Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements
Abstract
:1. Introduction
2. Material and Methods
2.1. Collection and Identification
2.2. GC-MS-Based Metabolite Profiling
2.3. Total Protein
2.4. Total Available Carbohydrates
2.5. Sugars and Starch
2.6. Phenols and Flavonoids
2.7. Quantification of Phenolic Compounds Using UPLC
2.8. Carotenoids
2.9. Antioxidant Potential
2.9.1. Reducing Power
2.9.2. Hydrogen Peroxide Scavenging Activity
2.9.3. Total Antioxidant Capacity
2.10. Nutrient Analyses
2.11. Antinutrients and Mineral Bioavailability
2.11.1. Phytic Acid
2.11.2. Condensed Tannins
2.11.3. Molar Ratios of Antinutrients to Minerals
2.12. Vitamins
2.12.1. Vitamin C
2.12.2. Vitamin B3 and B6
2.13. Statistical Analysis
3. Results
3.1. Identification of Mushrooms
3.2. GC-MS-Based Metabolite Profiling
3.3. Proteins
3.4. Carbohydrates and Sugars
3.5. Total Phenol and Total Flavonoid
3.6. UPLC-Based Quantification of Phenolic Compounds
3.7. Carotenoids
3.8. Antioxidant Potential
3.9. Total Antioxidant Capacities
3.10. Minerals
3.11. Antinutrients and Mineral Bioavailability
3.12. Vitamins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, G.P.; Singh, N.; Kumar, H.; Singh, S.B. Protected Cultivation for Food and Nutritional Security at Ladakh. Def. Sci. J. 2010, 60, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Tara, J.S.; Hussain, Z. Biology of Mythimna separata (Lepidoptera) on Hordeum vulgare in Arid Cold Desert of Kargil Ladakh (J&K, India). Int. J. Res. Anal. Rev. 2019, 6, 320–326. [Google Scholar]
- Akbar, M.; Bhat, M.S.; Khan, A.A. Multi-Hazard Susceptibility Mapping for Disaster Risk Reduction in Kargil-Ladakh Region of Trans-Himalayan India. Environ. Earth Sci. 2023, 82, 68. [Google Scholar] [CrossRef]
- Wani, K.P.; Singh, P.K.; Narayan, N.; Khan, S.H.; Amin, A. Prospects of Vegetable Production in Cold Arid Region of Ladakh, Achievement and Future Strategies. Int. J. Curr. Res. 2011, 33, 10–17. [Google Scholar]
- Dorjey, K. Morpho Taxonomical and Ecological Studies of Macrofungi of Trans-Himalayan Ladakh. Himal. Ecol. 2019, 27, 7. [Google Scholar]
- Niego, A.G.; Rapior, S.; Thongklang, N.; Raspé, O.; Jaidee, W.; Lumyong, S.; Hyde, K.D. Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. J. Fungi 2021, 7, 397. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.W.; Ghobad-Nejhad, M.; Tian, X.M.; Wang, Y.F.; Wu, F. Current Status Of ‘Sanghuang’ as a Group of Medicinal Mushrooms and Their Perspective in Industry Development. Food Rev. Int. 2022, 38, 589–607. [Google Scholar] [CrossRef]
- Gründemann, C.; Reinhardt, J.K.; Lindequist, U. European Medicinal Mushrooms: Do They Have Potential for Modern Medicine?—An Update. Phytomedicine 2020, 66, 153131. [Google Scholar] [CrossRef]
- González, A.; Cruz, M.; Losoya, C.; Nobre, C.; Loredo, A.; Rodríguez, R.; Contreras, J.; Belmares, R. Edible Mushrooms as a Novel Protein Source for Functional Foods. Food Funct. 2020, 11, 7400–7414. [Google Scholar] [CrossRef]
- Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Macrofungi: A Review of Cultivation Strategies, Bioactivity, and Application of Mushrooms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2333–2356. [Google Scholar] [CrossRef]
- Cateni, F.; Gargano, M.L.; Procida, G.; Venturella, G.; Cirlincione, F.; Ferraro, V. Mycochemicals in Wild and Cultivated Mushrooms: Nutrition and Health. Phytochem. Rev. 2021, 21, 339–383. [Google Scholar] [CrossRef]
- Boddy, L.; Büntgen, U.; Egli, S.; Gange, A.C.; Heegaard, E.; Kirk, P.M.; Mohammad, A.; Kauserud, H. Climate Variation Effects on Fungal Fruiting. Fungal. Ecol. 2014, 10, 20–33. [Google Scholar] [CrossRef]
- Martínez-Ibarra, E.; Gómez-Martín, M.B.; Armesto-López, X.A. Climatic and Socioeconomic Aspects of Mushrooms: The Case of Spain. Sustainability 2019, 11, 1030. [Google Scholar] [CrossRef] [Green Version]
- Oviya, R.; Sobanbabu, G.; Anbazhagan, P.; Revathy, N.; Mahalakshmi, P.; Manonmani, K.; Mareeswari, P.; Vijayasamundeeswari, A.; Shanmugaiah, V.; Mehetre, S.; et al. Studying Soil Ecology and Growth Conditions of Phellorinia herculeana, a Wild Edible Mushroom. Processes 2022, 10, 1797. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [Green Version]
