Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions
Abstract
:1. Introduction
- (a)
- Investigation of the fabrication methods of hybrid materials composed of various bio-based aerogels for sustainable packaging:This research aims to explore the different manufacturing methods for the synthesis of hybrid materials composed of different bio-based aerogels. The summary includes techniques in which bio-based aerogels are fused with other materials to form hybrid composites in order to optimize their properties for sustainable packaging applications.
- (b)
- Eco-friendliness and sustainability benefits of hybrid materials in packaging:Another focus of this study is the comprehensive assessment of the environmental friendliness and sustainability benefits associated with hybrid materials containing bio-based aerogels.
- (c)
- Potential applications and highlighting their contributions to sustainable packaging practices:Beyond the laboratory bench, the research aims to explore the practical applications of hybrid materials for sustainable packaging. By identifying and illustrating potential uses, from improving insulation properties to increasing barrier functionality, these materials will be positioned as transformative agents in the pursuit of sustainable packaging practices.
2. Types of Hybrid Bio-Based Aerogel Materials for Sustainable Packaging
2.1. Polysaccharide-Based Aerogels
2.1.1. Cellulose-Based Aerogels
2.1.2. Chitosan-Based Aerogels
2.1.3. Alginate-Based Aerogels
2.1.4. Starch-Based Aerogels
2.1.5. Pectin-Based Aerogels
2.2. Protein-Based Aerogels
2.3. Lignin-Based Aerogels
3. Fabrication Hybrid Bio-Based Aerogel Materials for Sustainable Packaging
- -
- Sol-gel coacervation;
- -
- Heating and cooling;
- -
- Crosslinking using chemicals or enzymes;
- -
- High shear, pH, and salt;
- -
- Emulsion gelation;
- -
- Internal gelation (ultrasound);
- -
- Ethanol-induced gelation;
- -
- Others.
3.1. Supercritical Drying Method
3.2. Freeze Drying Method
3.3. Ambient Pressure Drying Method
3.4. Microwave Drying Method
4. Properties and Applications of Packaging for Hybrid Bio-Based Aerogel Materials
Hybrid Bio-Based Polymers/Aerogels | Fabrication Method | Properties | Properties of the Material | Applications | References |
---|---|---|---|---|---|
Aldehyde and carboxyl nanocellulose and crosslinked carboxymethyl chitosan | Freeze drying technique using liquid nitrogen | Porosity: 98.8% | Maintains adsorption capacity in dye solutions over a wide pH range, allowing them to be regenerated and be successively reused for at least six cycles | Ultralight green functional materials | [138] |
Arundo donax biomass and extract from Arundo donax | Sol-gel, freeze drying | Density: 10.21–14.39 mg∙cm−3 Water vapor sorption: 0.39–0.91 g/g | Reduced oxidation processes | Active food packaging | [145] |
Alginate/ lignin, starch, pectin, carrageenan, methyl and carboxymethyl cellulose, gellan gum, and gelatin | Sol-gel; hydrogel, wherein gel is frozen using liquid nitrogen | Density: 0.017 g∙cm−3 Pore volume: 2.3–9.5 cm3∙g−1 for pore sizes < 150 nm | Excellent thermal insulation | Active packaging; tissue and bone engineering | [83] |
Alginate, pectin | Sol-gel, freeze drying | Porosity: 65.60–70.00% Bulk density: 0.1923–0.6158 g∙m−1∙L−1 | High porosity (>65.60%) with thermal stability over 140 °C; high flexibility | Active packaging | [146] |
Bleached cellulose fibers and cellulose nanoparticles | Freeze drying technique using liquid nitrogen | Specific surface area: 143–162 m2∙g−1 Diameter of pores: 5–13 nm | Improved thermal conductivity and mechanical properties. | Different products for thermal insulation; also used for food packaging | [131] |
Cellulose whisker, PVA, Clay | Freeze drying technique using liquid nitrogen | Density: 0.01–0.101 g∙cm−3 Compression modulus: 18–788 | Increased tensile strength, enhanced mechanical properties | Packaging products for filled polymer-like properties | [120] |
