Effect of Microbial Consortium Constructed with Lignolytic Ascomycetes Fungi on Degradation of Rice Stubble
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Screening of Lignin-Degrading Fungi
2.2. Analysis for Intermediates of Lignin Degradation
2.3. Evaluation of Consortium Load on the Degradation
2.4. Statistics
3. Results and Discussion
3.1. Isolation, Screening and Identification of Potential Ligninolytic Fungi
3.2. Colonization of Selected Lignolytic Fungal Isolates on Recalcitrant Rice Stubble
3.3. Study on Efficiency of the Developed Fungal Consortium on Rice Stubble Degradation
3.4. Effect of Newly Developed Lignolytic Fungal Inoculum on Rice Stubble Degradation
FTIR Analyses of Rice Stubble Inoculated Lignolytic Consortium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, C.; Li, Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, S.; Joshi, L. The extent and management of crop stubble In Socio economic and Environmental Implications of Agricultural Residue Burning. Springer Briefs Env. Sci. 2015, 13–34. [Google Scholar] [CrossRef]
- Kapil, S. Public Health Emergency Declared in Delhi due to Air Pollution. Down to Earth. 2019. Available online: https://www.downtoearth.org.in/tag/shagun-kapil-131365/stubble-burning (accessed on 29 December 2022).
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 2018, 9, 145. [Google Scholar] [CrossRef]
- Batt, C.A. Biomass. In Biotechnology, The Science and the Business; Mosses, V., Cape, R.E., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. S25–S36. [Google Scholar]
- Li, J.; Yuan, H.; Yang, J. Bacteria and lignin degradation. Front. Biol. 2009, 4, 29–38. [Google Scholar] [CrossRef]
- Blanchette, R.A. Degradation of the lignocellulose complex in wood. Can. J. Bot. 1995, 73, 999–1010. [Google Scholar] [CrossRef]
- Liers, C.; Arnstadt, T.; Ullrich, R.; Hofrichter, M. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol. Ecol. 2011, 78, 91–102. [Google Scholar] [CrossRef]
- Aguiar, A.; Ferraz, A. Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. Int. Biodeterior. Biodegrad. 2008, 61, 182–188. [Google Scholar] [CrossRef]
- Tomé, L.M.R.; da Silva, F.F.; Fonseca, P.L.C.; Mendes-Pereira, T.; Azevedo, V.A.D.C.; Brenig, B.; Badotti, F.; Góes-Neto, A. Hybrid Assembly Improves Genome Quality and Completeness of Trametes villosa CCMB561 and Reveals a Huge Potential for Lignocellulose Breakdown. J. Fungi 2022, 8, 142. [Google Scholar] [CrossRef]
- Mezule, L.; Civzele, A. Bioprospecting white-rot basidiomycete Irpex lacteus for improved extraction of lignocellulose-degrading enzymes and their further application. J. Fungi 2020, 6, 256. [Google Scholar] [CrossRef]
- Sylvia, D.M.; Fuhrmann, J.J.; Hartel, P.G.; Zuberer, D.A. Principles and Applications of Soil Microbiology; Pearson: New York, NY, USA, 2005. [Google Scholar]
- Janusz, G.; Pawlik, A.; Sulej, J.; Świderska-Burek, U.; Jarosz-Wilkołazka, A.; Paszczyński, A. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017, 41, 941–962. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Chang, A.J.; Fan, J.; Wen, X. Screening of fungi capable of highly selective degradation of lignin in rice straw. Int. Biodeter. Biodegr. 2012, 72, 26–30. [Google Scholar] [CrossRef]
- Laothanachareon, T.; Bunterngsook, B.; Suwannarangsee, S.; Eurwilaichitr, L.; Champreda, V. Synergistic action of recombinant accessory hemicellulolytic and pectinolytic enzymes to Trichoderma reesei cellulase on rice straw degradation. Bioresour Technol. 2015, 198, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Dai, Z.; Ding, S.Y.; Wyman, C.E. Enzymatic hydrolysis of cellulosic biomass. Biofuels 2011, 2, 421–449. [Google Scholar] [CrossRef]
