In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Drugs Tested
2.3. In Vitro Antifungal Susceptibility Studies
2.3.1. Checkerboard Assay
2.3.2. Data Analysis and Interpretation of Results
2.4. In Vivo Assays
2.4.1. Growth Conditions
2.4.2. Survival Assay in Caenorhabditis elegans
2.4.3. Treatment with Antifungal Drugs in Combination with Citral
2.4.4. Statistics
3. Results
3.1. Efficacy of In Vitro Combinations
3.2. Efficacy of In Vivo Combinations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quindós, G.; Marcos-Arias, C.; San-Millán, R.; Mateo, E.; Eraso, E. The continuous changes in the aetiology and epidemiology of invasive candidiasis: From familiar Candida albicans to multiresistant Candida auris. Int. Microbiol. 2018, 21, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Taori, S.K.; Schelenz, S.; Jeffery, K.; Johnson, E.M.; Borman, A.; Manuel, R.; Browna, C.S. Candida auris: A review of the literature. Clin. Microbiol. Rev. 2018, 31, e00029-17. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Promoting Access to Medical Technologies and Innovation, 2nd ed.; WHO: Geneva, Switzerland, 2002; pp. 1–64. [Google Scholar]
- Harris, E. CDC: Candida auris Fungal Infections and Drug Resistance on the Rise. JAMA 2023, 329, 1248. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017, 13, e1006290. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Vallabhaneni, S.; Kallen, A.; Tsay, S.; Chow, N.; Welsh, R.; Kerins, J.; Kemble, S.K.; Pacilli, M.; Black, S.R.; Landon, E.; et al. Investigation of the First Seven Reported Cases of Candida auris, a Globally Emerging Invasive, Multidrug-Resistant Fungus—United States, May 2013–August 2016. Am. J. Transplant. 2017, 17, 296–299. [Google Scholar] [CrossRef]
- McCarthy, M.W.; Kontoyiannis, D.P.; Cornely, O.A.; Perfect, J.R.; Walsh, T.J. Novel agents and drug targets to meet the challenges of resistant fungi. J. Infect. Dis. 2017, 216, S474–S483. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gaitán, A.; Ramírez, P.; Pemán, J.; Moret, A.M.; Aleixandre-López, A.I.; Tasias-Pitarch, M.; Salavert-Lletí, M.; Mollar-Maseres, J.; Martínez-Morel, H.; Calabuig, E.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef]
- Spampinato, C.; Leonardi, D. Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. BioMed. Res. Int. 2013, 2013, 204237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Hou, Y.; Chen, X.; Gao, Y.; Li, H.; Sun, S. Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int. J. Antimicrob. Agents 2014, 43, 395–402. [Google Scholar] [CrossRef]
- Shrestha, S.K.; Fosso, M.Y.; Garneau-Tsodikova, S. A combination approach to treating fungal infections. Sci. Rep. 2015, 5, 17070. [Google Scholar] [CrossRef] [Green Version]
- Caballero, U.; Kim, S.; Eraso, E.; Quindós, G.; Vozmediano, V.; Schmidt, S.; Jauregizar, N. In vitro synergistic interactions of isavuconazole and echinocandins against Candida auris. Antibiotics 2021, 10, 355. [Google Scholar] [CrossRef]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement Altern. Med. 2011, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Tzortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007, 8, 253–258. [Google Scholar] [CrossRef]