- Das, A.K.; Nanda, P.K.; Dandapat, P.; Bandyopadhyay, S.; Gullón, P.; Sivaraman, G.K.; McClements, D.J.; Gullón, B.; Lorenzo, J.M. Edible Mushrooms as Functional Ingredients for Development of Healthier and More Sustainable Muscle Foods: A Flexitarian Approach. Molecules 2021, 26, 2463. [Google Scholar] [CrossRef]
- Dimitrova, T. Ethnomycological Research in the Field of Wild Mushrooms and Medicinal Plants. Acta Sci. Agric. 2021, 8, 67–83. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Ozgen, S.; Sumayya, R.A. Emerging Role of Edible Mushrooms in Food Industry and its Nutritional and Medicinal Consequences. Eurasian J. Food Sci. Technol. 2020, 4, 6–23. [Google Scholar]
- de Frutos, P. Changes in World Patterns of Wild Edible Mushrooms Use Measured through International Trade Flows. For. Policy Econ. 2020, 112, 102093. [Google Scholar] [CrossRef]
- Cai, M.; Pettenella, D.; Vidale, E. Income Generation from Wild Mushrooms in Marginal Rural Areas. For. Policy Econ. 2011, 13, 221–226. [Google Scholar] [CrossRef]
- Panda, S.K.; Luyten, W. Medicinal Mushrooms: Clinical Perspective and Challenges. Drug Discov. Today 2022, 27, 636–651. [Google Scholar] [CrossRef]
- Booi, H.N.; Lee, M.K.; Fung, S.Y.; Ng, S.T.; Tan, C.S.; Lim, K.H.; Roberts, R.; Ting, K.N. Medicinal Mushrooms and Their Use to Strengthen Respiratory Health During and Post-COVID-19 Pandemic. Int. J. Med. Mushrooms 2022, 24, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, X.; Gong, P. Classification, Structure and Mechanism of Antiviral Polysaccharides Derived from Edible and Medicinal Fungus. Int. J. Biol. Macromol. 2021, 183, 1753–1773. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Sen, I.K.; Chakraborty, I.; Mondal, S.; Bar, H.; Bhanja, S.K.; Mandal, S.; Maity, G.N. Biologically Active Polysaccharide from Edible Mushrooms: A Review. Int. J. Biol. Macromol. 2021, 172, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The Antioxidant Potential of Different Edible and Medicinal Mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar] [CrossRef]
- Zhou, Y.; Chu, M.; Ahmadi, F.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. A Comprehensive Review on Phytochemical Profiling in Mushrooms: Occurrence, Biological Activities, Applications and Future Prospective. Food Rev. Int. 2023, 39, 1–28. [Google Scholar] [CrossRef]
- Keerthana, K.; Anukiruthika, T.; Moses, J.A.; Anandharamakrishnan, C. Development of Fiber-Enriched 3D Printed Snacks from Alternative Foods: A Study on Button Mushroom. J. Food Eng. 2020, 287, 110116. [Google Scholar] [CrossRef]
- Amerikanou, C.; Tagkouli, D.; Tsiaka, T.; Lantzouraki, D.Z.; Karavoltsos, S.; Sakellari, A.; Kleftaki, S.A.; Koutrotsios, G.; Giannou, V.; Zervakis, G.I.; et al. Pleurotus eryngii Chips—Chemical Characterization and Nutritional Value of an Innovative Healthy Snack. Foods 2023, 12, 353. [Google Scholar] [CrossRef]
- Kleftaki, S.A.; Simati, S.; Amerikanou, C.; Gioxari, A.; Tzavara, C.; Zervakis, G.I.; Kalogeropoulos, N.; Kokkinos, A.; Kaliora, A.C. Pleurotus eryngii Improves Postprandial Glycaemia, Hunger and Fullness Perception, and Enhances Ghrelin Suppression in People with Metabolically Unhealthy Obesity. Pharmacol. Res. 2022, 175, 105979. [Google Scholar] [CrossRef]
- Semwal, K.C.; Stephenson, S.L.; Bhatt, V.K.; Bhatt, R.P. Edible Mushrooms of the Northwestern Himalaya, India: A Study of Indigenous Knowledge, Distribution and Diversity. Mycosphere 2014, 5, 440–461. [Google Scholar] [CrossRef]
- Atri, N.S.; Sharma, Y.P.; Kumar, S.; Mridu. Wild Edible Mushrooms of North West Himalaya: Their Nutritional, Nutraceutical, and Sociobiological Aspects. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Soil & Agroecosystems; Springer: Berlin/Heidelberg, Germany, 2019; Volume 2, pp. 533–563. [Google Scholar] [CrossRef]
- Kothiyal, G.; Singh, K.; Kumar, A.; Juyal, P.; Guleri, S. Wild Macrofungi (Mushrooms) Diversity Occurrence in the Forest of Uttarakhand, India. Biodiv. Res. 2019, 53, 7–32. [Google Scholar]
- Watling, R.; Abraham, S.P. Ectomycorrhizal Fungi of Kashmir Forests. Mycorrhiza 1992, 2, 81–87. [Google Scholar] [CrossRef]
- Baum, C.; Leinweber, P.; Weih, M.; Lamersdorf, N.; Dimitriou, I. Effects of Short Rotation Coppice with Willows and Poplar on Soil Ecology. Agric. For. Res. 2009, 3, 183–196. [Google Scholar]
- Cripps, C.; Miller, O.K., Jr. Ectomycorrhizal Fungi Associated with Aspen on Three Sites in the North-Central Rocky Mountains. Can. J. Bot. 1993, 71, 1414–1420. [Google Scholar] [CrossRef]