- Leo, V.V.; Passari, A.K.; Muniraj, I.K.; Uthandi, S.; Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Singh, B.P. Elevated levels of laccase synthesis by Pleurotus pulmonarius BPSM10 and its potential as a dye decolorizing agent. Saudi J. Biol. Sci. 2019, 26, 464–468. [Google Scholar]
- Egger, K.N. Substrate hydrolysis patterns of post-fire Ascomycetes (Pezizales). Mycologia 1986, 78, 771–780. [Google Scholar] [CrossRef]
- Tekere, M.; Mswaka, A.; Zvauya, R.; Read, J. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb. Technol. 2001, 28, 420–426. [Google Scholar] [CrossRef]
- Kirk, T.K.; Chang, H.M. Decomposition of lignin by white-rot fungi. II. Characterization of heavily degraded lignins from decayed spruce. Holzforschung 1975, 29, 56–64. [Google Scholar] [CrossRef]
- Muñoz-Mingarro, D.; Llinares, F.; Troya, M.T.; Rubio, F.; Yuste, M.; Rodriguez-Borrajo, C.; Garcia de los Rios, J.E.; Alvarez, F.; Jimenez, P.; Rojas, A.; et al. Comparative Study of Lignocellulolytic Activities of Pleurotus spp. and White Rot and Brown Rot Fungi. Document—The International Research Group on Wood Preservation, Sweden. 1977, pp. 1969–2007. Available online: https://www.irg-wp.com/irgdocs/details.php?62dec09b-ffb1-40a3-86c6-8aa40d43e353 (accessed on 19 April 2023).
- Aidoo, K.E.; Hendry, R.; Wood, B.J.B. Estimation of fungal growth in a solid state fermentation system. Eur. J. Appl. Microbiol. 1981, 12, 6–9. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Shukla, L.; Lande, S.A.D.; Roaf ahmad parray, A.S.; Annapurna, K. Recycling flower waste to humus rich compost using effective microbial consortium and mechanical intervention. Indian J. Agric. Sci. 2019, 89, 1200–1206. [Google Scholar] [CrossRef]
- Hesse, P.R. Carbon and organic matter. In A Textbook of Soil Chemical Analysis; Cambridge university press: Cambridge, United Kingdom, 1971; pp. 204–254. [Google Scholar]
- Lynch, J.M.; Barbano, D.M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int. 1991, 82, 1389–1398. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. In Current Protools in Food Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; Volume 6, p. I1-1. [Google Scholar]
- Updegraff, D.M. Semimicro determination of cellulose in biological materials. Anal. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2011, 4, 1–15. [Google Scholar]
- Kausar, H.; Sariah, M.; Saud, H.M.; Alam, M.Z.; Ismail, M.R. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Int. Biodeterior. Biodegrad. 2010, 64, 594–600. [Google Scholar] [CrossRef]
- Levasseur, A.; Piumi, F.; Coutinho, P.M.; Rancurel, C.; Asther, M.; Delattre, M.; Henrissat, B.; Pontarotti, P.; Asther, M.; Record, E. FOLy: An integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol. 2008, 45, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H. LXIII. chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. J. Chem. Soc. Trans. 1883, 43, 472–486. [Google Scholar] [CrossRef]
- Givaudan, A.; Effosse, A.; Faure, D.; Potier, P.; Bouillant, M.L.; Bally, R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993, 108, 205–210. [Google Scholar] [CrossRef]
- Garcia-Ruiz, E.; Mate, D.M.; Gonzalez-Perez, D.; Molina-Espeja, P.; Camarero, T.; Martínez, A.T.; Ballesteros, A.O.; Alcalde, M. Directed evolution of ligninolytic oxidoreductases: From functional expression to stabilization and beyond. In Cascade Biocatalysis: Integrating Stereoselective and Environmentally Friendly Reactions; Fessner, W., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–22. [Google Scholar]
