Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Choice of Wood Decay Fungi (WDF)
2.2. Pharmaceuticals and Discharge Wastewater
2.3. Experimental Procedure in Liquid Culture Medium
2.4. Analytical Procedures
2.5. Experimental Procedure in Wastewater
3. Results
3.1. Sterile Liquid Culture Medium
3.1.1. Diclofenac
3.1.2. Irbesartan
3.1.3. Ketoprofen
3.1.4. Paracetamol
3.2. Discharge Wastewater
- DCF: after 24 h in WWTP2 discharge wastewater inoculated with P. fraxinea;
- IRS: after 24 h in WWTP1 discharge wastewater for both strains;
- KET: after 7 days in WWTP1 discharge wastewater for both strains.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lonsdale, D.; Pautasso, M.; Holdenrieder, O. Wood-Decaying Fungi in the Forest: Conservation Needs and Management Options. Eur. J. For. Res. 2008, 127, 1–22. [Google Scholar] [CrossRef]
- Mäki, M.; Mali, T.; Hellén, H.; Heinonsalo, J.; Lundell, T.; Bäck, J. Deadwood Substrate and Species-Species Interactions Determine the Release of Volatile Organic Compounds by Wood-Decaying Fungi. Fungal Ecol. 2021, 54, 101106. [Google Scholar] [CrossRef]
- Bucher, V.V.C.; Pointing, S.B.; Hyde, K.D.; Reddy, C.A. Production of Wood Decay Enzymes, Loss of Mass, and Lignin Solubilization in Wood by Diverse Tropical Freshwater Fungi. Microb. Ecol. 2004, 48, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, F.W.M.R. Wood Decay under the Microscope. Fungal Biol. Rev. 2007, 21, 133–170. [Google Scholar] [CrossRef]
- van den Brink, J.; de Vries, R.P. Fungal Enzyme Sets for Plant Polysaccharide Degradation. Appl. Microbiol. Biotechnol. 2011, 91, 1477–1492. [Google Scholar] [CrossRef] [PubMed]
- Schick Zapanta, L.; Tien, M. The Roles of Veratryl Alcohol and Oxalate in Fungal Lignin Degradation. J. Biotechnol. 1997, 53, 93–102. [Google Scholar] [CrossRef]
- Ten Have, R.; Teunissen, P.J.M. Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chem. Rev. 2001, 101, 3397–3414. [Google Scholar] [CrossRef]
- Covino, S.; Stella, T.; Cajthaml, T. Mycoremediation of Organic Pollutants: Principles, Opportunities, and Pitfalls. In Fungal Applications in Sustainable Environmental Biotechnology; Purchase, D., Ed.; Fungal Biology; Springer International Publishing: Cham, Switzerland, 2016; pp. 185–231. ISBN 978-3-319-42850-5. [Google Scholar]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Cartabia, M.; Girometta, C.E.; Milanese, C.; Baiguera, R.M.; Buratti, S.; Branciforti, D.S.; Vadivel, D.; Girella, A.; Babbini, S.; Savino, E.; et al. Collection and Characterization of Wood Decay Fungal Strains for Developing Pure Mycelium Mats. J. Fungi 2021, 7, 1008. [Google Scholar] [CrossRef]
- Israilides, C.; Philippoussis, A. Bio-Technologies of Recycling Agro-Industrial Wastes for the Production of Commercially Important Fungal Polysaccharides and Mushrooms. Biotechnol. Genet. Eng. Rev. 2003, 20, 247–260. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Noman, E.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Talip, B.A. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top. Curr. Chem. 2019, 377, 17. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Mannan, M.A. Mycoremediation: Expunging Environmental Pollutants. Biotechnol. Rep. 2020, 26, e00452. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.G.; Ahammad, S.Z. COVID-19 and Antimicrobial Resistance: A Cross-Study. Sci. Total Environ. 2022, 807, 150873. [Google Scholar] [CrossRef]
- Bottoni, P.; Caroli, S.; Caracciolo, A.B. Pharmaceuticals as Priority Water Contaminants. Toxicol. Environ. Chem. 2010, 92, 549–565. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-McDermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B. A Review of Pharmaceutical Occurrence and Pathways in the Aquatic Environment in the Context of a Changing Climate and the COVID-19 Pandemic. Anal. Methods 2021, 13, 575–594. [Google Scholar] [CrossRef]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water. PolicyText with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dir/2013/39/oj (accessed on 14 January 2023).
- Giardina, S.; Castiglioni, S.; Corno, G.; Fanelli, R.; Maggi, C.; Migliore, L.; Sabbatucci, M.; Sesta, G.; Zaghi, C.; Zuccato, E. Approccio Ambientale All’antimicrobico-Resistenza; Rapporti ISTISAN 21/3; Istituto Superiore di Sanità: Rome, Italy, 2021.