- Heijden, E.V.D.; Kuyper, T.W. Ecological Strategies of Ectomycorrhizal Fungi of Salix Repens: Root Manipulation Versus Root Replacement. Oikos 2003, 103, 668–680. [Google Scholar] [CrossRef]
- Overall, A. Fungi at Heathrow. Field Mycol. 2017, 18, 113–118. [Google Scholar] [CrossRef]
- Campos, J.A.; Tejera, N.A.; Sánchez, C.J. Substrate Role in the Accumulation of Heavy Metals in Sporocarps of Wild Fungi. Biometals 2009, 22, 835–841. [Google Scholar] [CrossRef]
- De Gussem, K.; Vandenabeele, P.; Verbeken, A.; Moens, L. Raman Spectroscopic Study of Lactarius Spores (Russulales, Fungi). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2896–2908. [Google Scholar] [CrossRef]
- Høiland, K.; Botnen, S.A. Comparison of Aboveground Sporocarps and Belowground Ectomycorrhizal Structures of Agaricales, Boletales and Russulales in a Sand Dune Ecosystem on Lista, South-Western Norway. Agarica 2016, 37, 67–77. [Google Scholar]
- Pekşen, A.; Kibar, B.; Yakupoğlu, G. Determination of Morphological Characteristics, Protein and Mineral Content of Some Edible Lactarius Species. Anadolu J. Agric. Sci. 2007, 22, 301–305. [Google Scholar]
- Novaković, A.R.; Karaman, M.A.; Milovanović, I.L.; Belović, M.M.; Rašeta, M.J.; Radusin, T.I.; Ilić, N.M. Edible Mycorrhizal Species Lactarius controversus Pers. 1800 as a Source of Antioxidant and Cytotoxic Agents. Hem. Ind. 2016, 70, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Dhancholia, S. Diversity of the Genus Lactarius in Lahaul Valley (Himachal Pradesh). Plant Dis. Res. 2011, 26, 203. [Google Scholar]
- Özen, T.; Darcan, C.; Kaygusuz, Ö.; Türkekul, İ. The Chemical Content, Antioxidant and Antimicrobial Assays of Lactarius controversus and Lactarius musteus: Two Edible Wild Mushrooms from Giresun Province of Turkey. Ann. Food Process. Preserv. 2016, 1, 1001. [Google Scholar]
- Sarsekova, D.; Ayan, S.; Talgat, A. Ectomycorrhizal Flora Formed by Main Forest Trees in the Irtysh River Region of Central and Northeastern Kazakhstan. South-East Eur. For. 2020, 11, 61–69. [Google Scholar] [CrossRef]
- Verma, K.; Mehmood, T.; Uniyal, P.; Kapoor, R.; Sharma, Y.P. Two New Species of Genus Lactarius Russulaceae from North-western Himalaya, India. Phytotaxa 2021, 500, 253–265. [Google Scholar] [CrossRef]
- Verbeken, A.; Walleyn, R. Monograph of Lactarius in Tropical Africa. In Fungus Flora of Tropical Africa; National Botanic Garden of Belgium: Meise, Belgium, 2010; Volume 2. [Google Scholar]
- Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Reprint; Eyre Methuen Ltd.: London, UK, 1978. [Google Scholar]
- Doyle, J.J. Isolation of Plant DNA from Fresh Tissue. Focus 1990, 12, 13–15. [Google Scholar] [CrossRef]
- Zarate, E.; Boyle, V.; Rupprecht, U.; Green, S.; Villas-Boas, S.G.; Baker, P.; Pinu, F.R. Fully Automated Trimethylsilyl TMS Derivatisation Protocol for Metabolite Profiling by GC-MS. Metabolites 2016, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Osborne, D.R.; Voogt, P.I. The Analysis of Nutrients in Foods; Academic Press Inc. (London) Ltd.: London, UK, 1978. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Estimation of Reducing Sugar by Dinitrosalicylic Acid Method. Anal. Chem. 1972, 31, 426–428. [Google Scholar] [CrossRef]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owens, H.S. Determination of Starch and Amylose in Vegetables. Anal. Chem. 1950, 22, 1156–1158. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, A.J. Colorimetric of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1956, 16, 144–158. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum) Varieties. Hortic. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Bahorun, T.; Gressier, B.; Trotin, F.; Brunet, C.; Dine, T.; Luyckx, M.; Vasseur, J.; Cazin, M.; Cazin, J.C.; Pinkas, M. Oxygen Species Scavenging Activity of Phenolic Extracts from Hawthorn Fresh Plant Organs and Pharmaceutical Preparations. Arzneim. Forsch. 1996, 46, 1086–1089. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity Through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Allen, S.E. Chemical Analysis of Ecological Materials, 2nd ed.; Blackwell Scientific Publications: London, UK, 1989. [Google Scholar]
