The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon
Abstract
:1. Introduction
2. Research Design and Methods
2.1. Study Design and Setting
2.2. Population and Data Collection
2.3. Microbiological Definitions
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Epidemiology of Candida spp.
3.3. Antifungal Susceptibility
3.4. Outcomes of CAC and Non-CAC
3.5. EQUAL Score Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial Bloodstream Infections in US Hospitals: Analysis of 24,179 Cases from a Prospective Nationwide Surveillance Study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakhem, A.E.; Istambouli, R.; Alkozah, M.; Gharamti, A.; Tfaily, M.A.; Jabbour, J.F.; Araj, G.F.; Tamim, H.; Kanj, S.S. Predominance of Candida glabrata among non-albicans Candida species in a 16-year study of candidemia at a tertiary care center in Lebanon. Pathogens 2021, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Hoenigl, M.; Egger, M.; Salmanton-Garcia, J.; Koehler, P.; Gangneux, J.-P.; Arendrup, M.C.; Bicanic, T.; Arikan-Akdagli, S.; Cornely, O.A.; ECMM Study Group. 753. Guideline Adherence Predicts Outcomes of Candidemia in Europe: Results from the ECMM Candida III Multinational European study. Open Forum Infect. Dis. 2022, 9, ofac492.038. [Google Scholar] [CrossRef]
- Kmeid, J.; Jabbour, J.-F.; Kanj, S.S. Epidemiology and burden of invasive fungal infections in the countries of the Arab League. J. Infect. Public Health 2020, 13, 2080–2086. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, S.; Rafei, R.; Osman, M.; El Safadi, D.; Mallat, H.; Papon, N.; Dabboussi, F.; Bouchara, J.-P.; Hamze, M. The epidemiology of Candida species in the Middle East and North Africa. J. De Mycol. Médicale 2019, 29, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Al Thaqafi, A.H.O.; Farahat, F.M.; Al Harbi, M.I.; Al Amri, A.F.W.; Perfect, J.R. Predictors and outcomes of Candida bloodstream infection: Eight-year surveillance, western Saudi Arabia. Int. J. Infect. Dis. 2014, 21, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.N.; De Mello, T.P.; Ramos, L.D.S.; Branquinha, M.H.; Roudbary, M.; Dos Santos, A.L.S. Fungal Infections in COVID-19-Positive Patients: A Lack of Optimal Treatment Options. Curr. Top. Med. Chem. 2020, 20, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Allaw, F.; Haddad, S.F.; Habib, N.; Moukarzel, P.; Naji, N.S.; Kanafani, Z.A.; Ibrahim, A.; Zahreddine, N.K.; Spernovasilis, N.; Poulakou, G.; et al. COVID-19 and C. auris: A Case-Control Study from a Tertiary Care Center in Lebanon. Microorganisms 2022, 10, 1011. [Google Scholar] [CrossRef]
- Arastehfar, A.; Shaban, T.; Zarrinfar, H.; Roudbary, M.; Ghazanfari, M.; Hedayati, M.-T.; Sedaghat, A.; Ilkit, M.; Najafzadeh, M.J.; Perlin, D.S. Candidemia among Iranian Patients with Severe COVID-19 Admitted to ICUs. J. Fungi 2021, 7, 280. [Google Scholar] [CrossRef]
- Omrani, A.S.; Koleri, J.; Ben Abid, F.; Daghfel, J.; Odaippurath, T.; Peediyakkal, M.Z.; Baiou, A.; Sarsak, E.; Elayana, M.; Kaleeckal, A.; et al. Clinical characteristics and risk factors for COVID-19-associated Candidemia. Med. Mycol. 2021, 59, 1262–1266. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Eser, F.; Kaya Kalem, A.; Bilgic, Z.; Asilturk, D.; Hasanoglu, I.; Ayhan, M.; Tezer Tekce, Y.; Erdem, D.; Turan, S.; et al. Characteristics of candidemia in COVID-19 patients; increased incidence, earlier occurrence and higher mortality rates compared to non-COVID-19 patients. Mycoses 2021, 64, 1083–1091. [Google Scholar] [CrossRef]
- Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive Fungal Infections Complicating COVID-19: A Narrative Review. J. Fungi 2021, 7, 921. [Google Scholar] [CrossRef] [PubMed]
- Avkan-Oğuz, V.; Çelik, M.; Eren-Kutsoylu, O.; Nazli, A.; Uğur, Y.L.; Taylan, A.; Ergan, B.; Irmak, Ç.; Duğral, E.; Özkütük, A.A. Fungal colonization and infections in patients with COVID-19 in intensive care units: A real-life experience at a tertiary-care hospital. Respir. Med. Res. 2022, 82, 100937. [Google Scholar] [CrossRef] [PubMed]
- Routsi, C.; Meletiadis, J.; Charitidou, E.; Gkoufa, A.; Kokkoris, S.; Karageorgiou, S.; Giannopoulos, C.; Koulenti, D.; Andrikogiannopoulos, P.; Perivolioti, E.; et al. Epidemiology of Candidemia and Fluconazole Resistance in an ICU before and during the COVID-19 Pandemic Era. Antibiotics 2022, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Boxer, L.A. How to approach neutropenia. In Hematology 2010, the American Society of Hematology Education Program Book; American Society of Hematology: Washington, DC, USA, 2012; Volume 2012, pp. 174–182. [Google Scholar] [CrossRef] [Green Version]
- M60 Performance Standards for Antifungal Susceptibility Testing of Yeasts. 2020. Available online: https://clsi.org/media/3680/m60ed2_sample.pdf (accessed on 30 June 2023).
- CDC. Antifungal Susceptibility Testing and Interpretation|Candida Auris|Fungal Diseases|CDC. 2020. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (accessed on 2 May 2023).
- CDC. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-Central Line-Associated Bloodstream Infection); Center for Disease Control: Atlanta, GA, USA, 2017.
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hatmi, A.M.; Mohsin, J.; Al-Huraizi, A.; Khamis, F. COVID-19 associated invasive candidiasis. J. Infect. 2021, 82, e45–e46. [Google Scholar] [CrossRef]
- Zahreddine, N.K.; Haddad, S.F.; Kerbage, A.; Kanj, S.S. Challenges of coronavirus disease 2019 (COVID-19) in Lebanon in the midst of the economic collapse. Antimicrob. Steward. Health Epidemiol. 2022, 2, e67. [Google Scholar] [CrossRef] [PubMed]
- Allaw, F.; Zahreddine, N.K.; Ibrahim, A.; Tannous, J.; Taleb, H.; Bizri, A.R.; Dbaibo, G.; Kanj, S.S. First Candida auris Outbreak during a COVID-19 Pandemic in a Tertiary-Care Center in Lebanon. Pathogens 2021, 10, 157. [Google Scholar] [CrossRef]
- Escandón, P.; Chow, N.A.; Caceres, D.H.; Gade, L.; Berkow, E.L.; Armstrong, P.; Rivera, S.; Misas, E.; Duarte, C.; Moulton-Meissner, H.; et al. Molecular Epidemiology of Candida auris in Colombia Reveals a Highly Related, Countrywide Colonization with Regional Patterns in Amphotericin B Resistance. Clin. Infect. Dis. 2019, 68, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reslan, L.; Araj, G.F.; Finianos, M.; Asmar, R.E.; Hrabak, J.; Dbaibo, G.; Bitar, I. Molecular characterization of Candida auris isolates at a major tertiary care center in Lebanon. Front. Microbiol. 2022, 12, 3897. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Estévez, A.; Sánchez-Carrillo, C.; Guinea, J.; Escribano, P.; Alonso, R.; Valerio, M.; Padilla, B.; Bouza, E.; Muñoz, P. Incidence of Candidemia Is Higher in COVID-19 versus Non-COVID-19 Patients, but Not Driven by Intrahospital Transmission. J. Fungi 2022, 8, 305. [Google Scholar] [CrossRef] [PubMed]