- Marco-Urrea, E.; Pérez-Trujillo, M.; Cruz-Morató, C.; Caminal, G.; Vicent, T. White-Rot Fungus-Mediated Degradation of the Analgesic Ketoprofen and Identification of Intermediates by HPLC–DAD–MS and NMR. Chemosphere 2010, 78, 474–481. [Google Scholar] [CrossRef]
- Marco-Urrea, E.; Pérez-Trujillo, M.; Cruz-Morató, C.; Caminal, G.; Vicent, T. Degradation of the Drug Sodium Diclofenac by Trametes versicolor Pellets and Identification of Some Intermediates by NMR. J. Hazard. Mater. 2010, 176, 836–842. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Singh, L.; Price, W.E.; Nghiem, L.D. Degradation of Pharmaceuticals and Personal Care Products by White-Rot Fungi—A Critical Review. Curr. Pollut. Rep. 2017, 3, 88–103. [Google Scholar] [CrossRef]
- Mir-Tutusaus, J.A.; Baccar, R.; Caminal, G.; Sarrà, M. Can White-Rot Fungi Be a Real Wastewater Treatment Alternative for Organic Micropollutants Removal? A Review. Water Res. 2018, 138, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Dalecka, B.; Juhna, T.; Rajarao, G.K. Constructive Use of Filamentous Fungi to Remove Pharmaceutical Substances from Wastewater. J. Water Process Eng. 2020, 33, 100992. [Google Scholar] [CrossRef]
- Tormo-Budowski, R.; Cambronero-Heinrichs, J.C.; Durán, J.E.; Masís-Mora, M.; Ramírez-Morales, D.; Quirós-Fournier, J.P.; Rodríguez-Rodríguez, C.E. Removal of Pharmaceuticals and Ecotoxicological Changes in Wastewater Using Trametes versicolor: A Comparison of Fungal Stirred Tank and Trickle-Bed Bioreactors. Chem. Eng. J. 2021, 410, 128210. [Google Scholar] [CrossRef]
- Rodarte-Morales, A.I.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Degradation of Selected Pharmaceutical and Personal Care Products (PPCPs) by White-Rot Fungi. World J. Microbiol. Biotechnol. 2011, 27, 1839–1846. [Google Scholar] [CrossRef]
- Gupta, N.; Tripathi, A.K.; Harsh, N.S.K. Bioremediation of Cotton-Textile Effluent Using Fungi. BEPLS Bull. Environ. Pharmacol. Life Sci. 2011, 1, 15–19. [Google Scholar]
- Dhiman, N.; Jasrotia, T.; Sharma, P.; Negi, S.; Chaudhary, S.; Kumar, R.; Mahnashi, M.H.; Umar, A.; Kumar, R. Immobilization Interaction between Xenobiotic and Bjerkandera adusta for the Biodegradation of Atrazine. Chemosphere 2020, 257, 127060. [Google Scholar] [CrossRef]
- Doria, E.; Altobelli, E.; Girometta, C.; Nielsen, E.; Zhang, T.; Savino, E. Evaluation of Lignocellulolytic Activities of Ten Fungal Species Able to Degrade Poplar Wood. Int. Biodeterior. Biodegrad. 2014, 94, 160–166. [Google Scholar] [CrossRef]
- Sillo, F.; Savino, E.; Giordano, L.; Girometta, C.; Astegiano, D.; Picco, A.M.; Gonthier, P. Analysis of genotypic diversity provides a first glimpse on the patterns of spread of the wood decay fungus Perenniporla fraxinea in an urban park in northern Italy. J. Plant Pathol. 2016, 98, 617–624. [Google Scholar]
- Bernicchia, A.; Gorjon, S.P. Polypores of the Mediterranean Region; Romar: Segrate, Italy, 2020. [Google Scholar]
- Arbind, K.; Jagdeep, K. Fibrinolytic Agents in Reference to Fungi: An Overview. J. Pharm. Res. 2011, 4, 4225–4229. [Google Scholar]
- Choi, Y.-S.; Seo, J.-Y.; Lee, H.; Yoo, J.; Jung, J.; Kim, J.-J.; Kim, G.-H. Decolorization and Detoxification of Wastewater Containing Industrial Dyes by Bjerkandera adusta KUC9065. Water Air Soil Pollut. 2014, 225, 1801. [Google Scholar] [CrossRef]
- Sturini, M.; Girometta, C.; Maraschi, F.; Savino, E.; Profumo, A. A Preliminary Investigation on Metal Bioaccumulation by Perenniporia fraxinea. Bull. Environ. Contam. Toxicol. 2017, 98, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.H. Development of carotenoid production process using Perenniporia fraxinea. J. Mushroom 2020, 18, 365–371. [Google Scholar] [CrossRef]
- Husain, A.; Md Mitra, S.A.M.; Bhasin, P.S. A review of pharmacological and pharmaceutical profile of irbesartan. Pharmacophore 2011, 2, 276–286. [Google Scholar]
- Ladhari, A.; La Mura, G.; Di Marino, C.; Di Fabio, G.; Zarrelli, A. Sartans: What They Are for, How They Degrade, Where They Are Found and How They Transform. Sustain. Chem. Pharm. 2021, 20, 100409. [Google Scholar] [CrossRef]
- Cartabia, M.; Girometta, C.E.; Baiguera, R.M.; Buratti, S.; Babbini, S.; Bernicchia, A.; Savino, E. Lignicolous Fungi Collected in Northern Italy: Identification and Morphological Description of Isolates. Diversity 2022, 14, 413. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 14 January 2023).
