Soil Aspergillus Species, Pathogenicity and Control Perspectives
Abstract
:1. Introduction
2. Ecology
3. Pathogenicity
4. Virulence Factors of Aspergillus Species
- Their conidia contain a rodlet layer in their surfaces, which binds covalently to the cell wall. This layer contributes to spore dispersion and fixation to the soil. It also helps to mask recognition of the conidia by the immune system, thereby preventing an immune response [82]. Furthermore, Aspergillus spores are hydrophobic and readily airborne, with the potential of germinating in a wide range of environmental conditions. These spores are among the microbial cells with the greatest longevity, surviving for 60 years or longer [46].
- Galactosaminogalactan (GAG) is a component of the Aspergillus cell wall that is expressed during conidial germination and hyphal growth. It induces the anti-inflammatory cytokine interleukin-1 receptor antagonist, making individuals more susceptible to aspergillosis [83]. Additionally, production of aerial hyphae enhances oxygen uptake, which is unique to members of the genus Aspergillus.
- Aspergillus species are nutritionally versatile in diverse environments including host tissues. Expression of multiple enzyme-linked genes that regulate metabolic pathways allows the fungi to be highly effective at upregulating the tricarboxylic acid cycle and to conveniently metabolize other secondary carbon sources [84,85].
- Secretion of a variety of proteases (degrading enzymes) by Aspergillus species enable the fungus to saprotrophically infect a wide variety of hosts [86,87]. For example, proteases with elastinolytic activity also function as virulence factors by degrading the structural barriers of the host and thereby facilitating the invasion of host tissues [88,89,90].
- Trace metal ions (iron and zinc) also contribute to virulence. Zinc is essential for a variety of biochemical processes in fungi, including the proper regulation of gene expression for cellular growth and development. A homeostatic relationship has been established between zinc and the virulence of Aspergillus species, as zinc transporters are required for growth within a host [80,91,92]. Also, iron is a necessary component of many biosynthetic pathways in fungi and is therefore required in pathogenesis. Since free iron is scarce in the human body, some Aspergillus species are able to transport and store ferric ions [93].
- Most Aspergillus spores are thermotolerant and their small and readily airborne asexual spores contribute greatly to their pathogenicity [94]. Most members of the genus Aspergillus have an optimum temperature range between 30 °C and 40 °C, with the ability to survive in temperatures as low as 12 °C and as high as 85 °C due to their thtA and cgrA genes. These are involved in their thermotolerance [94,95]. The ability of these species to survive in a wide range of water activity (optimal being 0.970, minimal at 0.770, and survivable at 0.640) should not be underestimated [20]. Under NaCl-induced stress, Aspergillus species are able to produce large amounts of cellulases, expediting the breakdown of cellulose that can be used for growth and energy generation [94]. Also, the ability to respond to multiple environmental stresses, including antifungal drugs, and the capacity to biosynthesize a range of structurally diverse secondary metabolites, are advantageous for the survival of this fungal group [3,80,96,97].
5. Control of Field Aspergillus Species
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Greeff-Laubscher, M.R.; Beukes, I.; Marais, G.J.; Jacobs, K. Mycotoxin production by three different toxigenic fungi genera on formulated abalone feed and the effect of an aquatic environment on fumonisins. Mycology 2020, 11, 105–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugui, J.A.; Kwon-Chung, K.J.; Juvvadi, P.R.; Latge, J.-P.; Steinbach, W.J. Aspergillus fumigatus and related species. Cold Spring Harb. Perspect. Med. 2015, 5, a019786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.A.; Hong, S.; Peterson, S.; Frisvad, J.C.; Varga, J. Polyphasic taxonomy of Aspergillus section Fumigati and its teleomorph Neosartorya. Stud. Mycol. 2007, 59, 147–203. [Google Scholar] [CrossRef] [PubMed]
- Klich, M.A. Biogeography of Aspergillus species in soil and litter. Mycologia 2002, 94, 21–27. [Google Scholar] [CrossRef]