- Miranda-Cadena, K.; Marcos-Arias, C.; Perez-Rodriguez, A.; Cabello-Beitia, I.; Mateo, E.; Sevillano, E.; Madariaga, L.; Quindós, G.; Eraso, E. In vitro and in vivo anti-Candida activity of citral in combination with fluconazole. J. Oral Microbiol. 2022, 14, 2045813. [Google Scholar] [CrossRef]
- Bidaud, A.L.; Botterel, F.; Chowdhary, A.; Dannaoui, E. In vitro antifungal combination of flucytosine with amphotericin B, voriconazole, or micafungin against Candida auris shows no antagonism. Antimicrob. Agents Chemother. 2019, 63, 1393. [Google Scholar] [CrossRef]
- Bidaud, A.L.; Djenontin, E.; Botterel, F.; Chowdhary, A.; Dannaoui, E. Colistin interacts synergistically with echinocandins against Candida auris. Int. J. Antimicrob. Agents 2020, 55, 105901. [Google Scholar] [CrossRef]
- Meletiadis, J.; Andes, D.R.; Lockhart, S.R.; Ghannoum, M.A.; Knapp, C.C.; Ostrosky-Zeichner, L.; Pfaller, M.A.; Chaturvedi, V.; Walsh, T.J. Multicenter Collaborative Study of the Interaction of Antifungal Combinations against Candida spp. by Loewe Additivity and Bliss Independence-Based Response Surface Analysis. J. Fungi 2022, 8, 967. [Google Scholar] [CrossRef] [PubMed]
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Katragkou, A.; McCarthy, M.; Meletiadis, J.; Hussain, K.; Moradi, P.W.; Strauss, G.E.; Myint, K.L.; Zaw, M.H.; Kovanda, L.L.; Petraitiene, R. In vitro combination therapy with isavuconazole against Candida spp. Med. Mycol. 2017, 55, 859–868. [Google Scholar] [PubMed]
- Meletiadis, J.; Verweij, P.E.; Te Dorsthorst, D.T.; Meis, J.F.; Mouton, J.W. Assessing in vitro combinations of antifungal drugs against yeasts and filamentous fungi: Comparison of different drug interaction models. Med. Mycol. 2005, 43, 133–152. [Google Scholar] [CrossRef] [Green Version]
- Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016, 32, 2866–2868. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Riveros, M.; De-la-Pinta, I.; Marcos-Arias, C.; Ezpeleta, G.; Quindós, G.; Eraso, E. Usefulness of the non-conventional Caenorhabditis elegans model to assess Candida virulence. Mycopathologia 2017, 182, 785–795. [Google Scholar] [CrossRef]
- Breger, J.; Fuchs, B.B.; Aperis, G.; Moy, T.I.; Ausubel, F.M.; Mylonakis, E. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog. 2007, 3, e18. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jiang, N.; Wang, D.; Wang, M. Effects of essential oil citral on the growth, mycotoxin biosynthesis and transcriptomic profile of Alternaria alternata. Toxins 2019, 11, 553. [Google Scholar] [CrossRef] [Green Version]
- Hua, H.; Xing, F.; Selvaraj, J.N.; Wang, Y.; Zhao, Y.; Zhou, L.; Liu, X.; Liu, Y. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production. PLoS ONE 2014, 9, e108285. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, K.; Yang, H.; Zhang, Z.; Yuan, Y.; Yue, T. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front. Microbiol. 2018, 9, 597. [Google Scholar] [CrossRef]