Cellulose/lignin | Supercritical CO2 drying | Density: 0.025–0.114 g∙cm−3 Specific surface area: 108–539 m2∙g−1 | Completely opaque and shining white; a brownish color is increased with the amount of lignin in the polymer mix | Packaging products with nanofibrillar aerogel by changing the polymer mix | [133] |
Cellulose-NaOH solution and softwood kraft fibers | Supercritical CO2 drying | Specific surface area: 340 m2∙g−1 Compressive modulus: 8.2 MPa | Very good adhesion between the kraft fibers and the matrix; non-porous fibers decrease the specific surface area | Versatile porous materials used as separators | [119] |
Citrus pectin, cellulose nanofibers | Freeze drying technique using liquid nitrogen | Density: 0.109–0.122 g∙cm−3 Porosity: 90.37–98.11% | Increased compression and tensile stress in the aerogel; good water vapor adsorption/release performance | Active packaging—edible-fungus-moisture-regulating packaging | [147] |
CMC/CNF | Freeze drying technique using liquid nitrogen | Density: 0.05–0.109 g∙cm−3 Porosity: 93.19–96.84% Compression modulus: 1000–8700 kPa Thermal conductivity: <54 mW m−1 K−1 | Increased modulus and strength; low thermal conductivities; low densities | Thermal insulating packaging materials; reinforcing agent for biocomposite materials | [136] |
Corn starch, agar, microcrystalline cellulose | Sol-gel, hydrogel-alcogel, supercritical CO2 drying | Porosity: 90–95% Young’s modulus: 0.38–5.39 Water absorption: 200–300% Aqueous stability: 7 days | Mechanical reinforcement; higher specific surface in comparison to pure starch aerogels | Active packaging | [148] |
Glucose, albumin | Sol-gel, hydrogel-frozen, freeze drying | Surface area: 247–476 m2∙g−1 Pore volume: 0.38–0.7 cm3 g−1 Porosity: 95–97% Pore diameter: <100 nm | Several binding sites available for the covalent modification and attachment of bioactive substances | Active packaging | [149] |
Maize starch, calcium alginate, flavanoid Quercetin | Sol-gel, hydrogel-alcogel; supercritical CO2 drying | Surface area: 70–80 m2∙g | Increased migration barrier when Quercetin is added; supercritical adsorption is suitable to obtain controlled-release systems to be used as an packaging active layer | Active food packaging | [150] |
Maleic acid grafted CNF | Freeze drying technique using liquid nitrogen | Density: 0.0112–0.0315 g∙cm−3 Specific surface: 19.5 m2∙g−1 Compression modulus: 1000–8700 kPa | Good network stability in water and springiness after compression | Reinforcing agent for biocomposite and packaging materials | [137] |
Microcrystalline cellulose and lignin | Supercritical CO2 drying | Density: 0.1–0.135 g∙cm−3 Specific surface area: 200 m2∙g−1 | Cellulose and lignin are not compatible in the NaOH | Used separately as aerogel materials not as a mixture | [140] |
Microfibrillated cellulose, kapok | Sol-gel, hydrogel-frozen, freeze drying | Density: 5.1 mg∙cm−3 Porosity: 99.58% Oil sorption capacity: 130.1 g/g Hydrophobicity: 140.1° | Increased mechanical strength, specific properties can be easily adapted | Used as oleogels for edible and active packaging | [152] |
Potato starch, konjac, glucomannan, wheat straw powder, gelatin | Sol-gel, freeze drying | Density: 0.043 g∙cm−3 Porosity: 94.5% Thermal conductivity: 0.046–0.053 W/mK | High specific surface area composed of large continuous mesopores, meso- and macroporous transport structure | High end applications (e.g., sensing, charge storage and fast adsorption processes); filtration and packaging materials | [141] |
PVA/cellulose/nanocellulose aerogels | Sol-gel; freeze drying | Crystallinity index: 48.8–61.4% | Increased water capacity, sustained release of the agar-based extract in food simulants | Active, food packaging materials | [15] |
Soy protein, nanocellulose | Sol-gel, hydrogel-alcogel, supercritical CO2 drying | Density: 0.19–0.25 g∙cm−3 Surface area: 384–478 m2∙g, Porosity: 84–88% Thermal conductivity: 0.033 w∙m−1∙K−1 | Low-cost, with term storage stability; antioxidant properties | Active packaging and food packaging needed for thermal insulation | [151] |