- Barrs, V.R.; van Doorn, T.M.; Houbraken, J.; Kidd, S.E.; Martin, P.; Pinheiro, M.D.; Richardson, M.; Varga, J.; Samson, R.A. Aspergillus felis sp. nov., an emerging agent of invasive aspergillosis in humans, cats, and dogs. PLoS ONE 2013, 8, e64871. [Google Scholar] [CrossRef] [Green Version]
- Mead, M.E.; Steenwyk, J.L.; Silva, L.P.; de Castro, P.A.; Saeed, N.; Hillmann, F.; Goldman, G.H.; Rokas, A. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 2021, 218, iyab066. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Human, U. Biomin survey reveals global rise of mycotoxins. AFMA Matrix 2018, 27, 49–53. [Google Scholar]
- Senerwa, D.; Mtimet, N.; Sirma, A.; Nzuma, J.; Kang’ethe, E.K.; Lindahl, J.F.; Grace, D. Direct Market Costs of Aflatoxins in Kenyan Dairy Value Chain. In Proceedings of the Agriculture, Nutrition and Health (ANH) Academy Week, Addis Ababa, Ethiopia, 20–24 June 2016. [Google Scholar]
- Okoth, S. Improving the Evidence Base on Aflatoxin Contamination and Exposure in Africa; CTA: Wageningen, The Netherlands, 2016. [Google Scholar]
- Pfliegler, W.P.; Pócsi, I.; Győri, Z.; Pusztahelyi, T. The Aspergilli and their mycotoxins: Metabolic interactions with plants and the soil biota. Front. Microbiol. 2020, 10, 2921. [Google Scholar] [CrossRef] [Green Version]
- Konopka, Z.; Świsłowski, P.; Rajfur, M. Biomonitoring of atmosphereic aerosol with the use of Apis mellifera and Pleurozium schreberi. Chem.-Didact.-Ecol.-Metrol. 2019, 24, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Drott, M.T.; Lazzaro, B.P.; Brown, D.L.; Carbone, I.; Milgroom, M.G. Balancing selection for aflatoxin in Aspergillus flavus is maintained through interference competition with, and fungivory by insects. Proc. R. Soc. B Biol. Sci. 2017, 284, 20172408. [Google Scholar] [CrossRef]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.; Moretti, A.; Leggieri, M.C.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B 1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Sibakwe, C.B.; Kasambara-Donga, T.; Njoroge, S.M.; Msuku, W.; Mhang, W.; Brandenburg, R.L.; Jordan, D. The role of drought stress on aflatoxin contamination in groundnuts (Arachis hypogea L.) and Aspergillus flavus population in the soil. Mod. Agric. Sci. Technol. 2017, 3, 22–29. [Google Scholar] [CrossRef]
- Giusiano, G.E.; Piontelli, E.; Fernández, M.S.; Mangiaterra, M.L.; Cattana, M.E.; Kocsubé, S.; Varga, J. Biodiversity of species of Aspergillus section Fumigati in semi-desert soils in Argentina. Rev. Argent. Microbiol. 2017, 49, 247–254. [Google Scholar] [CrossRef]
- Klich, M. Identification of Common Aspergillus spp., Ponson and Looijen, Wageningen; Scientific Research: Wageningen, The Netherlands, 2002; Volume 116. [Google Scholar]
- Atukwase, A.; Kaaya, A.N.; Muyanja, C. Factors associated with fumonisin contamination of maize in Uganda. J. Sci. Food Agric. 2009, 89, 2393–2398. [Google Scholar] [CrossRef]
- Fapohunda, S.O.; Adewunmi, A.A. Climate change and mycotoxins-The African experience. Croat. J. Food Sci. Technol. 2019, 11, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Gallo, A.; Solfrizzo, M.; Epifani, F.; Panzarini, G.; Perrone, G. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. Int. J. Food Microbiol. 2016, 217, 162–169. [Google Scholar] [CrossRef]
- Taberlet, P.; Bonin, A.; Zinger, L.; Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar] [CrossRef]
- Szabó-Fodor, J.; Bors, I.; Nagy, G.; Kovács, M. Toxicological effects of aflatoxin B1 on the earthworm Eisenia fetida as determined in a contact paper test. Mycotoxin Res. 2017, 33, 109–112. [Google Scholar] [CrossRef]
- Zhang, K.; Wong, J.W.; Krynitsky, A.J.; Trucksess, M.W. Perspective on advancing FDA regulatory monitoring for mycotoxins in foods using liquid chromatography and mass spectrometry. J. AOAC Int. 2016, 99, 890–894. [Google Scholar] [CrossRef]
- Bedre, R.; Rajasekaran, K.; Mangu, V.R.; Sanchez Timm, L.E.; Bhatnagar, D.; Baisakh, N. Genome-wide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate gene signatures in response to aflatoxin producing fungus Aspergillus flavus. PLoS ONE 2015, 10, e0138025. [Google Scholar] [CrossRef] [PubMed]