- Tsay, S.; Welsh, R.M.; Adams, E.H.; Chow, N.A.; Gade, L.; Berkow, E.L.; Poirot, E.; Lutterloh, E.; Quinn, M.; Chaturvedi, S.; et al. Notes from the field: Ongoing transmission of Candida auris in health care facilities—United States, June 2016–May 2017. Morb. Mortal. Wkly. Rep. 2017, 66, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-Y.; Lu, P.-L.; Wang, Y.-L.; Chen, T.-C.; Chang, K.; Lin, S.-Y. Usefulness of EQUAL Candida Score for predicting outcomes in patients with candidaemia: A retrospective cohort study. Clin. Microbiol. Infect. 2020, 26, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Rahme, D.; Ayoub, M.; Shaito, K.; Saleh, N.; Assaf, S.; Lahoud, N. First trend analysis of antifungals consumption in Lebanon using the World Health Organization collaborating center for drug statistics methodology. BMC Infect. Dis. 2022, 22, 882. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Ahmad, S.; Al-Sweih, N.; Mokaddas, E.; Al-Banwan, K.; Alfouzan, W.; Al-Obaid, I.; Al-Obaid, K.; Varghese, S. Increasing Trends of Reduced Susceptibility to Antifungal Drugs Among Clinical Candida glabrata Isolates in Kuwait. Microb. Drug Resist. 2020, 26, 982–990. [Google Scholar] [CrossRef]
- Habibzadeh, A.; Lankarani, K.B.; Farjam, M.; Akbari, M.; Kashani, S.M.A.; Karimimoghadam, Z.; Wang, K.; Imanieh, M.H.; Tabrizi, R.; Ahmadizar, F. Prevalence of Fungal Drug Resistance in COVID-19 Infection: A Global Meta-analysis. Curr. Fungal Infect. Rep. 2022, 16, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Rizk, N.A.; Moghnieh, R.; Haddad, N.; Rebeiz, M.-C.; Zeenny, R.M.; Hindy, J.-R.; Orlando, G.; Kanj, S.S. Challenges to Antimicrobial Stewardship in the Countries of the Arab League: Concerns of Worsening Resistance during the COVID-19 Pandemic and Proposed Solutions. Antibiotics 2021, 10, 1320. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A one health perspective. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; ASM Press: Hoboken, NJ, USA, 2018; pp. 521–547. [Google Scholar] [CrossRef]
- Kanj, S.S.; Ramirez, P.; Rodrigues, C. Beyond the Pandemic: The Value of Antimicrobial Stewardship. Front. Public Health 2022, 10, 902835. [Google Scholar] [CrossRef] [PubMed]
- El Zakhem, A.; El Eid, R.; Istambouli, R.; Tamim, H.; Kanj, S.S. The Utility of EQUAL Candida Score in Predicting Mortality in Patients with Candidemia. J. Fungi 2022, 8, 238. [Google Scholar] [CrossRef]
- Puig-Asensio, M.; Pemán, J.; Zaragoza, R.; Garnacho-Montero, J.; Mazuelos, E.M.; Cuenca-Estrella, M.; Almirante, B. Impact of Therapeutic Strategies on the Prognosis of Candidemia in the ICU. Crit. Care Med. 2014, 42, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Charles, P.E.; Doise, J.M.; Quenot, J.P.; Aube, H.; Dalle, F.; Chavanet, P.; Milesi, N.; Aho, L.S.; Portier, H.; Blettery, B. Candidemia in critically ill patients: Difference of outcome between medical and surgical patients. Intensive Care Med. 2003, 29, 2162–2169. [Google Scholar] [CrossRef] [PubMed]