- United States Pharmacopeia. General Chapter. In <621> Chromatography; USP-NF: Rockville, MD, USA, 2017; pp. 1–13. [Google Scholar]
- Yang, S.; Hai, F.I.; Nghiem, L.D.; Price, W.E.; Roddick, F.; Moreira, M.T.; Magram, S.F. Understanding the Factors Controlling the Removal of Trace Organic Contaminants by White-Rot Fungi and Their Lignin Modifying Enzymes: A Critical Review. Bioresour. Technol. 2013, 141, 97–108. [Google Scholar] [CrossRef]
- Palli, L.; Castellet-Rovira, F.; Pérez-Trujillo, M.; Caniani, D.; Sarrà-Adroguer, M.; Gori, R. Preliminary Evaluation of Pleurotus ostreatus for the Removal of Selected Pharmaceuticals from Hospital Wastewater. Biotechnol. Prog. 2017, 33, 1529–1537. [Google Scholar] [CrossRef]
- Esterhuizen-Londt, M.; Hendel, A.-L.; Pflugmacher, S. Mycoremediation of Diclofenac Using Mucor hiemalis. Toxicol. Environ. Chem. 2017, 99, 795–808. [Google Scholar] [CrossRef]
- Lishman, L.; Smyth, S.A.; Sarafin, K.; Kleywegt, S.; Toito, J.; Peart, T.; Lee, B.; Servos, M.; Beland, M.; Seto, P. Occurrence and Reductions of Pharmaceuticals and Personal Care Products and Estrogens by Municipal Wastewater Treatment Plants in Ontario, Canada. Sci. Total Environ. 2006, 367, 544–558. [Google Scholar] [CrossRef]
- Celiz, M.D.; Tso, J.; Aga, D.S. Pharmaceutical metabolites in the environment: Analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009, 28, 2473. [Google Scholar] [CrossRef]
- Brown, A.K.; Wong, C.S. Current Trends in Environmental Analysis of Human Metabolite Conjugates of Pharmaceuticals. Trends Environ. Anal. Chem. 2015, 5, 8–17. [Google Scholar] [CrossRef]
- Brown, A.K.; Wong, C.S. Distribution and Fate of Pharmaceuticals and Their Metabolite Conjugates in a Municipal Wastewater Treatment Plant. Water Res. 2018, 144, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Hai, F.I.; Yamamoto, K.; Nakajima, F.; Fukushi, K.; Nghiem, L.D.; Price, W.E.; Jin, B. Degradation of azo dye acid orange 7 in a membrane bioreactor by pellets and attached growth of Coriolus versicolour. Bioresour. Technol. 2013, 141, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Margot, J.; Bennati-Granier, C.; Maillard, J.; Blánquez, P.; Barry, D.A.; Holliger, C. Bacterial versus fungal laccase: Potential for micropollutant degradation. AMB Express 2013, 3, 63. [Google Scholar] [CrossRef]
- Chandel, N.; Ahuja, V.; Gurav, R.; Kumar, V.; Tyagi, V.K.; Pugazhendhi, A.; Kumar, G.; Kumar, D.; Yang, Y.-H.; Bhatia, S.K. Progress in Microalgal Mediated Bioremediation Systems for the Removal of Antibiotics and Pharmaceuticals from Wastewater. Sci. Total Environ. 2022, 825, 153895. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ratnaweera, H.; Rezania, S.; Nazari, V.M. Pharmaceuticals and Personal Care Products in Aquatic Environments and Their Removal by Algae-Based Systems. Chemosphere 2022, 288, 132580. [Google Scholar] [CrossRef]
- Hejna, M.; Kapuścińska, D.; Aksmann, A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int. J. Environ. Res. Public Health 2022, 19, 7717. [Google Scholar] [CrossRef]
Name | Abbreviation | Classification | CAS Number |
---|---|---|---|