- Fouché, T.; Claassens, S.; Maboeta, M. Aflatoxins in the soil ecosystem: An overview of its occurrence, fate, effects and future perspectives. Mycotoxin Res. 2020, 36, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination: Recent insights provide opportunities for improved control. Phytopathology 2018, 108, 1024–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Damianidis, D.; Ortiz, B.; Windham, G.; Bowen, K.; Hoogenboom, G.; Scully, B.; Hagan, A.; Knappenberger, T.; Woli, P.; Williams, W. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 2018, 113, 64–74. [Google Scholar] [CrossRef]
- van Rensburg, C.J.; Van Rensburg, C.; Van Ryssen, J.; Casey, N.; Rottinghaus, G. In vitro and in vivo assessment of humic acid as an aflatoxin binder in broiler chickens. Poultr. Sci. 2006, 85, 1576–1583. [Google Scholar] [CrossRef]
- Schenzel, J.; Forrer, H.-R.; Vogelgsang, S.; Hungerbühler, K.; Bucheli, T.D. Mycotoxins in the environment: I. Production and emission from an agricultural test field. Environ. Sci. Technol. 2012, 46, 13067–13075. [Google Scholar] [CrossRef]
- Jaynes, W.; Zartman, R.; Hudnall, W. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [Google Scholar] [CrossRef]
- Madden, U.A.; Stahr, H.M. Preliminary determination of mycotoxin binding to soil when leaching through soil with water. Int. Biodeterior. Biodegrad. 1993, 31, 265–275. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Zablotowicz, R.M.; Wilkinson, J.R. Aspergillus flavus aflatoxin occurrence and expression of aflatoxin biosynthesis genes in soil. Can. J. Microbiol. 2008, 54, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Horn, B.W.; Dorner, J. Soil populations of Aspergillus species from section Flavi along a transect through peanut-growing regions of the United States. Mycologia 1998, 90, 767–776. [Google Scholar] [CrossRef]
- Achaglinkame, A.M.; Opoku, N.; Amagloh, F.K. Aflatoxin contamination in cereals and legumes to reconsider usage as complementary food ingredients for Ghanaian infants: A review. J. Nutr. Intermed. Metab. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Reddy, K.; Abbas, H.; Zablotowicz, R.; Abel, C.; Koger, C. Mycotoxin occurrence and Aspergillus flavus soil propagules in a corn and cotton glyphosate-resistant cropping systems. Food Addit. Contam. 2007, 24, 1367–1373. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef] [Green Version]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef] [Green Version]
- Oliverio, A.M.; Geisen, S.; Delgado-Baquerizo, M.; Maestre, F.T.; Turner, B.L.; Fierer, N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 2020, 6, eaax8787. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Callaghan, T.V.; Alatalo, J.; Michelsen, A.; Graglia, E.; Hartley, A.; Hik, D.; Hobbie, S.E.; Press, M.; Robinson, C. Global change and arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? J. Ecol. 2001, 89, 984–994. [Google Scholar] [CrossRef]
- Mira, N.P.; Palma, M.; Guerreiro, J.F.; Sá-Correia, I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb. Cell Fact. 2010, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Tančić-Živanov, S.; Nešić, L.; Jevtić, R.; Belić, M.; Ćirić, V.; Lalošević, M.; Veselić, J. Fungal diversity as influenced by soil characteristics. Zemdirb.-Agric. 2017, 104, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Krijgsheld, P.; Altelaar, A.M.; Post, H.; Ringrose, J.H.; Müller, W.H.; Heck, A.J.; Wösten, H.A. Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J. Proteome Res. 2012, 11, 2807–2818. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What makes the species a ubiquitous human fungal pathogen? PLoS Pathog. 2013, 9, e1003743. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Anslan, S.; Bahram, M.; Drenkhan, R.; Pritsch, K.; Buegger, F.; Padari, A.; Hagh-Doust, N.; Mikryukov, V.; Gohar, D. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 2020, 11, 1953. [Google Scholar] [CrossRef] [PubMed]
- Põlme, S.; Bahram, M.; Jacquemyn, H.; Kennedy, P.; Kohout, P.; Moora, M.; Oja, J.; Öpik, M.; Pecoraro, L.; Tedersoo, L. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018, 217, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Sepp, S.K.; Davison, J.; Jairus, T.; Vasar, M.; Moora, M.; Zobel, M.; Öpik, M. Non-random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Mol. Ecol. 2019, 28, 365–378. [Google Scholar] [CrossRef]
- Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of methods for determining bioavailability of trace elements in soils: A review. Pedosphere 2017, 27, 389–406. [Google Scholar] [CrossRef]