- Latta, M.; Eskin, M. A Simple and Rapid Colorimetric Method for Phytate Determination. J. Agric. Food Chem. 1980, 28, 1313–1315. [Google Scholar] [CrossRef]
- Price, M.L.; Butler, L.G. Rapid Visual Estimation and Spectrophotometric Determination of Tannin Content of Sorghum Grain. J. Agric. Food Chem. 1977, 25, 1268–1273. [Google Scholar] [CrossRef]
- Norhaizan, M.E.; Nor Faizadatul Ain, A.W. Determination of Phytate, Iron, Zinc, Calcium Contents and Their Molar Ratios in Commonly Consumed Raw and Prepared Food in Malaysia. Mal. J. Nutr. 2009, 15, 213–222. [Google Scholar]
- Nielsen, S.S. Vitamin C Determination by Indophenol Method. In Food Analysis Laboratory Manual; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Khateeb, M.; Elias, B.; Rahal, F.A. Validated Spectrophotometric Method to Assay of B6 and B3 Vitamins in Pharmaceutical Forms Using Potassium Iodide and Potassium Iodate. Int. Lett. Chem. Phys. Astron. 2015, 60, 113–119. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Oberleas, D.; Harland, B.F. Phytate Content of Foods: Effect on Dietary Zinc Bioavailbility. J. Am. Diet. Assoc. 1981, 79, 433–436. [Google Scholar] [CrossRef]
- Hassan, L.G.; Abdulmumin, U.; Umar, K.J.; Ikeh, O.P.; Aliero, A.A. Nutritional and Anti-Nutritional Composition of Strychnos innocua Del. (Monkey Orange) Fruit Pulp Grown in Zuru, Nigeria. Nig. J. Basic Appl. Sci. 2014, 22, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health Benefits of Whole Grain: Effects on Dietary Carbohydrate Quality, the Gut Microbiome, and Consequences of Processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef]
- Wunjuntuk, K.; Ahmad, M.; Techakriengkrai, T.; Chunhom, R.; Jaraspermsuk, E.; Chaisri, A.; Kiwwongngam, R.; Wuttimongkolkul, S.; Charoenkiatkul, S. Proximate Composition, Dietary Fibre, Beta-Glucan Content, and Inhibition of Key Enzymes Linked to Diabetes and Obesity in Cultivated and Wild Mushrooms. J. Food Compos. Anal. 2022, 105, 104226. [Google Scholar] [CrossRef]
- Jacinto-Azevedo, B.; Valderrama, N.; Henríquez, K.; Aranda, M.; Aqueveque, P. Nutritional Value and Biological Properties of Chilean Wild and Commercial Edible Mushrooms. Food Chem. 2021, 356, 129651. [Google Scholar] [CrossRef]
- Pamuru, R.R.; Puli, C.O.R.; Pandita, D.; Wani, S.H. Sugar Alcohols and Osmotic Stress Adaptation in Plants. In Compatible Solutes Engineering for Crop Plants Facing Climate Change; Springer: Cham, Switzerland, 2021; pp. 189–203. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Echeta, K.C. Current Developments in Sugar Alcohols: Chemistry, Nutrition, and Health Concerns of Sorbitol, Xylitol, Glycerol, Arabitol, Inositol, Maltitol, and Lactitol. Int. J. Adv. Acad. Res. 2019, 5, 1–33. [Google Scholar]
- Msomi, N.Z.; Erukainure, O.L.; Islam, M.S. Suitability of Sugar Alcohols as Antidiabetic Supplements: A Review. J. Food Drug Anal. 2021, 29, 1. [Google Scholar] [CrossRef]
- Ao, T.; Deb, C.R. Nutritional and Antioxidant Potential of Some Wild Edible Mushrooms of Nagaland, India. J. Food Sci. Technol. 2019, 56, 1084–1089. [Google Scholar] [CrossRef]
- Guo, X.; Peng, C.; Li, T.; Huang, J.; Song, H.; Zhu, Q.; Wang, M. The effects of drought and re-watering on non-structural carbohydrates of Pinus tabulaeformis seedlings. Biology 2021, 10, 281. [Google Scholar] [CrossRef]
- Nadia, J.; Bronlund, J.; Singh, R.P.; Singh, H.; Bornhorst, G.M. Structural Breakdown of Starch-Based Foods During Gastric Digestion and its Link to Glycemic Response: In Vivo and In Vitro Considerations. Comp. Rev. Food Sci. Food Saf. 2021, 20, 2660–2698. [Google Scholar] [CrossRef]
- Savarino, G.; Corsello, A.; Corsello, G. Macronutrient Balance and Micronutrient Amounts Through Growth and Development. Ital. J. Pediatr. 2021, 47, 109. [Google Scholar] [CrossRef]
- Bauer Petrovska, B. Protein Fraction in Edible Macedonian Mushrooms. Eur. Food Res. Technol. 2001, 212, 469–472. [Google Scholar] [CrossRef]
- Çaglarlrmak, N.; Unal, K.; Otles, S. Nutritional Value of Edible Wild Mushrooms Collected from the Black Sea Region of Turkey. Micol. Apl. Int. 2002, 14, 1–5. [Google Scholar]
- Wang, M.; Zhao, R. A Review on Nutritional Advantages of Edible Mushrooms and its Industrialization Development Situation in Protein Meat Analogues. J. Future Foods 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Gazme, B.; Boachie, R.T.; Tsopmo, A.; Udenigwe, C.C. Occurrence, Properties and Biological Significance of Pyroglutamyl Peptides Derived from Different Food Sources. Food Sci. Hum. Wellness 2019, 8, 268–274. [Google Scholar] [CrossRef]
