In Planta Study Localizes an Effector Candidate from Austropuccinia psidii Strain MF-1 to the Nucleus and Demonstrates In Vitro Cuticular Wax-Dependent Differential Expression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. In Silico Prediction of Effector Candidates
2.3. Effect of Cuticular Wax on MF-1 Effector Candidate Gene Expression
2.4. RT-qPCR
2.5. Effector Candidate Gene Cloning
2.6. Agroinfiltration-Mediated Transient Expression in N. benthamiana
2.7. Protein Extraction and Western Blot Analysis
3. Results
3.1. In Silico Analyses Identify 255 Effector Candidates in the Genome of A. psidii Strain MF-1
3.2. Effect of Cuticular Wax on MF-1 Effector Candidate Gene Expression
3.3. Subcellular Localization of Effector Candidate Ap28303
4. Discussion
4.1. Two Methods of In Silico Effector Characterization for Austropuccinia psidii Strain MF-1 Commonly Predicted 255 Candidate Genes
4.2. Host Leaf Cuticular Wax Changes In Vitro Pathogen Effector Gene Expression
4.3. In Planta MF-1 Effector Candidate Localized to the Nucleus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Beenken, L. Austropuccinia: A new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 2017, 297, 53–61. [Google Scholar] [CrossRef]
- Glen, M.; Alfenas, A.C.; Zauza, E.A.V.; Wingfield, M.J.; Mohammed, C. Puccinia psidii: A threat to the Australian environment and economy—A review. Australas. Plant Pathol. 2007, 36, 1–16. [Google Scholar] [CrossRef]
- Winter, G. Repertorium. Rabenhorstii fungi europaei et extraeuraopaei Cent. XXXI et XXXII. Hedwigia 1884, 23, 164–172. [Google Scholar]
- Coutinho, T.A.; Wingfield, M.J.; Alfenas, A.C.; Crous, P.W. Eucalyptus rust: A disease with the potential for serious international implications. Plant Dis. 1998, 82, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Joffily, J. Ferrugem do eucalipto. Bragantia 1944, 4, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Hardstaff, L.K.; Sommerville, K.D.; Funnekotter, B.; Bunn, E.; Offord, C.A.; Mancera, R.L. Myrtaceae in Australia: Use of cryobiotechnologies for the conservation of a significant plant family under threat. Plants 2022, 11, 1017. [Google Scholar] [CrossRef]
- Fensham, R.J.; Carnegie, A.J.; Laffineur, B.; Makinson, R.O.; Pegg, G.S.; Wills, J. Imminent extinction of Australian Myrtaceae by fungal disease. Trends Ecol. Evol. 2020, 35, 554–557. [Google Scholar] [CrossRef]
- Soewarto, J.; Giblin, F.; Carnegie, A.J. Austropuccinia psidii (Myrtle Rust) Global Host List. Version 2. Australian Network for Plant Conservation. 2019. Available online: http://www.anpc.asn.au/myrtle-rust (accessed on 20 February 2021).