- George, D.A.; Clewett, J.F.; Lloyd, D.; McKellar, R.; Tan, P.-L.; Howden, M.; Rickards, L.; Ugalde, D.; Barlow, S. Research priorities and best practices for managing climate risk and climate change adaptation in Australian agriculture. Australas. J. Environ. Manag. 2019, 26, 6–24. [Google Scholar] [CrossRef]
- Makiola, A.; Dickie, I.A.; Holdaway, R.J.; Wood, J.R.; Orwin, K.H.; Glare, T.R. Land use is a determinant of plant pathogen alpha-but not beta-diversity. Mol. Ecol. 2019, 28, 3786–3798. [Google Scholar] [CrossRef]
- Sterkenburg, E.; Clemmensen, K.E.; Lindahl, B.D.; Dahlberg, A. The significance of retention trees for survival of ectomycorrhizal fungi in clear-cut Scots pine forests. J. Appl. Ecol. 2019, 56, 1367–1378. [Google Scholar] [CrossRef]
- Montanarella, L. The global soil partnership. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; p. 012001. [Google Scholar]
- Zablotowicz, R.; Abbas, H.; Locke, M. Population ecology of Aspergillus flavus associated with Mississippi Delta soils. Food Addit. Contam. 2007, 24, 1102–1108. [Google Scholar] [CrossRef]
- Ehrlich, K.C.; Kobbeman, K.; Montalbano, B.G.; Cotty, P.J. Aflatoxin-producing Aspergillus species from Thailand. Int. J. Food Microbiol. 2007, 114, 153–159. [Google Scholar] [CrossRef]
- FAO. Climate Change: Unpacking the Burdenon Food Safety; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Ncube, E. Mycotoxin Levels in Subsistence Farming Systems in South Africa. Doctoral Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2008. [Google Scholar]
- Nji, Q.N.; Babalola, O.O.; Mwanza, M. Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins 2022, 14, 574. [Google Scholar] [CrossRef]
- Meissle, M.; Mouron, P.; Musa, T.; Bigler, F.; Pons, X.; Vasileiadis, V.P.; Otto, S.; Antichi, D.; Kiss, J.; Pálinkás, Z. Pests, pesticide use and alternative options in European maize production: Current status and future prospects. J. Appl. Entomol. 2010, 134, 357–375. [Google Scholar] [CrossRef]
- Logrieco, A.; Battilani, P.; Leggieri, M.C.; Jiang, Y.; Haesaert, G.; Lanubile, A.; Mahuku, G.; Mesterházy, A.; Ortega-Beltran, A.; Pasti, M. Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Dis. 2021, 105, 525–537. [Google Scholar] [CrossRef]
- Mutiga, S.K.; Were, V.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Extent and drivers of mycotoxin contamination: Inferences from a survey of Kenyan maize mills. Phytopathology 2014, 104, 1221–1231. [Google Scholar] [CrossRef]
- Gebreselassie, R.; Dereje, A.; Solomon, H. On farm pre harvest agronomic management practices of aspergillus infection on groundnut in Abergelle, Tigray. J. Plant Pathol. Microbiol. 2014, 5, 1. [Google Scholar]
- Taylor, J.W. Evolutionary perspectives on human fungal pathogens. Cold Spring Harb. Perspect. Med. 2015, 5, a019588. [Google Scholar] [CrossRef] [Green Version]
- Foley, K. The Ecology and Evolution of Aspergillus spp. Fungal Parasites in Honey Bees; University of Leeds: Leeds, UK, 2013. [Google Scholar]
- Machida, M.; Yamada, O.; Gomi, K. Genomics of Aspergillus oryzae: Learning from the history of Koji mold and exploration of its future. DNA Res. 2008, 15, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol 2007, 8, 713–722. [Google Scholar] [CrossRef]
- Watarai, N.; Yamamoto, N.; Sawada, K.; Yamada, T. Evolution of Aspergillus oryzae before and after domestication inferred by large-scale comparative genomic analysis. DNA Res. 2019, 26, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Horn, B.W.; Ramirez-Prado, J.H.; Carbone, I. The sexual state of Aspergillus parasiticus. Mycologia 2009, 101, 275–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, B.W.; Moore, G.G.; Carbone, I. Sexual reproduction in Aspergillus flavus. Mycologia 2009, 101, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gorman, C.M.; Fuller, H.T.; Dyer, P.S. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 2009, 457, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Seo, J.A.; Yu, J.H. Regulators of G-protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gα) signalling. Mol. Microbiol. 2004, 53, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.N.; Adams, T. FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J. 1996, 15, 299–309. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Møller, L.L.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, K.C.; Mack, B.M. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus, A. parasiticus, and A. oryzae. Toxins 2014, 6, 1916–1928. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [Green Version]