5 Methyl-Benzotriazole | 5 MB | Corrosion inhibitor and ultraviolet light inhibitor, used for aircraft de-icing agents, plastic stabilizers, anti-fogging agents, pharmaceuticals, fungicides, paints and coatings | 136-85-6 |
Amisulpride | AMS | Antipsychotic and antidepressive agent | 71675-85-9 |
Azithromycin | AZM | Antibiotic | 83905-01-5 |
Carbamazepine | CBZ | Anticonvulsant and analgesic | 298-46-4 |
Clarithromycin | CLR | Antibiotic | 81103-11-9 |
Diclofenac | DCF | Non-steroidal anti-inflammatory agent with antipyretic and analgesic actions | 15307-86-5 |
Gabapentin-Lactam | GBL | Transformation product of gabapentin (anti-epileptic) | 64744-50-9 |
Irbesartan | IRS | Nonpeptide angiotensin II antagonist with antihypertensive activity | 138402-11-6 |
Ketoprofen | KET | Anti-inflammatory analgesic and antipyretic | 22071-15-4 |
Lamotrigine | LMT | Antiepileptic and analgesic | 84057-84-1 |
Metoprolol | MPL | Beta-adrenergic antagonist and antihypertensive | 51384-51-1 |
Ofloxacin | OFX | Antibiotic | 82419-36-1 |
Propyphenazone | PRP | Non-steroidal anti-inflammatory and non-narcotic analgesic | 479-92-5 |
Sulfamethoxazole | SMX | Antibiotic | 723-46-6 |
Molecule | WWTP 1 Concentration Range (ng/L) (Min–Max) | WWTP 2 Concentration Range (ng/L) (Min–Max) |
---|---|---|
5 Methyl–Benzotriazole | 3228–13,089 | 331–1159 |
Amisulpride | 28–36 | 33–130 |
Azithromycin | 254–458 | 120–277 |
Carbamazepine | 197–362 | 130–325 |
Clarithromycin | 32–227 | 29–90 |
Diclofenac | 198–2914 | 224–898 |
Gabapentin–Lactam | 54–118 | 267–465 |
Irbesartan | 223–638 | 55–240 |
Ketoprofen | 14–199 | 22–112 |
Lamotrigine | 80–186 | 143–320 |
Metoprolol | 63–83 | 32–82 |
Ofloxacin | 124–204 | 23–190 |
Propyphenazone | <10–22 | <10–11 |
Sulfamethoxazole | <10–226 | 38–176 |
Name | Chemical Structure | Name | Chemical Structure |
---|---|---|---|
5 Methyl-Benzotriazole | Amisulpride | ||
Azithromycin | Carbamazepine | ||
Clarithromycin | Diclofenac | ||
Gabapentin-Lactam | Irbesartan | ||
Ketoprofen | Lamotrigine | ||
Metoprolol | Ofloxacin | ||
Paracetamol | Propyphenazone | ||
Sulfamethoxazole |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buratti, S.; Rinaldi, F.; Calleri, E.; Bernardi, M.; Oliva, D.; Malgaretti, M.; De Girolamo, G.; Barucco, B.; Girometta, C.E.; Savino, E. Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. J. Fungi 2023, 9, 555. https://doi.org/10.3390/jof9050555
Buratti S, Rinaldi F, Calleri E, Bernardi M, Oliva D, Malgaretti M, De Girolamo G, Barucco B, Girometta CE, Savino E. Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. Journal of Fungi. 2023; 9(5):555. https://doi.org/10.3390/jof9050555
Chicago/Turabian StyleBuratti, Simone, Francesca Rinaldi, Enrica Calleri, Marco Bernardi, Desdemona Oliva, Maura Malgaretti, Giuseppe De Girolamo, Barbara Barucco, Carolina Elena Girometta, and Elena Savino. 2023. "Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation" Journal of Fungi 9, no. 5: 555. https://doi.org/10.3390/jof9050555
APA StyleBuratti, S., Rinaldi, F., Calleri, E., Bernardi, M., Oliva, D., Malgaretti, M., De Girolamo, G., Barucco, B., Girometta, C. E., & Savino, E. (2023). Ganoderma resinaceum and Perenniporia fraxinea: Two Promising Wood Decay Fungi for Pharmaceutical Degradation. Journal of Fungi, 9(5), 555. https://doi.org/10.3390/jof9050555