- Somolinos, M.; García, D.; Condón, S.; Mackey, B.; Pagán, R. Inactivation of Escherichia coli by citral. J. Appl. Microbiol. 2010, 108, 1928–1939. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.B.M.; Selis, N.d.N.; Sampaio, B.A.; Júnior, M.N.S.; de Carvalho, S.P.; de Almeida, J.B.; Almeida, P.P.; da Silva, I.B.S.; Oliveira, C.N.T.; Brito, T.L.S. Citral modulates virulence factors in methicillin-resistant Staphylococcus aureus. Sci. Rep. 2021, 11, 16482. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Petraitis, V.; Petraitiene, R.; Lin, P.; Stergiopoulou, T.; Kelaher, A.M.; Sein, T.; Schaufele, R.L.; Bacher, J.; Walsh, T.J. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: In vitro and in vivo correlation. J. Infect. Dis. 2006, 194, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Piarulli, M.; Immacolata Pia Schiavone, B.; Teresa Montagna, M.; Caggiano, G.; Muraglia, M.; Carone, A.; Franchini, C.; Corbo, F. In vitro synergy testing of anidulafungin with fluconazole, tioconazole, 5-flucytosine and amphotericin B against some Candida spp. Med. Chem. 2012, 8, 690–698. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, D.M.; Vallieres, C.; Alexander, C.; Howdle, S.M.; Stockman, R.A.; Avery, S.V. Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments. J. Mater. Chem. B 2019, 7, 5222–5229. [Google Scholar] [CrossRef]
- Dudiuk, C.; Berrio, I.; Leonardelli, F.; Morales-Lopez, S.; Theill, L.; Macedo, D.; Yesid-Rodriguez, J.; Salcedo, S.; Marin, A.; Gamarra, S.; et al. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J. Antimicrob. Chemother. 2019, 74, 2295–2302. [Google Scholar] [CrossRef]
- Irazoqui, J.E.; Urbach, J.M.; Ausubel, F.M. Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 2010, 10, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Youngman, M.J.; Rogers, Z.N.; Kim, D.H. A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis Elegans. PLoS Genet. 2011, 7, e1002082. [Google Scholar] [CrossRef] [Green Version]
- Hernando-Ortiz, A.; Mateo, E.; Ortega-Riveros, M.; De-La-Pinta, I.; Quindós, G.; Eraso, E. Caenorhabditis elegans as a Model System to Assess Candida glabrata, Candida nivariensis, and Candida bracarensis Virulence and Antifungal Efficacy. Antimicrob. Agents Chemother. 2020, 64, e00824-20. [Google Scholar] [CrossRef]
MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|
Monotherapy | Combination | |||||
Isolates | AMB | AMB | CIT | FICI | Interpretation | ΣSYN ANT |
C. auris UPV 17-213 | 0.125 | 0.06 | 32 | 0.54 | AD | 21.00 |
C. auris UPV 17-259 | 0.125 | 0.06 | 64 | 0.73 | AD | 53.20 |
C. auris UPV 17-261 | 0.25 | 0.015 | 128 | 1.06 | IND | 24.96 |
C. auris UPV 17-265 | 0.25 | 0.03 | 64 | 0.62 | AD | 45.35 |
C. auris UPV 17-267 | 0.125 | 0.03 | 64 | 0.30 | SYN | 44.19 |
C. auris UPV 17-269 | 0.125 | 0.03 | 64 | 0.74 | AD | 19.77 |
C. auris UPV 17-270 | 0.25 | 0.03 | 64 | 0.62 | AD | 64.36 |