- Alizon, S.; de Roode, J.C.; Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 2013, 16, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, U. Adaptive Dynamics of Pathogen-Host Interactions; IIASA Interim Report, IR-02-007; IIASA: Laxenberg, Austria, 2002. [Google Scholar]
- Rokas, A.; Mead, M.E.; Steenwyk, J.L.; Oberlies, N.H.; Goldman, G.H. Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathog. 2020, 16, e1008315. [Google Scholar] [CrossRef] [Green Version]
- Mead, M.E.; Knowles, S.L.; Raja, H.A.; Beattie, S.R.; Kowalski, C.H.; Steenwyk, J.L.; Silva, L.P.; Chiaratto, J.; Ries, L.N.; Goldman, G.H. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. Msphere 2019, 4, e00018-19. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, C.H.; Kerkaert, J.D.; Liu, K.-W.; Bond, M.C.; Hartmann, R.; Nadell, C.D.; Stajich, J.E.; Cramer, R.A. Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat. Microbiol. 2019, 4, 2430–2441. [Google Scholar] [CrossRef]
- Aimanianda, V.; Bayry, J.; Bozza, S.; Kniemeyer, O.; Perruccio, K.; Elluru, S.R.; Clavaud, C.; Paris, S.; Brakhage, A.A.; Kaveri, S.V. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009, 460, 1117–1121. [Google Scholar] [CrossRef]
- Gresnigt, M.S.; Bozza, S.; Becker, K.L.; Joosten, L.A.; Abdollahi-Roodsaz, S.; van der Berg, W.B.; Dinarello, C.A.; Netea, M.G.; Fontaine, T.; De Luca, A. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog. 2014, 10, e1003936. [Google Scholar] [CrossRef] [Green Version]
- Flipphi, M.; Sun, J.; Robellet, X.; Karaffa, L.; Fekete, E.; Zeng, A.-P.; Kubicek, C.P. Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genet. Biol. 2009, 46, S19–S44. [Google Scholar] [CrossRef]
- Wyatt, T.T.; Van Leeuwen, M.R.; Golovina, E.A.; Hoekstra, F.A.; Kuenstner, E.J.; Palumbo, E.A.; Snyder, N.L.; Visagie, C.; Verkennis, A.; Hallsworth, J.E. Functionality and prevalence of trehalose-based oligosaccharides as novel compatible solutes in ascospores of Neosartorya fischeri (Aspergillus fischeri) and other fungi. Environ. Microbiol. 2015, 17, 395–411. [Google Scholar] [CrossRef] [Green Version]
- Mellon, J.E.; Cotty, P.J.; Dowd, M.K. Aspergillus flavus hydrolases: Their roles in pathogenesis and substrate utilization. Appl. Microbiol. Biotechnol. 2007, 77, 497–504. [Google Scholar] [CrossRef]
- Mehl, H.; Cotty, P. Influence of the host contact sequence on the outcome of competition among Aspergillus flavus isolates during host tissue invasion. Appl. Environ. Microbiol. 2011, 77, 1691–1697. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, A.; Hartmann, T.; Cairns, T.; Bignell, E.M.; Krappmann, S. A regulator of Aspergillus fumigatus extracellular proteolytic activity is dispensable for virulence. Infect. Immun. 2009, 77, 4041–4050. [Google Scholar] [CrossRef] [Green Version]
- Binder, U.; Lass-Florl, C. New insights into invasive aspergillosis-from the pathogen to the disease. Curr. Pharm. Des. 2013, 19, 3679–3688. [Google Scholar] [CrossRef]
- Blanco, J.L.; Hontecillas, R.; Bouza, E.; Blanco, I.; Pelaez, T.; Muñoz, P.; Perez Molina, J.; Garcia, M.E. Correlation between the elastase activity index and invasiveness of clinical isolates of Aspergillus fumigatus. J. Clin. Microbiol. 2002, 40, 1811–1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, M.Á.; Ibrahim-Granet, O.; Vicentefranqueira, R.; Amich, J.; Ave, P.; Leal, F.; Latgé, J.P.; Calera, J.A. The regulation of zinc homeostasis by the ZafA transcriptional activator is essential for Aspergillus fumigatus virulence. Mol. Microbiol. 2007, 64, 1182–1197. [Google Scholar] [CrossRef]
- Amich, J.; Calera, J.A. Zinc acquisition: A key aspect in Aspergillus fumigatus virulence. Mycopathologia 2014, 178, 379–385. [Google Scholar] [CrossRef]
- Haas, H. Iron—A key nexus in the virulence of Aspergillus fumigatus. Front. Microbiol. 2012, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulussen, C.; Hallsworth, J.E.; Álvarez-Pérez, S.; Nierman, W.C.; Hamill, P.G.; Blain, D.; Rediers, H.; Lievens, B. Ecology of aspergillosis: Insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb. Biotechnol. 2017, 10, 296–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alastruey-Izquierdo, A.; Mellado, E.; Peláez, T.; Pemán, J.; Zapico, S.; Alvarez, M.; Rodríguez-Tudela, J.; Cuenca-Estrella, M.; Group, F.S. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob. Agents Chemother. 2013, 57, 3380–3387. [Google Scholar] [CrossRef] [Green Version]
