activity by transcriptional and posttranslational modifications negatively influences ganoderic acid biosynthesis in Ganoderma lucidum. Environ. Microbiol. 2021, 23, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Zhang, T.J.; Lu, X.X.; Ma, B.L.; Ren, A.; Shi, L.; Jiang, A.L.; Yu, H.S.; Zhao, M.W. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum. Environ. Microbiol. 2017, 19, 1653–1668. [Google Scholar] [CrossRef]
- Fu, Y.H.; Marzluf, G.A. Site-directed mutagenesis of the ‘zinc finger’ DNA-binding domain of the nitrogen-regulatory protein NIT2 of Neurospora. Mol. Microbiol. 1990, 4, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Arst, H.N., Jr. Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol. Mol. Biol. Rev. 1998, 62, 586–596. [Google Scholar] [CrossRef]
- Lamb, H.K.; Leslie, K.; Dodds, A.L.; Nutley, M.; Cooper, A.; Johnson, C.; Thompson, P.; Stammers, D.K.; Hawkins, A.R. The negative transcriptional regulator NmrA discriminates between oxidized and reduced dinucleotides. J. Biol. Chem. 2003, 278, 32107–32114. [Google Scholar] [CrossRef]
- Baker, M.E.; Blasco, R. Expansion of the mammalian 3β-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis. FEBS Lett. 1992, 301, 89–93. [Google Scholar] [CrossRef]
- Stammers, D.K.; Ren, J.; Leslie, K.; Nichols, C.E.; Lamb, H.K.; Cocklin, S.; Dodds, A.; Hawkins, A.R. The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases. EMBO J. 2001, 20, 6619–6626. [Google Scholar] [CrossRef]
- Bousset, L.; Belrhali, H.; Janin, J.; Melki, R.; Morera, S. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 2001, 9, 39–46. [Google Scholar] [CrossRef]
- Umland, T.C.; Taylor, K.L.; Rhee, S.; Wickner, R.B.; Davies, D.R. The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p. Proc. Natl. Acad. Sci. USA 2001, 98, 1459–1464. [Google Scholar] [CrossRef]
- Shen, L.; Su, Z.; Yang, K.; Wu, C.; Becker, T.; Bell-Pedersen, D.; Zhang, J.; Sachs, M.S. Structure of the translating Neurospora ribosome arrested by cycloheximide. Proc. Natl. Acad. Sci. USA 2021, 118, e2111862118. [Google Scholar] [CrossRef]
- Sharma, P.; Wu, J.; Nilges, B.S.; Leidel, S.A. Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nat. Commun. 2021, 12, 5094. [Google Scholar] [CrossRef]
- Bertram, P.G.; Choi, J.H.; Carvalho, J.; Ai, W.; Zeng, C.; Chan, T.F.; Zheng, X.F. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 2000, 275, 35727–35733. [Google Scholar] [CrossRef]
- Tate, J.J.; Buford, D.; Rai, R.; Cooper, T.G. General amino acid control and 14-3-3 proteins Bmh1/2 are required for nitrogen catabolite repression-sensitive regulation of Gln3 and Gat1 localization. Genetics 2017, 205, 633–655. [Google Scholar] [CrossRef]
- Hunter, C.C.; Siebert, K.S.; Downes, D.J.; Wong, K.H.; Kreutzberger, S.D.; Fraser, J.A.; Clarke, D.F.; Hynes, M.J.; Davis, M.A.; Todd, R.B. Multiple nuclear localization signals mediate nuclear localization of the GATA transcription factor AreA. Eukaryot. Cell 2014, 13, 527–538. [Google Scholar] [CrossRef]
- Han, X.; Qiu, M.; Wang, B.; Yin, W.B.; Nie, X.; Qin, Q.; Ren, S.; Yang, K.; Zhang, F.; Zhuang, Z.; et al. Functional analysis of the nitrogen metabolite repression regulator gene nmrA in Aspergillus flavus. Front. Microbiol. 2016, 7, 1794. [Google Scholar] [CrossRef]
- Schonig, B.; Brown, D.W.; Oeser, B.; Tudzynski, B. Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. Eukaryot. Cell 2008, 7, 1831–1846. [Google Scholar] [CrossRef]
- DeBusk, R.M.; Ogilvie, S. Regulation of amino acid utilization in Neurospora crassa: Effect of nmr-1 and ms-5 mutations. J. Bacteriol. 1984, 160, 656–661. [Google Scholar] [CrossRef]