C. auris UPV 17-272 | 0.25 | 0.015 | 64 | 0.56 | AD | 46.08 |
C. auris UPV 17-274 | 0.125 | 0.03 | 64 | 0.49 | SYN | 70.48 |
C. auris UPV 17-276 | 0.125 | 0.015 | 64 | 0.62 | AD | 69.86 |
C. auris UPV 17-278 | 0.125 | 0.03 | 64 | 1.24 | IND | 39.00 |
C. auris UPV 17-279 | 0.125 | 0.03 | 64 | 0.74 | AD | 36.16 |
C. auris UPV 17-280 | 0.125 | 0.03 | 64 | 0.49 | SYN | 71.85 |
C. auris UPV 17-281 | 0.125 | 0.03 | 64 | 0.49 | SYN | 65.64 |
C. auris UPV 17-283 | 0.25 | 0.03 | 64 | 0.37 | SYN | 53.88 |
C. auris UPV 17-285 | 0.125 | 0.03 | 64 | 0.30 | SYN | 59.56 |
C. auris UPV 17-289 | 0.125 | 0.03 | 64 | 0.36 | SYN | 51.55 |
C. auris UPV 17-291 | 0.125 | 0.03 | 32 | 0.27 | SYN | 69.95 |
C. auris UPV 18-029 | 0.5 | 0.125 | 32 | 0.5 | AD | 84.62 |
C. krusei ATCC 6258 | 0.031 | 0.015 | 128 | 1.48 | IND | |
C. parapsilosis ATCC 22019 | 0.06 | 0.015 | 128 | 0.75 | AD |
MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|
Monotherapy | Combination | |||||
Isolates | ANI | ANI | CIT | FICI | Interpretation | ΣSYN ANT |
C. auris UPV 17-213 | 1 | 0.03 | 128 | 0.28 | SYN | 38.76 |
C. auris UPV 17-259 | 0.06 | 0.015 | 128 | 0.50 | AD | 62.68 |
C. auris UPV 17-261 | 0.125 | 0.03 | 128 | 0.49 | SYN | 67.98 |
C. auris UPV 17-265 | 0.06 | 0.015 | 256 | 0.38 | SYN | 72.46 |
C. auris UPV 17-267 | 0.06 | 0.03 | 128 | 0.77 | AD | 48.59 |
C. auris UPV 17-269 | 0.5 | 0.03 | 256 | 0.56 | AD | 82.57 |
C. auris UPV 17-270 | 0.06 | 0.015 | 256 | 0.75 | AD | 157.79 |
C. auris UPV 17-272 | 0.06 | 0.03 | 128 | 0.63 | AD | 41.10 |
C. auris UPV 17-274 | 0.06 | 0.015 | 128 | 0.50 | AD | 38.74 |
C. auris UPV 17-276 | 0.06 | 0.03 | 128 | 0.56 | AD | 36.90 |
C. auris UPV 17-278 | 0.125 | 0.03 | 64 | 0.27 | SYN | 68.82 |
C. auris UPV 17-279 | 0.06 | 0.03 | 256 | 0.75 | AD | 53.53 |
C. auris UPV 17-280 | 0.125 | 0.03 | 256 | 0.37 | SYN | 54.71 |
C. auris UPV 17-281 | 0.125 | 0.06 | 64 | 0.54 | AD | 47.32 |
C. auris UPV 17-283 | >4 | 0.25 | 64 | 0.16 | IND | 92.56 |
C. auris UPV 17-285 | 0.06 | 0.015 | 128 | 0.50 | AD | 34.47 |
C. auris UPV 17-289 | 0.06 | 0.03 | 64 | 0.75 | AD | 49.22 |
C. auris UPV 17-291 | 0.5 | 0.06 | 64 | 0.25 | SYN | 48.67 |
C. auris UPV 18-029 | 2 | 0.125 | 32 | 0.13 | SYN | 61.49 |
C. krusei ATCC 6258 | 1 | 0.5 | 512 | 0.75 | AD | |
C. parapsilosis ATCC 22019 | 1 | 0.5 | 128 | 0.56 | AD |
MIC (μg/mL) | ||||||
---|---|---|---|---|---|---|
Monotherapy | Combination | |||||
Isolates | FLZ | FLZ | CIT | FICI | Interpretation | Σ SYN ANT |
C. auris UPV 17-213 | >64 | >64 | >1024 | 2 | IND | −113.51 |
C. auris UPV 17-259 | >64 | 1 | 256 | 1.01 | IND | -9.22 |
C. auris UPV 17-261 | >64 | 1 | 128 | 0.07 | SYN | 80.86 |
C. auris UPV 17-265 | >64 | 4 | 128 | 0.53 | AD | −26.35 |
C. auris UPV 17-267 | >64 | 1 | 256 | 0.51 | AD | −41.02 |
C. auris UPV 17-269 | >64 | >64 | >1024 | 2 | IND | −12.32 |
C. auris UPV 17-270 | >64 | 1 | 128 | 1.01 | IND | 58.75 |
C. auris UPV 17-272 | >64 | 32 | 128 | 1.25 | IND | −39.54 |
C. auris UPV 17-274 | >64 | 2 | 128 | 1.01 | IND | −52.44 |
C. auris UPV 17-276 | >64 | >64 | >1024 | 2 | IND | −23.68 |