- Valli, K.; Wariishi, H.; Gold, M.H. Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: Role of veratryl alcohol in lignin biodegradation. Biochemistry 1990, 29, 8535–8539. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Yadav, R.S.S.; Yadav, K.D.S. Secretion of ligninperoxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus. Ind. J. Exp. Biol. 2002, 40, 802–806. [Google Scholar]
- Jin, X.; Ning, Y. Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. J. Hazard. Mat. 2013, 262, 870–877. [Google Scholar] [CrossRef]
- Narra, M.; Dixit, G.; Divecha, J.; Madamwar, D.; Shah, A.R. Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour. Technol. 2012, 121, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Song, J.; Liu, G.Q. Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillius fumigatus. Energy 2020, 190, 116395. [Google Scholar] [CrossRef]
- Scotti, C.T.; Vergoignan, C.; Feron, G.; Durand, A. Glucosamine measurementas indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem. Eng. J. 2001, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pecina, R.; Burtscher, P.; Bonn, G.; Bobleter, O. GC-MS and HPLC analyses of lignin degradation products in biomass hydrolyzates. Fresenius J. Anal. Chem. 1986, 325, 461–465. [Google Scholar] [CrossRef]
- Juliano, B.O. Rice hull and rice straw. In Rice Chemistry and Technology, 2nd ed.; American Association of Cereal Chemistry: Eagan, MN, USA, 1985; pp. 689–775. [Google Scholar]
- Lu, Y.; Lu, Y.C.; Hu, H.Q.; Xie, F.J.; Wei, X.Y.; Fan, X. Structural characterization of lignin and its degradation products with spectroscopic methods. J. Spectrosc. 2017, 2017, 8951658. [Google Scholar] [CrossRef]
- Margesin, R.; Volgger, G.; Wagner, A.O.; Zhang, D.; Poyntner, C. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil. Appl. Microbiol. Biotechnol. 2021, 105, 2967–2977. [Google Scholar] [CrossRef]
- Alruwaili, A.; Rashid, G.M.; Sodré, V.; Mason, J.; Rehman, Z.; Menakath, A.K.; Cheung, D.; Brown, S.P.; Bugg, T.D. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin. RSC Chem. Biol. 2023, 4, 47–55. [Google Scholar] [CrossRef]
- Albaugh, C.E. Degradation of Monoaromatic Compounds by an Aerobic Halotolerant Alkaliphilic Bacterium. Ph.D Dessertation, Washington State University, Washington, DC, USA, 2005. [Google Scholar]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef]
- Van Kuijk, S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnol. Adv. 2015, 33, 191–202. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass—An overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef]
- Eiland, F.; Leth, M.; Klamer, M.; Lind, A.M.; Jensen, H.E.K.; Iversen, J.J.L. C and N turnover and lignocellulose degradation during composting of Miscanthus straw and liquid pig manure. Compost. Sci. Util. 2001, 9, 186–196. [Google Scholar] [CrossRef]
- Galletti, G.C.; Piccaglia, R.; Concialini, V. Optimization of electrochemical detection in the high-performance liquid chromatography of lignin phenolics from lignocellulosic by-products. J. Chromatogr. A 1990, 507, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Yesilada, O.; Sik, S.; Sam, M. Biodegradation of olive oil mill waste water by Coriolus versicolor and Funalia trogii: Effects of agitation, initial COD concentration, inoculum size and immobilization. World J. Microbiol. Biotechnol. 1997, 14, 37–42. [Google Scholar] [CrossRef]
- Li, M.; Marek, S.M.; Peng, J.; Liu, Z.; Wilkins, M.R. Effect of moisture content and inoculum size on cell wall composition and ethanol yield from switchgrass after solid-state Pleurotus ostreatus. Trans. ASABE 2018, 61, 1997–2006. [Google Scholar] [CrossRef]