- Breazzano, M.P.; Day, H.R.; Bloch, K.C.; Tanaka, S.; Cherney, E.F.; Sternberg, P., Jr.; Donahue, S.P.; Bond, J.B., III. Utility of ophthalmologic screening for patients with Candida bloodstream infections: A systematic review. JAMA Ophthalmol. 2019, 137, 698–710. [Google Scholar] [CrossRef]
- Cornely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin. Microbiol. Infect. 2012, 18 (Suppl. S7), 19–37. [Google Scholar] [CrossRef] [Green Version]
- Phongkhun, K.; Pothikamjorn, T.; Srisurapanont, K.; Manothummetha, K.; Sanguankeo, A.; Thongkam, A.; Chuleerarux, N.; Leksuwankun, S.; Meejun, T.; Thanakitcharu, J.; et al. Prevalence of Ocular Candidiasis and Candida Endophthalmitis in Patients with Candidemia: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2023, 76, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.R.; Safdar, N.; Baddley, J.W.; Playford, G.; Reboli, A.C.; Rex, J.H.; Sobel, J.D.; Pappas, P.G.; Kullberg, B.J. Impact of Treatment Strategy on Outcomes in Patients with Candidemia and Other Forms of Invasive Candidiasis: A Patient-Level Quantitative Review of Randomized Trials. Clin. Infect. Dis. 2012, 54, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.; Gaur, S.; Bal, A. Candidaemia in the non-neutropenic patient: A critique of the guidelines. Int. J. Antimicrob. Agents 2013, 42, 294–300. [Google Scholar] [CrossRef]
- Nucci, M.; Braga, P.R.; Nouér, S.A.; Anaissie, E. Time of catheter removal in candidemia and mortality. Braz. J. Infect. Dis. 2018, 22, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Ashong, C.N.; Hunter, A.S.; Mansouri, M.D.; Cadle, R.M.; Hamill, R.J.; Musher, D.M. Adherence to clinical practice guidelines for the treatment of candidemia at a Veterans Affairs Medical Center. Int. J. Health Sci. 2017, 11, 18–23. [Google Scholar]
- Ohki, S.; Nobuaki, S.; Kosaka, T.; Fujita, N. Impact of host-and early treatment-related factors on mortality in ICU patients with candidemia: A bicentric retrospective observational study. J. Intensive Care 2020, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Osei Sekyere, J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen 2018, 7, e00578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The Landscape of Candidemia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.I.; Vandewoude, K.H.; A Hoste, E.; Colardyn, F.A. Effects of nosocomial candidemia on outcomes of critically ill patients. Am. J. Med. 2002, 113, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, R.; Luan, Z.; Ma, X. Risk of invasive candidiasis with prolonged duration of ICU stay: A systematic review and meta-analysis. BMJ Open 2020, 10, e036452. [Google Scholar] [CrossRef] [PubMed]
- Dongelmans, D.A.; Termorshuizen, F.; Brinkman, S.; Bakhshi-Raiez, F.; Arbous, M.S.; de Lange, D.W.; van Bussel, B.C.T.; de Keizer, N.F.; Verbiest, D.P.; Velde, L.F.T.; et al. Characteristics and outcome of COVID-19 patients admitted to the ICU: A nationwide cohort study on the comparison between the first and the consecutive upsurges of the second wave of the COVID-19 pandemic in the Netherlands. Ann. Intensiv. Care 2022, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Acosta, R.A.H.; Garrigos, Z.E.; Marcelin, J.R.; Vijayvargiya, P. COVID-19 Pathogenesis and Clinical Manifestations. Infect. Dis. Clin. N. Am. 2022, 36, 231–249. [Google Scholar] [CrossRef]