- Frisvad, J.C.; Larsen, T.O. Extrolites of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati. Front. Microbiol. 2016, 6, 1485. [Google Scholar] [CrossRef] [Green Version]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Carranza, C.S.; Barberis, C.L.; Chiacchiera, S.M.; Magnoli, C.E. Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Rev. Argent. Microbiol. 2017, 49, 384–393. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Verheecke, C.; Liboz, T.; Mathieu, F. Microbial degradation of aflatoxin B1: Current status and future advances. Int. J. Food Microbiol. 2016, 237, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.A. Allelopathy in forage crop systems. Agron. J. 1996, 88, 854–859. [Google Scholar] [CrossRef]
- Weaver, M.A.; Abbas, H.K. Field displacement of aflatoxigenic Aspergillus flavus strains through repeated biological control applications. Front. Microbiol. 2019, 10, 1788. [Google Scholar] [CrossRef] [Green Version]
- Hariprasad, P.; Vipin, A.; Karuna, S.; Raksha, R.; Venkateswaran, G. Natural aflatoxin uptake by sugarcane (Saccharum officinaurum L.) and its persistence in jaggery. Environ. Sci. Pollut. Res. 2015, 22, 6246–6253. [Google Scholar] [CrossRef]
- Nji, Q.N.; Babalola, O.O.; Ekwomadu, T.I.; Nleya, N.; Mwanza, M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins 2022, 14, 318. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Schenzel, J.; Meyer, M.T.; Phillips, P.J.; Hubbard, L.E.; Scott, T.-M.; Bucheli, T.D. Mycotoxins: Diffuse and point source contributions of natural contaminants of emerging concern to streams. Sci. Total Environ. 2014, 470, 669–676. [Google Scholar] [CrossRef]
- EAC—East Africa Community. Disposal and alternative uses of aflatoxin-contaminated food. EAC Policy Brief No. 8 on Aflatoxin Prevention and Control. 2018. Available online: https://www.eac.int/documents/category/aflatoxin-prevention-and-control (accessed on 2 August 2022).
- Barber, A.E.; Riedel, J.; Sae-Ong, T.; Kang, K.; Brabetz, W.; Panagiotou, G.; Deising, H.B.; Kurzai, O. Effects of agricultural fungicide use on Aspergillus fumigatus abundance, antifungal susceptibility, and population structure. MBio 2020, 11, e02213-20. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, F.; Zhao, J.; Fan, H.; Qin, C.; Li, R.; Verweij, P.E.; Zheng, Y.; Han, L. High azole resistance in Aspergillus fumigatus isolates from strawberry fields, China, 2018. Emerg. Infect. Dis. 2020, 26, 81. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Jin, X.; Zhang, Q.; Zheng, Y.; Lin, D.; Yu, Y. Fungicides induced triazole-resistance in Aspergillus fumigatus associated with mutations of TR46/Y121F/T289A and its appearance in agricultural fields. J. Hazard. Mater. 2017, 326, 54–60. [Google Scholar] [CrossRef]
- Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.; Van Dijk, K.; Hagen, F.; Van Der Beek, M.T.; Kampinga, G.A.; Zoll, J. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. MBio 2017, 8, e00791-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewell, T.R.; Zhu, J.; Rhodes, J.; Hagen, F.; Meis, J.F.; Fisher, M.C.; Jombart, T. Nonrandom distribution of azole resistance across the global population of Aspergillus fumigatus. MBio 2019, 10, e00392-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Moreno, C.; Lavergne, R.-A.; Hagen, F.; Morio, F.; Meis, J.F.; Le Pape, P. Fungicide-driven alterations in azole-resistant Aspergillus fumigatus are related to vegetable crops in Colombia, South America. Mycologia 2019, 111, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Okubo, M.; Yanai, T.; Hasegawa, A.; Kamata, H. First isolation of azole-resistant Cryptococcus neoformans from feline cryptococcosis. Mycopathologia 2015, 180, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Boughalleb-M’Hamdi, N.; Salem, I.B.; M’Hamdi, M. Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt. J. Biol. Pest Control 2018, 28, 25. [Google Scholar] [CrossRef] [Green Version]
- Mauro, A.; Garcia-Cela, E.; Pietri, A.; Cotty, P.J.; Battilani, P. Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic Aspergillus flavus active ingredients. Toxins 2018, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Cotty, P. Biocompetitive exclusion of toxigenic fungi. In The Mycotoxin Factbook; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 179–197. [Google Scholar]
