Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Material and Culture Conditions
2.2. Light and Incubation Conditions
2.3. Extraction and Quantification of Melanin-like Pigments in Monilinia spp. Exposed under Light Conditions
2.4. Determination of H2O2 in M. fructicola Exposed under Light Conditions
2.5. Selection and Identification of Candidate Genes in Monilinia spp.
2.6. Fungal RNA Extraction and qPCR Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Exposure to Light Wavelengths Induces Different Melanin-like Pigment Productions in Monilinia spp.
3.2. The Activation of the DHN-Melanin Biosynthetic Machinery Is Dependent for Each Monilinia spp. on the Light Condition
3.3. ROS-Related Metabolism Is Differently Activated upon Exposure to the Different Light Conditions in M. fructicola
3.4. The Antioxidant Metabolism of M. fructicola Is Impaired upon Light Exposure
3.5. Exposure of M. fructicola to Light Wavelengths Induces a Stress Response, Mediated by Melanin and ROS-Related Metabolism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canessa, P.; Schumacher, J.; Hevia, M.A.; Tudzynski, P.; Larrondo, L.F. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: Characterization of the white collar complex. PLoS ONE 2013, 8, e84223. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Zhang, C.; Xiao, H.; Wang, Y.; Toyoda, H.; Xu, L. Exploitable regulatory effects of light on growth and development of Botrytis Cinerea. J. Plant Pathol. 2013, 95, 509–517. [Google Scholar]
- Verde-Yáñez, L.; Vall-llaura, N.; Usall, J.; Teixidó, N.; Torres, R. Phenotypic plasticity of Monilinia spp. in response to light wavelengths: From in vitro development to virulence on nectarines. Int. J. Food Microbiol. 2022, 373, 109700. [Google Scholar] [CrossRef] [PubMed]
- Balsells-Llauradó, M.; Torres, R.; Vall-llaura, N.; Casals, C.; Teixidó, N.; Usall, J. Light Intensity Alters the Behavior of Monilinia spp. in vitro and the Disease Development on Stone Fruit-Pathogen Interaction. Front. Plant Sci. 2021, 12, 666985. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pires, S.; Espeso, E.A.; Rasiukevičiūtė, N.; Melgarejo, P.; De Cal, A. Light-photoreceptors and proteins related to Monilinia laxa photoresponses. J. Fungi. 2021, 7, 1–17. [Google Scholar] [CrossRef]
- Marschall, R.; Tudzynski, P. Reactive oxygen species in development and infection processes. Semin. Cell Dev. Biol. 2016, 57, 138–146. [Google Scholar] [CrossRef]
- Schumacher, J.; Gorbushina, A.A. Light sensing in plant- and rock-associated black fungi. Fungal Biol. 2020, 124, 407–417. [Google Scholar] [CrossRef]
- Kim, K.; Kook, H.; Jang, Y.; Lee, W.; Kamala-Kannan, S.; Chae, J.; Lee, K. The Effect of Blue-light-emitting Diodes on Antioxidant Properties and Resistance to Botrytis cinerea in Tomato. J. Plant Pathol. Microbiol. 2013, 4, 203. [Google Scholar]
- Vall-llaura, N.; Fernández-Cancelo, P.; Nativitas-Lima, I.; Echeverria, G.; Teixidó, N.; Larrigaudière, C.; Torres, R.; Giné-Bordonaba, J. ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening. Plant Physiol. Biochem. 2022, 171, 38–48. [Google Scholar] [CrossRef]
- Keller, N.P. Fungal secondary metabolism: Regulation, function and drug discovery. Nat. Rev. Microbiol. 2019, 17, 167–180. [Google Scholar] [CrossRef]
- Butler, M.J.; Gardiner, R.B.; Day, A.W. Melanin synthesis by Sclerotinia sclerotiorum. Mycologia 2009, 101, 296–304. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Watanabe, B.; Matsui, K.; Lumyong, S. Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS ONE 2019, 14, e0222187. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, J. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol. Microbiol. 2016, 99, 729–748. [Google Scholar] [CrossRef] [Green Version]
- Breitenbach, R.; Gerrits, R.; Dementyeva, P.; Knabe, N.; Schumacher, J.; Feldmann, I.; Radnik, J.; Ryo, M.; Gorbushina, A.A. The role of extracellular polymeric substances of fungal biofilms in mineral attachment and weathering. Npj Mater. Degrad. 2022, 6, 42. [Google Scholar] [CrossRef]