- Alkofide, H.; Almohaizeie, A.; Almuhaini, S.; Alotaibi, B.; Alkharfy, K.M. Tocilizumab and Systemic Corticosteroids in the Management of Patients with COVID-19: A Systematic Review and Meta-Analysis. Int. J. Infect. Dis. 2021, 110, 320–329. [Google Scholar] [CrossRef]
2004–2008 | 2009–2013 | 2014–2019 | 2020–2022 (Non-CAC) | 2020–2022 (CAC) | Total | |
---|---|---|---|---|---|---|
C. albicans | ||||||
Fluconazole | 1/1 (100%) | 6/6 (100%) | 13/16 (81.2%) | 5/5 (100%) | 8/8 (100%) | 33/36 (91.6%) |
Voriconazole | - | 3/4 (75%) | 14/17 (82.3%) | 5/5 (100%) | 8/8 (100%) | 30/34 (88.2%) |
Amphotericin B | - | 3/3 (100%) | 17/17 (100%) | 5/5 (100%) | 8/8 (100%) | 33/33 (100%) |
Caspofungin | - | 1/1 (100%) | 6/6 (100%) | 5/5 (100%) | 8/8 (100%) | 20/20 (100%) |
C. tropicalis | ||||||
Fluconazole | 2/2 (100%) | - | 3/3 (100%) | - | 1/1 (100%) | 6/6 (100%) |
Voriconazole | - | 4/5 ((80.0%) | 7/7 (100%) | 1/1 (100%) | 2/2 (100%) | 14/15 (93.3%) |
Amphotericin B | - | 1/1 (100%) | 7/7 (100%) | 1/1 (100%) | 2/2 (100%) | 11/11 (100%) |
Caspofungin | - | 1/1 (100%) | 1/1 (100%) | 1/1 (100%) | 2/2 (100%) | 5/5 (100%) |
C. glabrata | ||||||
Fluconazole | 3/4 (75%) | 3/10 (30.0%) | 17/23 (73.9%) | 2/6 (33.3%) | 4/7 (57.1%) | 29/50 (58.0%) |
Voriconazole | 0/1 (0.0%) | 7/8 (87.5%) | 18/23 (78.2%) | 6/6 (100%) | 7/7 (100%) | 38/45 (84.4%) |
Amphotericin B | - | 1/1 (100%) | 22/23 (95.6%) | 6/6 (100%) | 6/6 (100%) | 35/36 (97.2%) |
Caspofungin | - | - | 9/9 (100%) | 3/6 (50.0%) | 2/7 28.5%) | 14/22 (63.6%) |
C. parapsilosis | ||||||
Fluconazole | 2/2 (100%) | - | 3/3 (100%) | - | 1/1 (100%) | 6/6 (100%) |
Voriconazole | - | - | 3/3 (100%) | - | 1/1 (100%) | 4/4 (100%) |
Amphotericin B | - | - | 3/3 (100%) | - | 1/1 (100%) | 4/4 (100%) |
Caspofungin | - | - | - | - | 1/1 (100%) | 1/1 (100%) |
C. auris | ||||||
Fluconazole | - | - | - | 0/3 (0.0%) | 2/9 (22.2%) | 2/12 (16.7%) |
Voriconazole | - | - | - | 1/3 (33.3%) | 5/9 (55.5%) | 6/12 (50.0%) |
Amphotericin B | - | - | - | 0/3 (0.0%) | 0/7 (0.0%) | 0/10 (0.0%) |
Caspofungin | - | - | - | 8/8 (100%) | 3/3 (100%) | 11/11 (100%) |
Total N = 64 | CAC N = 32 (50.0%) | Non-CAC N = 32 (50.0%) | p-Value | |
---|---|---|---|---|
Age * | 73 (19) | 75 (18) | 72 (18) | 0.14 |
Male | 38 (59.4%) | 20 (62.5%) | 18 (56.3%) | 0.61 |
Diabetes mellitus | 29 (45.3%) | 18 (56.3%) | 11 (34.4%) | 0.07 |
ESRD on HD | 26 (40.6%) | 12 (37.5%) | 14 (43.8%) | 0.61 |
AKI requiring HD | 2 (3.1%) | 1 (3.1%) | 1 (3.1%) | 1.00 |
Hematologic malignancy | 8 (12.5%) | 5 (15.6%) | 3 (9.4%) | 0.70 |
Solid organ malignancy | 16 (25.0%) | 5 (15.6%) | 11 (34.4%) | 0.08 |
Recent chemotherapy | 14 (22.2%) | 4 (12.5%) | 10 (32.3%) | 0.05 |
Recent immunotherapy | 4 (6.3%) | 2 (6.3%) | 2 (6.3%) | 1.00 |
Neutropenia | 4 (6.3%) | 1 (3.1%) | 3 (9.4%) | 0.61 |
Recent abdominal surgery ** | 6 (9.4%) | 2 (6.3%) | 4 (12.5%) | 0.67 |
Recent antibiotics ** | 62 (96.9%) | 30 (93.8%) | 32 (100.0%) | 0.49 |
Recent antifungals ** | 22 (34.4%) | 12 (37.5%) | 10 (31.3%) | 0.59 |
Mechanical ventilation | 49 (76.6%) | 26 (81.3%) | 23 (71.9%) | 0.37 |