- Zabel, R.A.; Morrell, J.J. Chemical changes in wood caused by decay fungi. In Wood Microbiology, 2nd ed.; Robert, A.Z., Jeffrey, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 215–244. [Google Scholar]
- Yang, H.; Rong, Y.; Chen, H.; Dong, H.L.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lin, B.J.; Colin, B.; Chen, W.H.; Pétrissans, A.; Rousset, P.; Pétrissans, M. Thermal degradation and compositional changes of wood treated in a semi-industrial scale reactor in vacuum. J. Anal. Appl. Pyrolysis 2018, 130, 8–18. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Shen, Y.; Li, C.; Wang, Y.; Ma, Z.; Sun, W. New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers 2019, 11, 1145. [Google Scholar] [CrossRef]
Isolates | Laccase Activity (IU/mL) | LiP Activity (IU/mL) |
---|---|---|
LN-1 | 0.176 ± 0.0020 b | 0.265 ± 0.0014 a |
LN-7 | 0.056 ± 0.0016 e | 0.034 ± 0.0028 g |
LN-9 | 0.045 ± 0.0012 f | 0.067 ± 0.0008 d |
LN-13 | 0.067 ± 0.0021 d | 0.045 ± 0.0017 f |
LN-14 | 0.203 ± 0.0043 a | 0.192 ± 0.0020 c |
LN-15 | ND | 0.051 ± 0.0004 e |
LN-17 | 0.036 ± 0.0016 g | 0.031 ± 0.0012 g |
LN-19 | 0.154 ± 0.0017 c | 0.217 ± 0.0057 b |
Treatments | Lignin (%) | Cellulose (%) | C/N |
---|---|---|---|
Control (rice stubble) | 9.77 ± 0.233 a | 39.48 ± 1.115 a | 57.93 ± 0.738 a |
Rice stubble + 5% LC | 8.74 ± 0.176 b | 32.03 ± 0.808 b | 50.71 ± 1.406 b |
Rice stubble + 10% LC | 6.63 ± 0.015 d | 20.96 ± 1.005 c | 43.80 ± 0.810 c |
Rice stubble + 15% LC | 5.31 ± 0. 214 e | 19.87 ± 0.905 cd | 43.46 ± 0.765 c |
Rice stubble + PD | 7.50 ± 0.090 c | 17.36 ± 0.568 d | 45.21 ± 0.796 bc |
Treatments | Total Phenols (µg g−1) | Fungal Biomass (mg g−1 Substrate) | Laccase Activity (IUg−1) | LiP Activity (IU g−1) |
---|---|---|---|---|
T1—rice stubble | 397 ± 9.165 e | 37.6 ± 1.331 e | ND | ND |
T2—rice stubble + 5% MC | 472 ± 4.000 d | 59.61 ± 1.075 d | 0.28 ± 0.010 c | 0.45 ± 0.010 d |
T3—rice stubble + 10% MC | 563 ± 4.041 b | 81.56 ± 1.246 c | 0.91 ± 0.026 b | 1.37 ± 0.025 b |
T4—rice stubble + 15% MC | 571 ± 4.041 a | 89.26 ± 1.170 b | 0.95 ± 0.015 a | 1.54 ± 0.010 a |
T5—rice stubble + PD | 483 ± 4.041 c | 92.88 ± 1.023 a | 0.24 ± 0.015 e | 0.98 ± 0.015 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sruthy, K.S.; Shukla, L.; Kundu, A.; Singh, S.K.; Abdulrahman Alodaini, H.; Hatamleh, A.A.; Santoyo, G.; Kumar, A. Effect of Microbial Consortium Constructed with Lignolytic Ascomycetes Fungi on Degradation of Rice Stubble. J. Fungi 2023, 9, 567. https://doi.org/10.3390/jof9050567
Sruthy KS, Shukla L, Kundu A, Singh SK, Abdulrahman Alodaini H, Hatamleh AA, Santoyo G, Kumar A. Effect of Microbial Consortium Constructed with Lignolytic Ascomycetes Fungi on Degradation of Rice Stubble. Journal of Fungi. 2023; 9(5):567. https://doi.org/10.3390/jof9050567
Chicago/Turabian StyleSruthy, Kallinkal Sobha, Livleen Shukla, Aditi Kundu, Sandeep Kumar Singh, Hissah Abdulrahman Alodaini, Ashraf Atef Hatamleh, Gustavo Santoyo, and Ajay Kumar. 2023. "Effect of Microbial Consortium Constructed with Lignolytic Ascomycetes Fungi on Degradation of Rice Stubble" Journal of Fungi 9, no. 5: 567. https://doi.org/10.3390/jof9050567
APA StyleSruthy, K. S., Shukla, L., Kundu, A., Singh, S. K., Abdulrahman Alodaini, H., Hatamleh, A. A., Santoyo, G., & Kumar, A. (2023). Effect of Microbial Consortium Constructed with Lignolytic Ascomycetes Fungi on Degradation of Rice Stubble. Journal of Fungi, 9(5), 567. https://doi.org/10.3390/jof9050567