- Carnegie, A.J.; Kathuria, A.; Pegg, G.S.; Entwistle, P.; Nagel, M.; Giblin, F.R. Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invasions 2016, 18, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Dianese, J.C.; Moraes, T.S.; Silva, A.R. Response of Eucalyptus species to field infection by Puccinia psidii. Plant Dis. 1984, 68, 314–316. [Google Scholar] [CrossRef]
- Masson, M.V.; Moraes, W.B.; Furtado, L. Chemical Control of Eucalyptus Rust: Brazilian Experiences. In Fungicides–Showcases of Integrated Plant Disease Management from Around the World; Nita, M., Ed.; InTech: Houston TX, USA, 2013; pp. 117–134. [Google Scholar] [CrossRef] [Green Version]
- Quecine, M.C.; Bini, A.P.; Romagnoli, E.R.; Andreote, F.D.; Moon, D.H.; Labate, C.A. Genetic variability in Puccinia psidii populations as revealed by PCR-DGGE and T-RFLP markers. Plant Dis. 2014, 98, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Quecine, M.C.; Leite, T.F.; Bini, A.P.; Regiani, T.; Franceschini, L.M.; Budzinski, I.G.F.; Marques, F.G.; Labate, M.T.V.; Guidetti-Gonzalez, S.; Moon, D.H.; et al. Label-free quantitative proteomic analysis of Puccinia psidii uredospores reveals differences of fungal populations infecting eucalyptus and guava. PLoS ONE 2016, 11, e0145343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, L.; Alfenas, A.C.; Ferreira, F.A. Variabilidade fisiológica de Puccinia psidii–Ferrugem do Eucalipto. Summa Phytopathol. 2001, 27, 295–300. [Google Scholar]
- Ferreira, F.A. Ferrugem do eucalipto. Rev. Árvore 1983, 7, 91–109. [Google Scholar]
- Marlatt, R.B.; Kimbrough, J.W. Puccinia psidii on Pimento dioica in South Florida. Plant Dis. 1980, 68, 510–512. [Google Scholar]
- Morin, L.; Aveyard, R.; Lidbetter, J.R.; Wilson, P.G. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLoS ONE 2012, 7, e35434. [Google Scholar] [CrossRef]
- Graça, R.N.; Aun, C.P.; Guimarães, L.M.S.; Rodrigues, B.V.A.; Zauza, E.A.V.; Alfenas, A.C. A new race of Puccinia psidii defeats rust resistance in eucalypt. Australas. Plant Pathol. 2011, 40, 442–447. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Karaoglu, H.; Zhang, P.; Park, R.F. Simple sequence repeat markers support the presence of a single genotype of Puccinia psidii in Australia. Plant Pathol. 2016, 65, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.E.; Ross-Davis, A.L.; Graça, R.N.; Alfenas, A.C.; Peever, T.L.; Hanna, J.W.; Uchida, J.Y.; Hauff, R.D.; Kadooka, C.Y.; Kim, M.S.; et al. Genetic diversity of the myrtle rust pathogen (Austropuccinia psidii) in the Americas and Hawaii: Global implications for invasive threat assessments. For. Pathol. 2018, 48, e12378. [Google Scholar] [CrossRef] [Green Version]
- Granados, G.M.; McTaggart, A.R.; Barnes, I.; Rodas, C.A.; Roux, J.; Wingfield, M.J. The pandemic biotype of Austropuccinia psidii discovered in South America. Australas. Plant Pathol. 2017, 46, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Roux, J.; Granados, G.M.; Shuey, L.; Barnes, I.; Wingfield, M.J.; McTaggart, A.R. A unique genotype of the rust pathogen, Puccinia psidii, on Myrtaceae in South Africa. Australas. Plant Pathol. 2016, 45, 645–652. [Google Scholar] [CrossRef] [Green Version]
- McTaggart, A.R.; Duong, T.A.; Le, V.Q.; Shuey, L.S.; Smidt, W.; Naidoo, S.; Wingfield, M.J.; Wingfield, B.D. Chromium sequencing: The doors open for genomics of obligate plant pathogens. Biotechniques 2018, 65, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Tobias, P.A.; Schwessinger, B.; Deng, C.H.; Wu, C.; Dong, C.; Sperschneider, J.; Jones, A.; Luo, Z.; Zhang, P.; Sandhu, K.; et al. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. G3 2021, 11, jkaa015. [Google Scholar] [CrossRef]
- Edwards, R.J.; Dong, C.; Park, R.F.; Tobias, P.A. A phased chromosome-level genome and full mitochondrial sequence for the dikaryotic myrtle rust pathogen, Austropuccinia psidii. bioRxiv 2022. [Google Scholar] [CrossRef]
- Ferrarezi, J.A.; McTaggart, A.R.; Tobias, P.A.; Hayashibara, C.A.A.; Degnan, R.M.; Shuey, L.S.; Francheschini, L.M.; Lopes, M.S.; Quecine, M.C. Austropuccinia psidii uses tetrapolar mating and produces meiotic spores in older infections on Eucalyptus grandis. Fungal Genet. Biol. 2022, 160, 103692. [Google Scholar] [CrossRef]
- Almeida, J.R.; Riaño Pachón, D.M.; Franceschini, L.M.; Santos, I.B.; Ferrarezi, J.A.; Andrade, P.A.M.D.; Vitorello, C.B.M.; Labate, C.A.; Quecine, M.C. Revealing the high variability on nonconserved core and mobile elements of Austropuccinia psidii and other rust mitochondrial genomes. PLoS ONE 2021, 16, e0248054. [Google Scholar] [CrossRef]