- Lalam, C.; Petla, N.; Tantravahi, S. Antiproliferative and Antibacterial Effects of Pyroglutamic Acid Isolated from Enterococcus faecium (Mcc-2729). Ann. Rom. Soc. Cell Biol. 2021, 25, 7624–7628. [Google Scholar]
- Sagaama, A.; Brandan, S.A.; Issa, T.B.; Issaoui, N. Searching Potential Antiviral Candidates for the Treatment of the 2019 Novel Coronavirus Based on DFT Calculations and Molecular Docking. Heliyon 2020, 6, e04640. [Google Scholar] [CrossRef]
- Kumar, A.; Bachhawat, A.K. Pyroglutamic Acid: Throwing Light on A Lightly Studied Metabolite. Curr. Sci. 2012, 102, 288–297. [Google Scholar]
- Ali, Q.; Haider, M.Z.; Shahid, S.; Aslam, N.; Shehzad, F.; Naseem, J.; Ashraf, R.; Ali, A.; Hussain, S.M. Role of Amino Acids in Improving Abiotic Stress Tolerance to Plants. In Plant Tolerance to Environmental Stress; CRC Press: Boca Raton, FL, USA, 2019; pp. 175–204. [Google Scholar]
- Nagulwar, M.M.; More, D.R.; Mandhare, L.L. Nutritional Properties and Value Addition of Mushroom: A Review. Pharma Innov. J. 2020, 9, 395–398. [Google Scholar] [CrossRef]
- Kıvrak, İ.; Kıvrak, Ş.; Harmandar, M. Free Amino Acid Profiling in the Giant Puffball Mushroom (Calvatia gigantea) using UPLC–MS/MS. Food Chem. 2014, 158, 88–92. [Google Scholar] [CrossRef]
- Xu, N.; Chen, G.; Liu, H. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef] [Green Version]
- Bansal, V.; Tyagi, S.; Ghosh, K.; Gupta, A. Extraction of Protein from Mushroom and Determining its Antioxidant and Anti-Inflammatory Potential. Res. J. Pharm. Technol. 2020, 13, 6017–6021. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Heinemann, B.; Rugen, N.; Nunes-Nesi, A.; Araújo, W.L.; Braun, H.P.; Hildebrandt, T.M. The Role of Amino Acid Metabolism During Abiotic Stress Release. Plant Cell Environ. 2019, 42, 1630–1644. [Google Scholar] [CrossRef] [Green Version]
- Haro, A.; Trescastro, A.; Lara, L.; Fernández-Fígares, I.; Nieto, R.; Seiquer, I. Mineral Elements Content of Wild Growing Edible Mushrooms from the Southeast of Spain. J. Food Compos. Anal. 2020, 91, 103504. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; Benítez-Rodríguez, A.; López-Castillo, J.G.; Palma, M.; Barbero, G.F. Metal Concentrations in Lactarius Mushroom Species Collected from Southern Spain and Northern Morocco: Evaluation of health risks and benefits. J. Food Compos. Anal. 2021, 99, 103859. [Google Scholar] [CrossRef]
- Sudheep, N.M.; Sridhar, K.R. Nutritional Composition of Two Wild Mushrooms Consumed by the Tribals of the Western Ghats of India. Mycology 2014, 5, 64–72. [Google Scholar] [CrossRef]
- Yahaya, N.F.M.; Rahman, M.A.; Abdullah, N. Therapeutic Potential of Mushrooms in Preventing and Ameliorating Hypertension. Trends Food Sci. Technol. 2014, 39, 104–115. [Google Scholar] [CrossRef]
- Nomkong, R.F.; Ejoh, R.A.; Dibanda, R.F.; Gabriel, M.N. Bioavailability of Iron and Related Components in Cooked Green Leafy Vegetables Consumed in Cameroon. Food Sci. Nutr. 2019, 10, 1096–1111. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.Y.; Li, M.Y.; Ning, H.; Xue, R.Y.; Liang, J.H.; Wang, N.; Li, H.B. Cadmium Oral Bioavailability is Affected by Calcium and Phytate Contents in Food: Evidence from Leafy Vegetables in Mice. J. Hazard. Mater. 2022, 424, 127373. [Google Scholar] [CrossRef]
- Kaspchak, E.; Bonassoli, A.B.G.; Iwankiw, P.K.; Kayukawa, C.T.M.; Igarashi-Mafra, L.; Mafra, M.R. Interactions of Antinutrients Mixtures with Bovine Serum Albumin and its Influence on In Vitro Protein Digestibility. J. Mol. Liq. 2020, 315, 113699. [Google Scholar] [CrossRef]
- Woldegiorgis, A.Z.; Abate, D.; Haki, G.D.; Ziegler, G.R. Major, Minor and Toxic Minerals and Anti-Nutrients Composition in Edible Mushrooms Collected from Ethiopia. Int. J. Food Process. Technol. 2015, 6, 1000430. [Google Scholar] [CrossRef] [Green Version]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Kouassi, K.A.; Parfait Kouadio, E.J.; Konan, K.H.; Dué, A.E.; Kouamé, L.P. Phenolic Compounds, Organic Acid and Antioxidant Activity of Lactarius subsericatus, Cantharellus platyphyllus and Amanita rubescens, Three Edible Ectomycorrhizal Mushrooms from Center of Côte d’Ivoire. Eurasian J. Anal. Chem. 2016, 11, 127–139. [Google Scholar]