- Cotty, P.J.; Antilla, L.; Wakelyn, P.J. Competitive exclusion of aflatoxin producers: Farmer-driven research and development. In Biological Control: A Global Perspective; CABI: Wallingford, UK, 2007; pp. 241–253. [Google Scholar]
- Atehnkeng, J.; Ojiambo, P.; Cotty, P.; Bandyopadhyay, R. Field efficacy of a mixture of atoxigenic Aspergillus flavus Link: Fr vegetative compatibility groups in preventing aflatoxin contamination in maize (Zea mays L.). Biol. Control 2014, 72, 62–70. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; El-Wakil, D.A.; Attia, M.S.; Ali, O.M.; AbdElgawad, H.; Hashem, A.H. Inhibition of Aspergillus flavus growth and aflatoxin production in Zea mays L. using endophytic Aspergillus fumigatus. J. Fungi 2022, 8, 482. [Google Scholar] [CrossRef]
- Negash, D. A review of aflatoxin: Occurrence, prevention, and gaps in both food and feed safety. J. Appl. Microbiol. Res. 2018, 1, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Eziashi, E.; Omamor, I.; Odigie, E. Antagonism of Trichoderma viride and effects of extracted water soluble compounds from Trichoderma species and benlate solution on Ceratocystis paradoxa. Afr. J. Biotechnol. 2007, 6, 388–392. [Google Scholar]
- Liu, Z.; Zhang, G.; Zhang, Y.; Jin, Q.; Zhao, J.; Li, J. Factors controlling mycotoxin contamination in maize and food in the Hebei province, China. Agron. Sustain. Dev. 2016, 36, 39. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Reyneri, A.; Vanara, F. Influence of nitrogen fertilization on mycotoxin contamination of maize kernels. Crop Prot. 2008, 27, 222–230. [Google Scholar] [CrossRef]
- Mutunga, E.J.; Charles, K.; Patricia, M. Smallholder Farmers Perceptions and Adaptations to Climate Change and Variability in Kitui County, Kenya. J. Earth Sci. Clim. Change 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Hell, K.; Mutegi, C. Aflatoxin control and prevention strategies in key crops of Sub-Saharan Africa. Afr. J. Microbiol. Res. 2011, 5, 459–466. [Google Scholar]
- Abbas, H.K.; Mascagni, H.J., Jr.; Bruns, H.A.; Shier, W.T. Effect of Planting Density, Irrigation Regimes, and Maize Hybrids with Varying Ear Size on Yield, and Aflatoxin and Fumonisin Contamination Levels. Am. J. Plant Sci. 2012, 03, 1341–1354. [Google Scholar] [CrossRef]
- Monda, E.; Masanga, J.; Alakonya, A. Variation in occurrence and aflatoxigenicity of Aspergillus flavus from two climatically varied regions in Kenya. Toxins 2020, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Dövényi-Nagy, T.; Rácz, C.; Molnár, K.; Bakó, K.; Szláma, Z.; Jóźwiak, Á.; Farkas, Z.; Pócsi, I.; Dobos, A.C. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment—A Review. Toxins 2020, 12, 768. [Google Scholar] [CrossRef]
- Chauhan, Y.; Wright, G.; Rachaputi, N. Modelling climatic risks of aflatoxin contamination in maize. Aust. J. Exp. Agric. 2008, 48, 358–366. [Google Scholar] [CrossRef]
- Atehnkeng, J.; Ojiambo, P.; Ikotun, T.; Sikora, R.; Cotty, P.; Bandyopadhyay, R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit. Contam. 2008, 25, 1264–1271. [Google Scholar] [CrossRef]
- Wang, C.; Feng, M.-G. Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol. Control 2014, 68, 129–135. [Google Scholar] [CrossRef]
- Das, K.; Prasanna, R.; Saxena, A.K. Rhizobia: A potential biocontrol agent for soilborne fungal pathogens. Folia Microbiol. 2017, 62, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Yehia, R.S. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 2014, 45, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhoutte, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Chen, B.; Rao, J. Natural compounds of plant origin in the control of fungi and mycotoxins in foods. Curr. Opin. Food Sci. 2023, 52, 101054. [Google Scholar] [CrossRef]
- Mwatabu, M.E.; Omondi, W.J.; Chemulanga, C.J.; Ouma, O.E. Efficacy Assessment of Inhibitory Fungal Concoctions against Mycotoxin Fungi Affecting Maize Grain Quality in Western Kenya. J. Biol. Agric. Healthc. 2023, 13, 12–19. [Google Scholar]
- Boukaew, S.; Prasertsan, P.; Mahasawat, P.; Sriyatep, T.; Petlamul, W. Efficacy of the antifungal metabolites of Streptomyces philanthi RL-1-178 on aflatoxin degradation with its application to prevent aflatoxigenic fungi in stored maize grains and identification of the bioactive compound. World J. Microbiol. Biotechnol. 2023, 39, 24. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Larsen, T.O. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 2015, 99, 7859–7877. [Google Scholar] [CrossRef]