- Dalio, R.J.D.; Magalhaes, D.M.; Rodrigues, C.M.; Arena, G.D.; Oliveira, T.S.; Souza-Neto, R.R.; Picchi, S.C.; Martins, P.M.M.; Santos, P.J.C.; Maximo, H.J.; et al. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann. Bot. 2017, 119, 749–774. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Smith, D.L.; Kabbage, M.; Roth, M.G. Effectors of plant necrotrophic fungi. Front. Plant Sci. 2021, 12, 687713. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Santos, I.B.; Lopes, M.S.; Bini, A.P.; Tschoeke, B.A.P.; Verssani, B.A.W.; Figueredo, E.F.; Cataldi, T.R.; Marques, J.P.R.; Silva, L.D.; Labate, C.A.; et al. The Eucalyptus cuticular waxes contribute in preformed defense against Austropuccinia psidii. Front. Plant Sci. 2019, 9, 1978. [Google Scholar] [CrossRef]
- Leite, T.F.; Moon, D.H.; Lima, A.C.M.; Labate, C.A.; Tanaka, F.A.O. A simple protocol for whole leaf preparation to investigate the interaction between Puccinia psidii and Eucalyptus grandis. Australas. Plant Pathol. 2013, 42, 79–84. [Google Scholar] [CrossRef]
- Nakagawa, T.; Suzuki, T.; Murata, S.; Nakamura, S.; Hino, T.; Maeo, K.; Tabata, R.; Kawai, T.; Tanaka, K.; Niwa, Y.; et al. Improved gateway binary vectors: High-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 2007, 71, 2095–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.A.; Silva, J.C.F.; Caetano, H.D.N.; Machado, J.P.B.; Mendes, G.C.; Reis, P.A.B.; Brustolini, O.J.B.; Dal-Bianco, M.; Fontes, E.P.B. Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: Conserved and plant-specific features. BMC Genom. 2015, 16, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutler, S.R.; Ehrhardt, D.W.; Griffitts, J.S.; Somerville, C.R. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 2000, 97, 3718–3723. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P.N.; Gardiner, D.M.; Singh, K.B.; Taylor, J.M. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. Mol. Plant Pathol. 2018, 19, 2094–2110. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H. Predicting secretory proteins with SignalP. In Protein Function Prediction (Methods in Molecular Biology); Kihara, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 59–73. [Google Scholar] [CrossRef] [Green Version]
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [Green Version]
- Fankhauser, N.; Mäser, P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 2005, 21, 1846–1852. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, S.; Cuomo, C.A.; Lin, Y.C.; Aerts, A.; Tisserant, E.; Veneault-Fourrey, C.; Joly, D.L.; Hacquard, S.; Amselem, J.; Cantarel, B.L.; et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl. Acad. Sci. USA 2011, 108, 9166–9171. [Google Scholar] [CrossRef]
- Germain, H.; Joly, D.L.; Mireault, C.; Plourde, M.B.; Letanneur, C.; Stewart, D.; Morency, M.J.; Petre, B.; Duplessis, S.; Séguin, A. Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens. Mol. Plant Pathol. 2018, 19, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, T.; Hecht, M.; Hamp, T.; Karl, T.; Yachdav, G.; Ahmed, N.; Altermann, U.; Angerer, P.; Ansorge, S.; Balasz, K.; et al. LocTree3 prediction of localization. Nucleic Acids Res. 2014, 42, 350–355. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, M.J.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2014, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consortium, T.U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, 480–489. [Google Scholar] [CrossRef]
- Viana, R.; Santos, L.T.; Demuner, A.; Ferreira, F.; Ferreira, L.; Ferreira, E.; Machado, A.F.; Santos, M. Quantificação e composição química de cera epicuticular de folhas de eucalipto. Planta Daninha 2010, 28, 753–758. [Google Scholar] [CrossRef]
- Sekiya, A.; Marques, F.G.; Leite, T.F.; Cataldi, T.R.; Moraes, F.E.; Pinheiro, A.L.M.; Labate, M.T.V.; Labate, C.A. Network analysis combining proteomics and metabolomics reveals new insights into early responses of Eucalyptus grandis during rust infection. Front. Plant Sci. 2021, 11, 604849. [Google Scholar] [CrossRef]
- Ramakers, C.; Ruijter, J.M.; Lekanne Deprez, R.H.; Moorman, A.F.M. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 2003, 339, 62–66. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R (‘1.2.5033′). 2019. Available online: http://www.rstudio.com/ (accessed on 20 December 2020).