- Crivelli, J.J.; Maalouf, N.M.; Paiste, H.J.; Wood, K.D.; Hughes, A.E.; Oates, G.R.; Assimos, D.G. Disparities in Kidney Stone Disease: A Scoping Review. J. Urol. 2021, 206, 517–525. [Google Scholar] [CrossRef]
- Heldt, H.W.; Piechulla, B. Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components. Plant Biochem. 2011, 4, 446–447. [Google Scholar] [CrossRef]
- de Carvalho, C.C.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. A Review of Chemical Composition and Nutritional Value of Wild-Growing and Cultivated Mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef]
- Bengu, A.S. Some Elements and Fatty Acid Profiles of Three Different Wild Edible Mushrooms from Tokat Province in Turkey. Prog. Nutr. 2019, 21, 189–193. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty Acid Unsaturation, Mobilization, and Regulation in the Response of Plants to Stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated Fatty Acids as Antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Douglas, L.M.; Konopka, J.B. Fungal Membrane Organization: The Eisosome Concept. Annu. Rev. Microbiol. 2014, 68, 377–393. [Google Scholar] [CrossRef]
- Jasinghe, V.J.; Perera, C.O. Distribution of Ergosterol in Different Tissues of Mushrooms and its Effect on the Conversion of Ergosterol to Vitamin D2 by UV Irradiation. Food Chem. 2005, 92, 541–546. [Google Scholar] [CrossRef]
- Villares, A.; Mateo-Vivaracho, L.; García-Lafuente, A.; Guillamón, E. Storage Temperature and UV-Irradiation Influence on the Ergosterol Content in Edible Mushrooms. Food Chem. 2014, 147, 252–256. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Nowak, R.; Nowacka-Jechalke, N.; Pietrzak, W.; Gawlik-Dziki, U. A New Look at Edible and Medicinal Mushrooms as a Source of Ergosterol and Ergosterol Peroxide-UHPLC-MS/MS Analysis. Food Chem. 2022, 369, 130927. [Google Scholar] [CrossRef]
- Gaglarirmak, N. Chemical Composition and Nutrition Value of Dried Cultivated Culinary-Medicinal Mushrooms from Turkey. Int. J. Med. Mushrooms 2011, 13, 351–356. [Google Scholar] [CrossRef]
- Choi, S.R.; Song, E.J.; Song, Y.E.; Choi, M.K.; Han, H.A.; Lee, I.S.; Kim, H.R. Determination of Vitamin B6 Content Using HPLC in Agricultural Products Cultivated in Local Areas in Korea. J. Korean Soc. Food Sci. Nutr. 2017, 30, 710–718. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C. Tocopherols Composition of Portuguese Wild Mushrooms with Antioxidant Capacity. Food Chem. 2010, 119, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.; Picinich, S.C.; Yang, Z.; Zhao, Y.; Suh, N.; Kong, A.N.; Yang, C.S. Cancer-Preventive Activities of Tocopherols and Tocotrienols. Carcinogenesis 2010, 31, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xia, T.; Duan, W.; Zhang, Z.; Li, Y.; Fang, B.; Wang, M. Effects of Organic Acids, Amino Acids and Phenolic Compounds on Antioxidant Characteristic of Zhenjiang Aromatic Vinegar. Molecules 2019, 24, 3799. [Google Scholar] [CrossRef] [Green Version]
- Joye, I.J. Acids and Bases in Food. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–9. [Google Scholar] [CrossRef]
- Gad, S.E.; Barbare, R. Phosphoric Acid. In Encyclopedia of Toxicology, 2nd ed.; Academic Press: San Diego, CA, USA, 2005; Volume 1, pp. 414–415. ISBN 9780123694003. [Google Scholar] [CrossRef]
- Kim, M.Y.; Seguin, P.; Ahn, J.K.; Kim, J.J.; Chun, S.C.; Kim, E.H.; Chung, I.M. Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. J. Agric. Food Chem. 2008, 56, 7265–7270. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M.; Gutiérrez-Orozco, F.; Moreno-Pérez, M.A. Identification of Phenolic Compounds by Liquid Chromatography-Mass Spectrometry in Seventeen Species of Wild Mushrooms in Central Mexico and Determination of Their Antioxidant Activity and Bioactive Compounds. Food Chem. 2017, 226, 14–22. [Google Scholar] [CrossRef]
- Kała, K.; Krakowska, A.; Szewczyk, A.; Ostachowicz, B.; Szczurek, K.; Fijałkowska, A.; Muszyńska, B. Determining the Amount of Potentially Bioavailable Phenolic Compounds and Bioelements in Edible Mushroom Mycelia of Agaricus bisporus, Cantharellus cibarius, and Lentinula edodes. Food Chem. 2021, 352, 129456. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Yanni, A.E.; Koutrotsios, G.; Aloupi, M. Bioactive Microconstituents and Antioxidant Properties of Wild Edible Mushrooms from the Island of Lesvos, Greece. Food Chem. Toxicol. 2013, 55, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and Human Health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Compound Name | L. drassinus | L. controversus |