- Narendja, F.; Goller, S.P.; Wolschek, M.; Strauss, J. Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcriptional activator of Aspergillus nidulans. Mol. Microbiol. 2002, 44, 573–583. [Google Scholar] [CrossRef]
- Hinnebusch, A.G. Translational regulation of GCN4 and the general amino acid control of yeast. Annu. Rev. Microbiol. 2005, 59, 407–450. [Google Scholar] [CrossRef]
- Lian, L.; Shi, L.; Zhu, J.; Shi, L.; Ren, A.; You, H.; Liu, R.; Zhao, M. GCN4 Enhances the transcriptional regulation of AreA by interacting with SKO1 to mediate nitrogen utilization in Ganoderma lucidum. Appl. Environ. Microbiol. 2022, 88, e0132222. [Google Scholar] [CrossRef]
- Daitoku, H.; Sakamaki, J.; Fukamizu, A. Regulation of FoxO transcription factors by acetylation and protein-protein interactions. Biochim. Biophys. Acta 2011, 1813, 1954–1960. [Google Scholar] [CrossRef]
- Filtz, T.M.; Vogel, W.K.; Leid, M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharm. Sci. 2014, 35, 76–85. [Google Scholar] [CrossRef]
- Zhang, W.; Du, G.; Zhou, J.; Chen, J. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2018, 82, e00040-17. [Google Scholar] [CrossRef]
Primer | Sequence (5′ to 3′) | Description |
---|---|---|
pGBKT7-AreA-F | GGAATTCCATATGATGTTGCAACATACTCTC | Obtain full length of areA for yeast Y2H assay |
pGBKT7-AreA-R | GGAATTCTTAAGCCCCGCCGCC | |
pGADT7-NmrA-F | GGAATTCCATATGATGACGAAGCTCGTTGC | Obtain full length of nmrA for yeast Y2H assay |
pGADT7-NmrA-R | GGAATTCTTACACGAGCGATAGGCCGAG | |
pGBKT7-AreA-N-F | atggccatggaggccgaattcATGTTGCAACATACTCTC | Obtain N-terminal of areA for yeast Y2H assay |
pGBKT7-AreA-N-R | tcgacggatccccgggaattcTTATGCGCCAGCACG | |
pGBKT7-AreA-C-F | atggccatggaggccgaattcAGTGGCGCCCAGC | Obtain C-terminal of areA for yeast Y2H assay |
pGBKT7-AreA-C-R | tcgacggatccccgggaattcTTAAGCCCCGCCGCC | |
Hmgr-QRT-F | GTCATCCTCCTATGCCAAAC | Detect the hmgr expression |
Hmgr-QRT-R | TGAACTGTGCGAAAGG | |
Sqs-QRT-F | CTGCTTATTCTACCTGGTGCTACG | Detect the hmgr expression |
Sqs-QRT-R | GGCTTCACGGCGAGTTTGT | |
Osc-QRT-F | AGGGAGAACCCGAAGCATT | Detect the hmgr expression |
Osc-QRT-R | CGTCCACAGCGTCGCATAAC | |
GS-QRT-F | ACCAACTTCCGCCACCAT | Detect the gs expression |
GS-QRT-R | AAGACCTTGCCAGCACCAG | |
NR-QRT-F | AAGACGACCAACTCC | Detect the nr expression |
NR-QRT-R | GCCAAGTGCCATAA | |
18s-QRT-F | TATCGAGTTCTGACTGGGTTGT | Detect the 18s expression |
18s-QRT-R | ATCCGTTGCTGAAAGTTGTAT | |
NmrA-QRT-F | GCATATCTCCGGTGGTCGTT | Detect the nmrA expression |
NmrA-QRT-R | GGTATTTGCCTGGACAACGC | |
NmrAi-F | gcgcacaggcggagaactagtTCGTGCTCCTCTCGTTTG | Obtain the silencing fragment of the nmrA gene |
NmrAi-R | actcttcatccccctggtaccCACGAGCGATAGGCCGAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Qiao, J.; Shangguan, J.; Guo, X.; Xing, Z.; Zhou, X.; Zhao, M.; Zhu, J. A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA. J. Fungi 2023, 9, 516. https://doi.org/10.3390/jof9050516
Liu H, Qiao J, Shangguan J, Guo X, Xing Z, Zhou X, Zhao M, Zhu J. A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA. Journal of Fungi. 2023; 9(5):516. https://doi.org/10.3390/jof9050516
Chicago/Turabian StyleLiu, He, Jinjin Qiao, Jiaolei Shangguan, Xiaoyu Guo, Zhenzhen Xing, Xiaolin Zhou, Mingwen Zhao, and Jing Zhu. 2023. "A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA" Journal of Fungi 9, no. 5: 516. https://doi.org/10.3390/jof9050516
APA StyleLiu, H., Qiao, J., Shangguan, J., Guo, X., Xing, Z., Zhou, X., Zhao, M., & Zhu, J. (2023). A Gene from Ganoderma lucidum with Similarity to nmrA of Filamentous Ascomycetes Contributes to Regulating AreA. Journal of Fungi, 9(5), 516. https://doi.org/10.3390/jof9050516