- Win, J.; Kamoun, S.; Jones, A.M.E. Purification of effector-target protein complexes via transient expression in Nicotiana benthamiana. In Plant Immunity. Methods in Molecular Biology; McDowell, J., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 712, pp. 181–194. [Google Scholar]
- Schwessinger, B.; Sperschneider, J.; Cuddy, W.S.; Garnica, D.P.; Miller, M.E.; Taylor, J.M.; Dodds, P.N.; Figueroa, M.; Park, R.F.; Rathjen, P. A near-complete haplotype-phased genome of the dikaryotic. MBio 2018, 9, e02275-17. [Google Scholar] [CrossRef] [Green Version]
- Schwessinger, B.; Chen, Y.J.; Tien, R.; Vogt, J.K.; Sperschneider, J.; Nagar, R.; McMullan, M.; Sicheritz-Ponten, T.; Sørensen, C.K.; Hovmøller, M.S.; et al. Distinct life histories impact dikaryotic genome evolution in the rust fungus Puccinia striiformis causing stripe rust in wheat. Genome Biol. Evol. 2020, 12, 597–617. [Google Scholar] [CrossRef]
- Garnica, D.P.; Upadhyaya, N.M.; Dodds, P.N.; Rathjen, J.P. Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing. PLoS ONE 2013, 8, e67150. [Google Scholar] [CrossRef] [Green Version]
- Sperschneider, J.; Dodds, P.N.; Singh, K.B.; Taylor, J.M. ApoplastP: Prediction of effectors and plant proteins in the apoplast using machine learning. New Phytol. 2018, 217, 1764–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, C.Y.; Park, S.Y.; Kim, K.T.; Jeon, J.; Chung, H.; Choi, G.; Kwon, S.; Choi, J.; Jeon, J.; et al. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat. Commun. 2020, 11, 5845. [Google Scholar] [CrossRef]
- Qin, J.; Wang, K.; Sun, L.; Xing, H.; Wang, S.; Li, L.; Chen, S.; Guo, H.S.; Zhang, J. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife 2018, 7, e34902. [Google Scholar] [CrossRef] [PubMed]
- Caillaud, M.C.; Piquerez, S.J.M.; Fabro, G.; Steinbrenner, J.; Ishaque, N.; Beynon, J.; Jones, J.D.G. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 2012, 69, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Skamnioti, P.; Gurr, S.J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 2007, 19, 2674–2689. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kong, L.; Zhi, P.; Chang, C. Update on cuticular wax biosynthesis and its roles in plant disease resistance. Int. J. Mol. Sci. 2020, 21, 5514. [Google Scholar] [CrossRef]
- Djamei, A.; Schipper, K.; Rabe, F.; Ghosh, A.; Vincon, V.; Kahnt, J.; Osorio, S.; Tohge, T.; Fernie, A.R.; Feussner, I.; et al. Metabolic priming by a secreted fungal effector. Nature 2011, 478, 395–398. [Google Scholar] [CrossRef]
- Jaswal, R.; Kiran, K.; Rajarammohan, S.; Dubey, H.; Singh, P.K.; Sharma, Y.; Deshmukh, R.; Sonah, H.; Gupta, N.; Sharma, T.R. Effector biology of biotrophic plant fungal pathogens: Current advances and future prospects. Microbiol. Res. 2020, 241, 126567. [Google Scholar] [CrossRef]
- Oliveira-Garcia, E.; Deising, H.B. Attenuation of PAMP-triggered immunity in maize requires down-regulation of the key β-1,6-glucan synthesis genes KRE5 and KRE6 in biotrophic hyphae of Colletotrichum graminicola. Plant J. 2016, 87, 355–375. [Google Scholar] [CrossRef]