C. auris UPV 17-278 | >64 | 2 | 128 | 1.01 | IND | −27.80 |
C. auris UPV 17-279 | >64 | 4 | 512 | 1.03 | IND | −37.22 |
C. auris UPV 17-280 | >64 | 32 | 128 | 0.75 | AD | 25.13 |
C. auris UPV 17-281 | >64 | >64 | >1024 | 2 | IND | −5.91 |
C. auris UPV 17-283 | >64 | >64 | >1024 | 2 | IND | −36.22 |
C. auris UPV 17-285 | >64 | 2 | 128 | 1.01 | IND | −17.77 |
C. auris UPV 17-289 | >64 | 4 | 128 | 1.01 | IND | −27.17 |
C. auris UPV 17-291 | >64 | 2 | 64 | 1.01 | IND | 29.63 |
C. auris UPV 18-029 | >64 | 1 | 256 | 0.13 | SYN | −51.85 |
C. krusei ATCC 6258 | 64 | 1 | 128 | 1.01 | IND | |
C. parapsilosis ATCC 22019 | 64 | 1 | 128 | 0.51 | AD |
Survival (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | ||||||||||||
24 | 48 | 72 | 96 | |||||||||
Treatments (μg/mL) | A | B | C | A | B | C | A | B | C | A | B | C |
Uninfected | 100 | 99.5 | 100 | 98 | 98 | 99.4 | 94.9 | 94.4 | 98.3 | 92.4 | 92.5 | 97.2 |
Infected-untreated | 92.6 | 95.4 | 100 | 66.9 | 77.1 | 83.8 | 20 | 41.3 | 49 | 7.8 | 11.3 | 35.4 |
CIT (32) | 96 | 99 | 100 | 81.4 | 95.3 | 81.6 | 64.3 | 80.1 | 68.1 | 45.6 | 68.8 | 57.7 |
FLC (1) | 95.8 | 97.3 | 100 | 72.4 | 93.2 | 84.4 | 57.3 | 83.3 | 63.3 | 38.6 | 62.5 | 56.6 |
FLC (2) Citral (64) | 96 | 99 | 100 | 77.6 | 90.3 | 89.7 | 59.1 | 81.1 | 82.8 | 49.8 | 62.3 | 74.5 |
ANI (0.25) | 100 | 100 | 100 | 79.5 | 70.1 | 94 | 27.6 | 28 | 83.8 | 13 | 18.1 | 63.9 |
ANI (0.25) CIT (128) | 92.9 | 97.9 | 99.6 | 75.5 | 92.9 | 84.4 | 59.5 | 83.4 | 77.4 | 51.4 | 68.7 | 68.9 |
ANI (0.25) CIT (32) | 93.4 | 97.5 | 100 | 80.5 | 92.7 | 92.2 | 64.8 | 82.4 | 82.8 | 47.4 | 70.8 | 78 |
ANI (0.06) CIT (64) | 95.5 | 98.9 | 100 | 78 | 90.9 | 92.7 | 59 | 85.7 | 82.4 | 44 | 74.5 | 79.6 |
AMB (0.25) | 100 | 100 | 100 | 91.6 | 90.2 | 81.4 | 76.9 | 81.7 | 66.7 | 63.2 | 63.8 | 61 |
AMB (0.03) CIT (64) | 100 | 100 | 100 | 80.8 | 79.4 | 86.5 | 56.2 | 53.9 | 75 | 26.7 | 29.8 | 32.9 |
AMB (0.03) CIT (32) | 100 | 100 | 100 | 80.3 | 75.6 | 82.2 | 49.9 | 45.7 | 54 | 29.4 | 28.3 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-la-Fuente, I.; Guridi, A.; Jauregizar, N.; Eraso, E.; Quindós, G.; Sevillano, E. In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates. J. Fungi 2023, 9, 648. https://doi.org/10.3390/jof9060648
de-la-Fuente I, Guridi A, Jauregizar N, Eraso E, Quindós G, Sevillano E. In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates. Journal of Fungi. 2023; 9(6):648. https://doi.org/10.3390/jof9060648
Chicago/Turabian Stylede-la-Fuente, Iñigo, Andrea Guridi, Nerea Jauregizar, Elena Eraso, Guillermo Quindós, and Elena Sevillano. 2023. "In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates" Journal of Fungi 9, no. 6: 648. https://doi.org/10.3390/jof9060648
APA Stylede-la-Fuente, I., Guridi, A., Jauregizar, N., Eraso, E., Quindós, G., & Sevillano, E. (2023). In Vitro and In Vivo Activity of Citral in Combination with Amphotericin B, Anidulafungin and Fluconazole against Candida auris Isolates. Journal of Fungi, 9(6), 648. https://doi.org/10.3390/jof9060648