---|---|---|---|
Amino acids and their derivatives | |||
Non-essential amino acids | Alanine | 0.48 ± 0.08 | nd |
Glycine | nd | 0.03 ± 0 | |
Homocysteine | 0.54 ± 0.18 | nd | |
5-Oxoproline | 5.21 ± 1.98 b | 0.70 ± 0.15 a | |
β-Alanine | 0.11 ± 0.03 | nd | |
Proline | 0.37 ± 0.07 | nd | |
Serine | 0.66 ± 0.27 b | 0.28 ± 0.10 a | |
Asparagine | 0.55 ± 0.21 | nd | |
Aspartic acid | 0.93 ± 0.38 | nd | |
Glutamic acid | 0.82 ± 0.21 | nd | |
Essential amino acids | Valine | 0.50 ± 0.10 b | 0.07 ± 0.02 a |
Phenylalanine | 0.37 ± 0.23 b | 0.03 ± 0.01 a | |
Threonine | 0.58 ± 0.23 b | 0.06 ± 0 a | |
Isoleucine | 0.27 ± 0.03 a | 0.24 ± 0.05 a | |
Leucine | 0.34 ± 0.10 ab | 0.20 ± 0.07 a | |
Lysine | 0.91 ± 0.21 | nd | |
Acids and their derivatives | |||
Organic acids and their derivatives | Butylethylmalonic acid | nd | 0.48 ± 0.10 |
Citramalic acid | 0.25 ± 0.13 b | 0.04 ± 0.03 a | |
Dimethylolpropionic acid | 0.24 ± 0.05 | nd | |
Fumaric acid | 3.25 ± 0.69 b | 1.60 ± 0.68 a | |
Hydroxycaproic acid | 0.37 ± 0.02 | nd | |
Isocitric acid | 0.58 ± 0.24 a | 2.03 ± 0.71 b | |
Itaconic acid | nd | 0.48 ± 0.15 | |
Ketoisocaproic acid | 0.24 ± 0.17 b | 0.07 ± 0.01 a | |
Maleic acid | 0.95 ± 0.07 | nd | |
Malic acid | 9.97 ± 5.71 ab | 3.14 ± 1.29 a | |
Oxalic acid | 0.94 ± 0.10 b | 0.01 ± 0 a | |
Pentonic acid | 0.24 ± 0.06 | nd | |
Succinic acid | 2.11 ± 0.72 b | 1.10 ± 0.8 a | |
Dibromo-succinic acid | nd | 0.53 ± 0.37 | |
Isobutyl phthalate | nd | 0.51 ± 0.23 | |
Traumatic acid | 0.22 ± 0.04 | nd | |
Mineral acids | Borinic acid | 0.24 ± 0.07 | nd |
Phosphoric acid | 1.65 ± 0.50 a | 3.92 ± 0.56 b | |
Fatty acids and their derivatives | |||
Saturated fatty acids | Arachidic acid | 0.27 ± 0.15 b | 0.11 ± 0.01 a |
Butyric acid | nd | 0.10 ± 0.06 | |
Margaric acid | nd | 0.40 ± 0.21 | |
Methyl stearate | nd | 1.21 ± 0.46 | |
Myristic acid | 0.87 ± 0.08 a | 0.23 ± 0.03 b | |
Nonanoic acid | nd | 0.12 ± 0.08 | |
Palmitic Acid | 2.93 ± 0.06 b | 1.89 ± 0.33 a | |
Prostadienoic acid | 0.16 ± 0.03 | nd | |
Stearic acid | 4.19 ± 0.70 a | 5.77 ± 2.19 a | |
Unsaturated fatty acids | Linoelaidic acid | 0.25 ± 0.04 a | 0.16 ± 0.05 a |
Linoleic acid | nd | 5.82 ± 1.99 | |
Methyl linoleate | 0.35 ± 0.20 | nd | |
Monolinolein | nd | 0.47 ± 0.23 | |
Myristoleic acid | nd | 0.21 ± 0.09 | |
Norlinolenic acid | nd | 0.28 ± 0.02 | |
Oleic acid | nd | 11.23 ± 6.21 | |
Oleoylglycerol | nd | 0.92 ± 0.37 | |
Palmitelaidic acid | nd | 0.21 ± 0.03 | |
Other fatty acid derivatives | Alpha dihydrotestosterone | nd | 0.61 ± 0.25 |
Androstenone | 0.45 ± 0.11 a | 0.61 ± 0.14 ab | |
Campesterol | nd | 0.05 ± 0 | |
Ergostatetraenol | 0.15 ± 0.08 | nd | |
Ergosterol | 0.23 ± 0.06 a | 0.86 ± 0.21 b | |
Hydroxyandrosterone | 0.21 ± 0.03 | nd | |
Hydroxydehydroandrosterone | nd | 0.29 ± 0.14 | |
Methandrostenolone | nd | 0.41 ± 0.11 | |
Methoxyestradiol | 0.34 ± 0.08 | nd | |
Prostaglandin | 0.21 ± 0.08 | nd | |
Stigmasterol | nd | 0.06 ± 0 | |
Tetrahydrocortisol | nd | 0.06 ± 0.02 | |
Tricaprin | 0.28 ± 0.05 | nd | |
Monocaprin | 0.13 ± 0.03 | nd | |
Sugars and their derivatives | |||
Sugars | Allofuranose | nd | 0.15 ± 0.06 |
Cellobiose | 0.84 ± 0.17 | nd | |
Deoxyglucose | 0.05 ± 0.01 | nd | |
Deoxyribose | nd | 0.83 ± 0.18 | |
Psicofuranose | 0.15 ± 0.03 | nd | |
Trehalose | 0.04 ± 0.02 a | 0.07 ± 0.04 b | |
Erythrotetrofuranose | 0.22 ± 0.03 | nd | |
Fructofuranose | 0.20 ± 0.02 a | 0.37 ± 0.11 b | |
Fructopyranose | nd | 0.12 ± 0.08 | |
Fructose | 1.69 ± 0.37 b | 0.53 ± 0.12 a | |
Galactopyranose | 0.12 ± 0.03 a | 0.17 ± 0.08 a | |
Lactose | 0.13 ± 0.04 ab | 0.09 ± 0.03 a | |
Maltose | 0.23 ± 0.17 | nd | |
Mannose | 0.21 ± 0.04 | nd | |
Melibiose | 0.21 ± 0.07 | nd | |
Ribofuranose | 0.11 ± 0.03 a | 0.38 ± 0.06 b | |
Sucrose | 4.00 ± 0.19 b | 2.02 ± 0.81 a | |
Talose | 2.02 ± 0.11 | nd | |
Sugar alcohols | Adonitol | 0.77 ± 0.22 ab | 0.49 ± 0.17 a |
Arabinitol | 0.13 ± 0.07 a | 0.19 ± 0.05 a | |
Arabitol | nd | 3.29 ± 1.43 | |
Deoxyribitol | 0.07 ± 0.02 | nd | |