CVC | 55 (85.9%) | 27 (84.4%) | 28 (87.5%) | 1.00 |
Persistent candidemia | 10 (24.4%) | 3 (15.8%) | 7 (31.8%) | 0.29 |
Source of candidemia | ||||
CLABSI | 18 (28.1%) | 8 (25.0%) | 10 (31.2%) | 0.57 |
UTI | 20 (31.3%) | 12 (37.5%) | 8 (25.0%) | 0.28 |
GI tract | 14 (21.9%) | 6 (18.8%) | 8 (25.0%) | 0.54 |
Unknown | 15 (23.4%) | 9 (28.1%) | 6 (18.8%) | 0.37 |
Others *** | 11 (17.5%) | 4 (12.9%) | 7 (21.9%) | 0.34 |
Species | 0.94 | |||
C. albicans | 17 (26.6%) | 9 (28.1%) | 8 (25.1%) | |
C. auris | 19 (29.7%) | 9 (28.1%) | 10 (31.3%) | |
NAC other than C. auris | 28 (43.8%) | 14 (43.8%) | 14 (43.8%) |
Total N = 64 | CAC N = 32 (50.0%) | Non-CAC N = 32 (50.0%) | p-Value | |
---|---|---|---|---|
Speciation | 51 (79.7%) | 26 (81.3%) | 25 (78.1%) | 0.75 |
Susceptibility testing | 28 (48.3%) | 15 (51.7%) | 13 (44.8%) | 0.59 |
Echocardiography | 15 (24.2%) | 9 (29.0%) | 6 (19.4%) | 0.37 |
Ophthalmic examination | 11 (17.5%) | 5 (15.6%) | 6 (19.4%) | 0.69 |
Empiric antifungal agent | ||||
Fluconazole | 3 (5.1%) | 2 (6.7%) | 1 (3.4%) | 1.00 |
Caspofungin | 36 (61.0%) | 25 (83.3%) | 11 (37.9%) | <0.001 |
Anidulafungin | 14 (23.7%) | 5 (16.7%) | 9 (31.0%) | 0.19 |
Micafungin | 1 (1.7%) | 0 (0.0%) | 1 (3.4%) | 0.49 |
Lipid formulation of Amphotericin B | 5 (8.5%) | 1 (3.3%) | 4 (13.8%) | 0.19 |
Voriconazole | 7 (11.9%) | 3 (10.0%) | 4 (13.8%) | 0.71 |
Targeted antifungal agent | 0.054 | |||
Fluconazole | 44 (47.3%) | 3 (23.1%) | 41 (51.2%) | |
Voriconazole | 14 (15.1%) | 3 (23.1%) | 11 (13.8%) | |
Caspofungin | 13 (14%) | 2 (15.4%) | 11 (13.8%) | |
Anidulafungin | 10 (10.8%) | 4 (30.8%) | 6 (7.5%) | |
Micafungin | 4 (4.3%) | 1 (7.7%) | 3 (3.8%) | |
Lipid formulation of Amphotericin B | 8 (8.6%) | 0 (0.0%) | 8 (10.0%) | |
Empirical echinocandin | 48 (81.4%) | 28 (93.3%) | 20 (69.0%) | 0.016 |
Step-down to fluconazole | 4 (7.1%) | 1 (3.3%) | 3 (11.5%) | 0.32 |
Daily blood culture until negative | 2 (4.2%) | 1 (4.2%) | 1 (4.2%) | 1.00 |
Completed 14 days of antifungals | 9 (17.0%) | 4 (14.8%) | 5 (19.2%) | 0.72 |
30-day mortality | 49 (76.6%) | 24 (75.0%) | 25 (78.1%) | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Zakhem, A.; Mahmoud, O.; Zakhour, J.; Nahhal, S.B.; El Ghawi, N.; Omran, N.; El Sheikh, W.G.; Tamim, H.; Kanj, S.S. The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon. J. Fungi 2023, 9, 769. https://doi.org/10.3390/jof9070769
El Zakhem A, Mahmoud O, Zakhour J, Nahhal SB, El Ghawi N, Omran N, El Sheikh WG, Tamim H, Kanj SS. The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon. Journal of Fungi. 2023; 9(7):769. https://doi.org/10.3390/jof9070769
Chicago/Turabian StyleEl Zakhem, Aline, Omar Mahmoud, Johnny Zakhour, Sarah B. Nahhal, Nour El Ghawi, Nadine Omran, Walaa G. El Sheikh, Hani Tamim, and Souha S. Kanj. 2023. "The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon" Journal of Fungi 9, no. 7: 769. https://doi.org/10.3390/jof9070769
APA StyleEl Zakhem, A., Mahmoud, O., Zakhour, J., Nahhal, S. B., El Ghawi, N., Omran, N., El Sheikh, W. G., Tamim, H., & Kanj, S. S. (2023). The Impact of COVID-19 on the Epidemiology and Outcomes of Candidemia: A Retrospective Study from a Tertiary Care Center in Lebanon. Journal of Fungi, 9(7), 769. https://doi.org/10.3390/jof9070769