- Qi, M.; Mei, Y.; Grayczyk, J.P.; Darben, L.M.; Rieker, M.E.G.; Seitz, J.M.; Voegele, R.T.; Whitham, S.A.; Link, T.I. Candidate effectors from Uromyces appendiculatus, the causal agent of rust on common bean, can be discriminated based on suppression of immune responses. Front. Plant Sci. 2019, 10, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanepoel, S.; Visser, E.A.; Shuey, L.; Naidoo, S. The in planta gene expression of Austropuccinia psidii in resistant and susceptible Eucalyptus grandis. Phytopathology 2023, 1–42. [Google Scholar] [CrossRef]
- Mandal, S.; Jeon, J. Nuclear effectors in plant pathogenic fungi. Mycobiology 2022, 50, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Alfano, J.R. Roadmap for future research on plant pathogen effectors: Micro-Review. Mol. Plant Pathol. 2009, 10, 805–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doehlemann, G.; Hemetsberger, C. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol. 2013, 198, 1001–1016. [Google Scholar] [CrossRef]
- Mueller, A.N.; Ziemann, S.; Treitschke, S.; Aßmann, D.; Doehlemann, G. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 2013, 9, e1003177. [Google Scholar] [CrossRef] [Green Version]
- Van Esse, H.P.; Van’t Klooster, J.W.; Bolton, M.D.; Yadeta, K.A.; Van Baarlen, P.; Boeren, S.; Vervoort, J.; Dewit, P.J.G.M.; Thomma, B.P.H.J. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. Plant Cell 2008, 20, 1948–1963. [Google Scholar] [CrossRef] [Green Version]
- Rawlings, N.D.; Tolle, D.P.; Barrett, A.J. Evolutionary families of peptidase inhibitors. Biochem. J. 2004, 378, 705–716. [Google Scholar] [CrossRef]
- Pretsch, K.; Kemen, A.; Kemen, E.; Geiger, M.; Mendgen, K.; Voegele, R. The rust transferred proteins–a new family of effector proteins exhibiting protease inhibitor function. Mol. Plant Pathol. 2013, 14, 96–107. [Google Scholar] [CrossRef]
- Lorrain, C.; Petre, B.; Duplessis, S. Show me the way: Rust effector targets in heterologous plant systems. Curr. Opin. Microbiol. 2018, 46, 19–25. [Google Scholar] [CrossRef]
- Zhang, L.; Ni, H.; Du, X.; Wang, S.; Ma, X.W.; Nürnberger, T.; Guo, H.S.; Hua, C. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytol. 2017, 215, 368–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petre, B.; Saunders, D.G.O.; Sklenar, J.; Lorrain, C.; Win, J.; Duplessis, S.; Kamoun, S. Candidate effector proteins of the rust pathogen Melampsora larici-populina target diverse plant cell compartments. Mol. Plant Microbe Interact. 2015, 28, 689–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Liu, L.; Xiong, Q.; Flores, C.; Wong, J.; Shi, J.; Wang, X.; Liu, X.; Xiang, Q.; Jiang, S.; et al. Oomycete pathogens encode RNA silencing supressors. Nat. Genet. 2013, 45, 330–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bini, A.P.; Quecine, M.C.; da Silva, T.M.; Silva, L.D.; Labate, C.A. Development of a quantitative real-time PCR assay using SYBR Green for early detection and quantification of Austropuccinia psidii in Eucalyptus grandis. Eur. J. Plant Pathol. 2018, 150, 735–746. [Google Scholar] [CrossRef]
Plasmid | Description | Reference |
---|---|---|