D-Glucitol | 17.39 ± 7.14 a | 20.44 ± 5.51 a | |
Erythritol | 0.28 ± 0.05 a | 2.57 ± 1.02 b | |
Fucitol | nd | 0.28 ± 0.09 | |
Maltitol | 0.82 ± 0.23 b | 0.05 ± 0.02 a | |
Myo-inositol | 2.04 ± 0.44 b | 0.07 ± 0.03 a | |
Xylitol | nd | 0.10 ± 0.01 | |
Glycerol | 4.64 ± 1.57 b | 0.08 ± 0.03 a | |
Sugar acids | Arabinonic acid | 0.03 ± 0.01 | nd |
Galactonic acid | nd | 0.25 ± 0.16 | |
Gluconic acid | 0.48 ± 0.08 b | 0.15 ± 0.07 a | |
Glucuronic acid | 0.15 ± 0.02 | nd | |
Threonic acid | 0.38 ± 0.09 b | 0.22 ± 0.06 a | |
Other sugar derivatives | Butanetriol | nd | 0.02 ± 0.01 |
Glucosamine | 0.41 ± 0.07 | nd | |
Acetin | nd | 0.45 ± 0.20 | |
N-Acetyl glucosamine | 4.90 ± 1.12 b | 0.06 ± 0.03 a | |
Sorbitol phosphate | 0.09 ± 0.03 | nd | |
Gluconolactone | nd | 0.07 ± 0.02 | |
Other compounds | Anthraergostatetraenol benzoate | 0.19 ± 0.09 a | 0.25 ± 0.11 a |
Costunolide | nd | 0.53 ± 0.03 | |
Furosardonin A | nd | 1.96 ± 0.35 | |
Globulol | 3.70 ± 0.11 a | 4.52 ± 2.19 ab | |
Lavandulol | nd | 1.21 ± 0.06 | |
Mansonone | 0.03 ± 0.01 a | 1.35 ± 1.01 b | |
Santamarine | nd | 0.52 ± 0.07 | |
Vellerdiol | nd | 0.13 ± 0.05 | |
Naphthalenediol | 0.15 ± 0.04 | nd | |
Stahlianthusone | nd | 0.25 ± 0.13 | |
Acetoin | nd | 0.21 ± 0.09 | |
Chrysorrhedial | nd | 0.14 ± 0.06 | |
2-Ethylhexyl acetate | 0.08 ± 0.02 a | 0.06 ± 0.03 a | |
Rhizoxin | nd | 0.17 ± 0.04 | |
Methyl 2-hydroxytricosanoate | 0.38 ± 0.08 | nd | |
Furanether A | nd | 3.44 ± 0.59 | |
Methoxypropene | 0.50 ± 0.26 | nd | |
Methyladenosine | 0.16 ± 0.02 | nd | |
Adenosine | 0.23 ± 0.03 | nd | |
Ammelide | 0.56 ± 0.11 | nd | |
Methyluridine | 1.12 ± 0.14 | nd | |
Niacinamide | 0.06 ± 0.02 | nd | |
Ethanolamine | nd | 0.08 ± 0 | |
Uracil | 0.11 ± 0.02 | nd | |
Uridine | nd | 0.52 ± 0.18 | |
Desacetylcinobufotalin | 0.03 ± 0.01 a | 0.37 ± 0.10 b |
Phenolic Compounds | L. drassinus | L. controversus |
---|---|---|
Gallic acid | 13.05 ± 0.09 b | 12.35 ± 0.40 a |
Chlorogenic acid | 54.27 ± 0.84 b | 30.24 ± 0.49 a |
Vanillin | 14.22 ± 0.12 b | 10.49 ± 0.16 a |
Ferulic acid | 17.83 ± 0.11 b | 12.23 ± 0.30 a |
Quercetin dihydrate | 22.44 ± 0.64 b | 10.71 ± 0.88 a |
Cinnamic acid | 0.52 ± 0.04 | nd |
Parameters | L. drassinus | L. controversus |
---|---|---|
Vitamins (µg g−1 DW) | ||
Vitamin C | 37.34 ± 2.03 b | 27.18 ± 2.50 a |
Vitamin B3 | 122.33 ± 10.0 b | 98.67 ± 9.0 a |
Vitamin B6 | 12.76 ± 4.1 a | 11.28 ± 2.02 a |
Carotenoids (µg g−1 DW) | ||
β-Carotene | 12.7 ± 4.55 b | 6.9 ± 0.77 a |
Lycopene | 82.3 ± 9.6 a | 108.01 ± 11.44 b |
Antioxidant potential | ||
Total antioxidant (µg AAE g−1 DW) | 34.34 ± 5.71 a | 28.9 ± 4 a |
Total antioxidant (µg TE g−1 DW) | 308.09 ± 15.73 b | 246.33 ± 8.13 a |
Macroelements | L. drassinus | L. controversus |
---|---|---|
C | 435.13 ± 0.58 b | 396.20 ± 0.29 a |
N | 30.60 ± 0.26 a | 35.30 ± 0.29 b |
S | 3.57 ± 0.08 a | 4.64 ± 0.12 b |
P | 0.41 ± 0 b | 0.20 ± 0 a |
Mg | 0.25 ± 0.01 a | 0.28 ± 0 b |
Ca | 0.70 ± 0.07 b | 0.56 ± 0.02 a |
K | 13.84 ± 0.30 a | 16.14 ± 0.55 b |
Microelements | L. drassinus | L. controversus |
---|---|---|
Cu | 14.02 ± 0.89 b | 11.59 ± 0.83 a |
Al | 18.85 ± 0.78 a | 23.98 ± 1.49 b |
Ni | 25.85 ± 1.21 a | 26.04 ± 4.26 a |
Zn | 12.35 ± 0.39 a | 12.89 ± 0.44 a |
Na | 155.33 ± 4.16 a | 154 ± 12.17 a |
Fe | 309.6 ± 15.79 b | 218.6 ± 31.66 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayirnao, H.-S.; Gupta, S.; Thokchom, S.D.; Sharma, K.; Mehmood, T.; Kaur, S.; Sharma, Y.P.; Kapoor, R. Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements. J. Fungi 2023, 9, 763. https://doi.org/10.3390/jof9070763
Mayirnao H-S, Gupta S, Thokchom SD, Sharma K, Mehmood T, Kaur S, Sharma YP, Kapoor R. Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements. Journal of Fungi. 2023; 9(7):763. https://doi.org/10.3390/jof9070763
Chicago/Turabian StyleMayirnao, Hom-Singli, Samta Gupta, Sarda Devi Thokchom, Karuna Sharma, Tahir Mehmood, Surinder Kaur, Yash Pal Sharma, and Rupam Kapoor. 2023. "Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements" Journal of Fungi 9, no. 7: 763. https://doi.org/10.3390/jof9070763
APA StyleMayirnao, H. -S., Gupta, S., Thokchom, S. D., Sharma, K., Mehmood, T., Kaur, S., Sharma, Y. P., & Kapoor, R. (2023). Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements. Journal of Fungi, 9(7), 763. https://doi.org/10.3390/jof9070763