- De Miccolis, A.R.M.; Landi, L.; Raguseo, C.; Pollastro, S.; Faretra, F.; Romanazzim, G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front. Microbiol. 2022, 13, 680. [Google Scholar] [CrossRef]
- Verde-Yáñez, L.; Vall-llaura, N.; Usall, J.; Teixidó, N.; Torreblanca, È.; Torres, R. Identification and Biosynthesis of DHN-melanin Related Pigments in the Pathogenic Fungi Monilinia laxa, M. fructicola, and M. fructigena. J. Fungi 2023, 9, 138. [Google Scholar]
- Gessler, N.; Egorova, A.S.; Belozerskaya, T.A. Melanin pigments of fungi under extreme environmental conditions. Appl. Biochem. Microbiol. 2014, 50, 105–113. [Google Scholar] [CrossRef]
- Liu, R.; Meng, X.; Mo, C.; Wei, X.; Ma, A. Melanin of fungi: From classification to application. World J. Microbiol. Biotechnol. 2022, 38, 12. [Google Scholar] [CrossRef]
- Blachowicz, A.; Raffa, N.; Bok, J.W.; Choera, T.; Knox, B.; Lim, F.Y.; Huttenlocher, A.; Wang, C.C.C.; Venkateswaran, K.; Keller, N.P. Contributions of spore secondary metabolites to UV-C protection and virulence vary in different Aspergillus fumigatus strains. MBio 2020, 11, e03415-19. [Google Scholar] [CrossRef] [Green Version]
- Singaravelan, N.; Grishkan, I.; Beharav, A.; Wakamatsu, K.; Ito, S.; Nevo, E. Adaptive melanin response of the soil fungus Aspergillus niger to UV radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE 2008, 3, e2993. [Google Scholar] [CrossRef] [PubMed]
- Baró-Montel, N.; Vall-llaura, N.; Usall, J.; Teixidó, N.; Naranjo-Ortíz, M.A.; Gabaldón, T.; Torres, R. Pectin methyl esterases and rhamnogalacturonan hydrolases: Weapons for successful Monilinia laxa infection in stone fruit? Plant Pathol. 2019, 68, 1381–1393. [Google Scholar] [CrossRef]
- Giné-Bordonaba, J.; Echeverria, G.; Ubach, D.; Aguiló-Aguayo, I.; López, M.L.; Larrigaudière, C. Biochemical and physiological changes during fruit development and ripening of two sweet cherry varieties with different levels of cracking tolerance. Plant Physiol. Biochem. 2017, 111, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, L.; Valero-Jiménez, C.A.; van Kan, J.A.L. Deciphering the Monilinia fructicola genome to discover effector genes possibly involved in virulence. Genes 2021, 12, 568. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, P.Y.; Janovjak, H.; Miserez, A.R.; Dobbie, Z. Short Technical Report Processing of Gene Expression Data Generated. Gene Expr. 2002, 32, 1372–1379. [Google Scholar]
- Cordero, R.J.B.; Casadevall, A. Functions of fungal melanin beyond virulence. Fungal. Biol. Rev. 2017, 31, 99–112. [Google Scholar] [CrossRef]
- Avalos, J.; Schrott, L.E. Photoinduction of carotenoid biosyntesis in Gibberella fujikuroi. Folia Microbiol. 1961, 6, 179–185. [Google Scholar]
- Herrera-Estrella, A.; Horwitz, B.A. Looking through the eyes of fungi: Molecular genetics of photoreception. Mol. Microbiol. 2007, 64, 5–15. [Google Scholar] [CrossRef]
- Id, K.K.; Jung, E.; Lindner, J.; Hardiman, I.; Kai, M.; Poetschner, J.; Madhavan, S.; Matthäus, C.; Kai, M.; Christina, R.; et al. Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms. PLoS ONE 2020, 15, e0232145. [Google Scholar]
- Lafuente, M.T.; Romero, P.; Ballester, A.R. Coordinated activation of the metabolic pathways induced by LED blue light in citrus fruit. Food Chem. 2021, 341, 128050. [Google Scholar] [CrossRef]
- Kihara, J.; Tanaka, N.; Ueno, M.; Arase, S. Identification and expression analysis of regulatory genes induced by near-ultraviolet irradiation in Bipolaris oryzae. Adv. Microbiol. 2014, 4, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, E.S.; Hove, E.; Emery, H.S. Antioxidant function of melanin in black fungi. Infect. Immun. 1995, 63, 4944–4945. [Google Scholar] [CrossRef] [Green Version]