Method | Principle | Merits | Demerits | References |
---|---|---|---|---|
Use of azoles | Antifungal | High efficiency, broad spectrum of target pathogens | Developed both clinical and environmental resistance | [108,109,110,111] |
Aluminosilicates | Binding ability, are produced synthetically or extracted from clay mines. | Mycotoxin binders | Ambiguous methodologies used for evaluation, contrasting results | [121] |
Benlate (Methyl-1-Butyl-Carbonomyl-1-2-benzimidizole carbonate) | Systemic fungicide against important fungal pathogens | Relatively safe, broad spectrum against pathogens | Not easily accessible | [122] |
Calcium or lime application | Their use on farm yard manure and cereal crop residues as soil amendments have shown to be effective in reducing A. flavus contamination | Thickens the cell wall and accelerates pod filling, while manure facilitates growth of micro-organisms that suppress soil infections | N/D | [123] |
Appropriate use of fertilizers; insecticide and herbicides | Raise crop yield | Pose environmental risks | [123,124,125] | |
Residual management | Incineration/bury | The fungus systemic circle is broken | Contamination of underground water. Incineration is not environmentally sustainable | [107,123,126] |
Proper crop rotation | Crop rotation models have shown low levels of mycotoxins as compared with crops from monocropping systems | The fungus infectious cycle is disrupted. Improves soil fertility | Challenge in finding the right crop rotation combination; for instance, maize/wheat is an inappropriate combination, as both crops have been proved to be susceptible to fungal infection | [61,62,127] |
Appropriate cultivar, early sowing and harvest dates | Drought-resistant, early maturing cultivars are important. Changing of planting/harvesting dates in response to unpredictable onset of rains is key | Reduces drought stress. Minimizes crop exposure to drought, rewetting and others | N/A | [121,123,125,128,129] |
Irrigation | Artificial application of controlled amounts of water to land to assist in crop production | Reduces drought Stress and encourages fungal growth. Boost crop production | Irrigation schemes are expensive to acquire | [130] |
Trichoderma species | Ability to produce both volatile and non-volatile metabolites that adversely affect growth of different fungi. | Considered a more natural and environmentally acceptable control method | N/D | [115,122] |
Aspergillus species | Competition | Long-term treatment effects due to carry over into the next season | N/A | [103,116,117,118,119,131] |
White rot fungi (Phanerochaete sordida, Armillariella tabescens, Pleurotus ostreatus, Peniophora sp.) | Degrading abilities of a broad spectrum of structurally diverse toxic environmental pollutants | No residual toxicity observed in some products | Toxicity of most degradation products not determined | [132,133,134,135] |
Aspergillus fumigatus A. fumigatus | Anti-fungal Growth inhibition | Relatively safe and highly efficient | No known | [120] |
Phytochemicals of plant extracts such as polyphenols, polyenes and essential oils | Fungicidal | Highly effective and environmentally sustainable. | Low stability and solubility and high cost | [136] |
Fungal concoction (Monascus species and T. harzianum) | Fungal growth inhibition | Environmentally friendly | No known | [137] |
Streptomyces philanthi strain RL-1-178 | Fungal growth inhibition | Highly efficient (85–100%) | No known | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nji, Q.N.; Babalola, O.O.; Mwanza, M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J. Fungi 2023, 9, 766. https://doi.org/10.3390/jof9070766
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. Journal of Fungi. 2023; 9(7):766. https://doi.org/10.3390/jof9070766
Chicago/Turabian StyleNji, Queenta Ngum, Olubukola Oluranti Babalola, and Mulunda Mwanza. 2023. "Soil Aspergillus Species, Pathogenicity and Control Perspectives" Journal of Fungi 9, no. 7: 766. https://doi.org/10.3390/jof9070766
APA StyleNji, Q. N., Babalola, O. O., & Mwanza, M. (2023). Soil Aspergillus Species, Pathogenicity and Control Perspectives. Journal of Fungi, 9(7), 766. https://doi.org/10.3390/jof9070766