pDONR221 | Gateway donor plasmid | Invitrogen, CA, USA |
pGWB651 | Binary plasmid for C-terminal G3GFP (green fluorescence protein) fusions | [34] |
pGWB652 | Binary plasmid for N-terminal G3GFP (green fluorescence protein) fusions | [34] |
p19 | Binary plasmid containing the p19 protein from tomato bushy stunt virus, silencing suppressor of gene expression in tobacco | Provided by the Laboratory of Genetics and Immunology of Plants—ESALQ/USP |
pUFV2224 | Nuclear marker Arabidopsis thaliana AtWWP1 fused to mCherry | [35] |
pCMU-PMr; pCMB-PMr | Plasma membrane marker, PIP2a-mcherry; AtPIP2a, plasma membrane aquaporin | [36] |
pENTRY::Ap28303 | PCR purified product from the effector candidate Ap28303 recombined in pDNOR221 plasmid | This study |
pENTRY::Ap30385 | PCR purified product from the effector candidate Ap30385 recombined in pDNOR221 plasmid | This study |
35S::Ap30385-G3GFP | pGWB651, binary plasmid for C-terminal G3GFP (green fluorescence protein) fused to the effector candidate Ap30385 | This study |
35S::G3GFP-Ap30385 | pGWB652, binary plasmid for N-terminal G3GFP (green fluorescence protein) fused to the effector candidate Ap30385 | This study |
35S::Ap28303-G3GFP | pGWB651, binary plasmid for C-terminal G3GFP (green fluorescence protein) fused to the effector candidate Ap28303 | This study |
35S::G3GFP-Ap28303 | pGWB652, binary plasmid for N-terminal G3GFP (green fluorescence protein) fused to the effector candidate Ap28303 | This study |
Effector Candidate Abbreviation | Description a | Localization b | GenBank Accession Number |
---|---|---|---|
Ap15054 | Secreted protein | Secreted | AVOT02014902.1 |
Ap30385 | hypothetical protein | Nucleus | AVOT02029768.1 |
Ap28303 | inhibitor I9 domain-containing protein | Nucleus | AVOT02027753.1 |
Ap11108 | chorismate mutase domain-containing protein | Cytoplasm | AVOT02011022.1 |
Ap12491 | hypothetical protein | Secreted | AVOT02012383.1 |
Ap23389 | hypothetical protein | Nucleus | AVOT02023014.1 |
Ap2160 | non-annotated | Secreted | AVOT02002154.1 |
Localization | Percentage of Hits (%) |
---|---|
Apoplast/secreted | 87.45 |
Cytoplasm | 6.27 |
Nucleus | 3.14 |
Endoplasmatic reticulum | 0.78 |
Mitochondria | 0.78 |
Vacuole | 0.78 |
Chloroplast | 0.39 |
Plasma membrane | 0.39 |
Access Number GenBank | Description a |
---|---|
AVOT02009987.1 | Alpha, alpha-trehalose-phosphate synthase (UDP-forming) P. coronata var. avenae f. sp. Avenae |
AVOT02011022.1 | Chorismate mutase domain-containing protein P. coronata var. avenae f. sp. Avenae |
AVOT02011687.1 | SCP domain-containing protein P. coronata var. avenae f. sp. Avenae |
AVOT02011695.1 | Secreted protein M. larici-populina |
AVOT02012399.1 | Protein ROT1 M. larici-populina |
AVOT02066599.1 | Tnp4 domain-containing protein P. striiformis |
AVOT02013624.1 | SCP domain-containing protein P. coronata var. avenae f. sp. Avenae |
AVOT02013985.1 | Secreted protein M. larici-populina |
AVOT02014902.1 | Secreted protein M. larici-populina |
AVOT02136828.1 | Secreted protein M. larici-populina |
AVOT02015524.1 | Chitin deacetylase P. graminis f. sp. tritici |