- Kohli, S.K.; Khanna, K.; Bhardwaj, R.; Abd, A.E.F.; Ahmad, P.; Corpas, F.J. Assessment of subcellular ROS and NO metabolism in higher plants: Multifunctional signaling molecules. Antioxidants 2019, 8, 641. [Google Scholar] [CrossRef] [Green Version]
- Nofsinger, J.B.; Liu, Y.; Simon, J.D. Aggregation of eumelanin mitigates photogeneration of reactive oxygen species. Free. Radic. Biol. Med. 2002, 32, 720–730. [Google Scholar] [CrossRef]
- Sideri, M.; Georgiou, C.D. Differentiation and hydrogen peroxide production in Sclerotium rolfsii are induced by the oxidizing growth factors, light and iron. Mycologia 2000, 92, 1033–1042. [Google Scholar] [CrossRef]
- Siegmund, U.; Heller, J.; van Kan, J.A.L.; Tudzynski, P. The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1. PLoS ONE 2013, 8, e55879. [Google Scholar] [CrossRef]
- Vall-llaura, N.; Torres, R.; Teixidó, N.; Usall, J.; Giné-Bordonaba, J. Untangling the role of ethylene beyond fruit development and ripening: A physiological and molecular perspective focused on the Monilinia -peach interaction. Sci. Hortic. 2022, 301, 111123. [Google Scholar] [CrossRef]
- Mhamdi, A.; Van, B.F. Reactive oxygen species in plant development. Development 2018, 145, 164376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolke, Y.; Liu, S.; Quidde, T.; Williamson, B.; Schouten, A.; Weltring, K.M.; Siewers, V.; Tenberge, K.B.; Tudzynski, B.; Tudzynski, P. Functional analysis of H2O2-generating systems in Botrytis cinerea: The major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Mol. Plant Pathol. 2004, 5, 17–27. [Google Scholar] [CrossRef]
- Dullah, S.; Hazarika, D.J.; Goswami, G.; Borgohain, T.; Ghosh, A.; Barooah, M.; Bhattacharyya, A.; Boro, R.C. Melanin production and laccase mediated oxidative stress alleviation during fungal-fungal interaction among basidiomycete fungi. IMA Fungus 2021, 12, 1–17. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, F.; Zhuo, R.; Ma, F.; Gong, Y.; Wan, X.; Jiang, M.; Zhang, X. Expression of the laccase gene from a white rot fungus in Pichia pastoris can enhance the resistance of this yeast to H2O2-mediated oxidative stress by stimulating the glutathione-based antioxidative system. Appl. Environ. Microbiol. 2012, 78, 5845–5854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Peng, C.; Han, Q.; Wang, M.; Zhou, G.; Ye, B.; Xiao, Y.; Fang, Z.; Kües, U. Coprinopsis cinerea Uses Laccase Lcc9 as a Defense Strategy to Eliminate Oxidative Stress during Fungal-Fungal Interactions. Appl. Environ. Microbiol. 2022, 88, e01760-21. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wang, W.; Luo, Z.; Lin, H.; Li, Y.; Lu, W.; Xu, Z.; Cai, C.; Hu, S. Blue LED light treatment inhibits virulence and patulin biosynthesis in Penicillium expansum. Postharvest Biol. Technol. 2023, 200, 112340. [Google Scholar] [CrossRef]
- Lafuente, M.T.; Alférez, F.; González-Candelas, L. Light-emitting Diode Blue Light Alters the Ability of Penicillium digitatum to Infect Citrus Fruits. Photochem. Photobiol. 2018, 94, 1003–1009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verde-Yáñez, L.; Usall, J.; Teixidó, N.; Vall-llaura, N.; Torres, R. Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola. J. Fungi 2023, 9, 653. https://doi.org/10.3390/jof9060653
Verde-Yáñez L, Usall J, Teixidó N, Vall-llaura N, Torres R. Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola. Journal of Fungi. 2023; 9(6):653. https://doi.org/10.3390/jof9060653
Chicago/Turabian StyleVerde-Yáñez, Lucía, Josep Usall, Neus Teixidó, Núria Vall-llaura, and Rosario Torres. 2023. "Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola" Journal of Fungi 9, no. 6: 653. https://doi.org/10.3390/jof9060653
APA StyleVerde-Yáñez, L., Usall, J., Teixidó, N., Vall-llaura, N., & Torres, R. (2023). Deciphering the Effect of Light Wavelengths in Monilinia spp. DHN-Melanin Production and Their Interplay with ROS Metabolism in M. fructicola. Journal of Fungi, 9(6), 653. https://doi.org/10.3390/jof9060653