AVOT02016858.1 | SCP domain-containing protein P. striiformis |
AVOT02017392.1 | Carboxylic ester hydrolase Helicocarpus griseus |
AVOT02002958.1 | Chitin deacetylase M. larici-populina |
AVOT02002632.1 | Sod_Cu domain-containing protein P. graminis f. sp. tritici |
AVOT02026132.1 | Chitin deacetylase P. graminis f. sp. tritici |
AVOT02027753.1 | Inhibitor I9 domain-containing protein |
AVOT02028049.1 | Secreted protein M. larici-populina |
AVOT02028690.1 | Lipase_3 domain-containing protein P. striiformis f. sp. tritici |
AVOT02029865.1 | Sod_Cu domain-containing protein P. graminis f. sp. tritici |
AVOT02030696.1 | Dimer_Tnp_hAT domain-containing protein |
AVOT02032858.1 | Alpha-galactosidase P. graminis f. sp. tritici |
AVOT02035871.1 | Alpha/Beta hydrolase protein Pseudomassariella vexata |
AVOT02037137.1 | Thioredoxin domain-containing protein P. triticina |
AVOT02041469.1 | Secreted protein M. larici-populina |
AVOT02045600.1 | DPBB_1 domain-containing protein P. striiformis f. sp. tritici PST-78 |
AVOT02048724.1 | Secreted protein M. larici-populina |
AVOT02053223.1 | SurE domain-containing protein P. graminis f. sp. tritici |
AVOT02000055.1 | Phosphatidylglycerol/phosphatidylinositol transfer protein P. graminis f. sp. Tritici |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashibara, C.A.d.A.; Lopes, M.d.S.; Tobias, P.A.; Santos, I.B.d.; Figueredo, E.F.; Ferrarezi, J.A.; Marques, J.P.R.; Marcon, J.; Park, R.F.; Teixeira, P.J.P.L.; et al. In Planta Study Localizes an Effector Candidate from Austropuccinia psidii Strain MF-1 to the Nucleus and Demonstrates In Vitro Cuticular Wax-Dependent Differential Expression. J. Fungi 2023, 9, 848. https://doi.org/10.3390/jof9080848
Hayashibara CAdA, Lopes MdS, Tobias PA, Santos IBd, Figueredo EF, Ferrarezi JA, Marques JPR, Marcon J, Park RF, Teixeira PJPL, et al. In Planta Study Localizes an Effector Candidate from Austropuccinia psidii Strain MF-1 to the Nucleus and Demonstrates In Vitro Cuticular Wax-Dependent Differential Expression. Journal of Fungi. 2023; 9(8):848. https://doi.org/10.3390/jof9080848
Chicago/Turabian StyleHayashibara, Carolina Alessandra de Almeida, Mariana da Silva Lopes, Peri A. Tobias, Isaneli Batista dos Santos, Everthon Fernandes Figueredo, Jessica Aparecida Ferrarezi, João Paulo Rodrigues Marques, Joelma Marcon, Robert F. Park, Paulo José Pereira Lima Teixeira, and et al. 2023. "In Planta Study Localizes an Effector Candidate from Austropuccinia psidii Strain MF-1 to the Nucleus and Demonstrates In Vitro Cuticular Wax-Dependent Differential Expression" Journal of Fungi 9, no. 8: 848. https://doi.org/10.3390/jof9080848
APA StyleHayashibara, C. A. d. A., Lopes, M. d. S., Tobias, P. A., Santos, I. B. d., Figueredo, E. F., Ferrarezi, J. A., Marques, J. P. R., Marcon, J., Park, R. F., Teixeira, P. J. P. L., & Quecine, M. C. (2023). In Planta Study Localizes an Effector Candidate from Austropuccinia psidii Strain MF-1 to the Nucleus and Demonstrates In Vitro Cuticular Wax-Dependent Differential Expression. Journal of Fungi, 9(8), 848. https://doi.org/10.3390/jof9080848