Starch, cellulose, essential oil: Thymus daenensis Celak | Sol-gel, freeze drying | Density: 18.42–54.77 g∙cm−3 Porosity: 64–87% | Increasing the starch content results in a denser cellulose aerogel and a significant reduction in aerogel porosity; a gradual inhibitory effect of the aerogels on psychrophiles and yeast–mold populations in cheese has been noted | Antimicrobial packaging for dairy products | [153] |
TEMPO-CNF | Freeze drying technique using liquid nitrogen | Density: 0.0017–0.0081 g∙cm−3 Porosity: 95.5–99.9% Specific surface area: 10.9 m2∙g−1 | Ultra-lightweight, highly porous, superior wet compressibility, and complete shape recovery | Amphiphilic super-absorbents for selective oil removal and recovery | [139] |
Whey protein, egg white protein, sodium caseinate aerogels | Sol-gel, hydrogel-alcogel, supercritical CO2 drying | Loading capacity: 63% (w/w) | Antibacterial properties, high processing versatility toward chemical modifications | Active packaging | [154] |
- -
- Extended freshness and shelf life: the thermally insulating properties of aerogel-based bio-based hybrid packaging play a crucial role in regulating temperature fluctuations, a critical factor in the preservation of perishable goods. By creating a controlled and stable environment, these materials mitigate temperature fluctuations during storage and transport, extending the freshness and shelf life of food. This is particularly important for products that are sensitive to temperature fluctuations, such as fresh produce and dairy products.
- -
- Reducing waste through improved packaging: A major reason for global waste is the inadequate preservation of perishable goods throughout the supply chain. Hybrid packaging based on bio-based aerogel acts as an effective barrier against temperature fluctuations, moisture, and external contaminants. By forming a protective cocoon for food, these materials significantly reduce the risk of premature spoilage. The result is a significant reduction in food waste as products have a longer shelf life. This is in line with sustainable practices and minimizes the environmental impact associated with discarded food.
- -
- Improved product quality: The use of aerogel-based bio-based hybrid packaging goes beyond extending shelf life. These materials also help to preserve the quality and nutritional value of food and other products. The controlled microclimate created by the packaging ensures that products reach the consumer intact, maintaining strict quality standards and improving the overall consumer experience.
- -
- Adaptability to different product types: The versatility of hybrid packaging based on bio-based aerogels allows them to be used in a variety of product categories. From fresh fruit and vegetables to temperature-sensitive dairy and meat products, these materials can be adapted to the specific requirements of different foods. This adaptability makes them a viable and sustainable choice for various segments of the food industry.
5. Scalability and Cost-Effectiveness
6. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moldovan, A.; Cuc, S.; Prodan, D.; Rusu, M.; Popa, D.; Taut, A.C.; Petean, I.; Bomboş, D.; Doukeh, R.; Nemes, O. Development and Characterization of Polylactic Acid (PLA)-Based Nanocomposites Used for Food Packaging. Polymers 2023, 15, 2855. [Google Scholar] [CrossRef] [PubMed]
- Packaging-Bio Based Packaging Marker Report. Available online: https://www.precedenceresearch.com/bio-based-packaging-market (accessed on 6 November 2023).
- Ștefănescu, B.E.; Socaciu, C.; Vodnar, D.C. Recent Progress in Functional Edible Food Packaging Based on Gelatin and Chitosan. Coatings 2022, 12, 1815. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Vivekanandhan, S.; Pin, J.-M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Thakur, V.K.; Boukherroub, R. Cellulose Nanocrystals/Graphene Hybrids—A Promising New Class of Materials for Advanced Applications. Nanomaterials 2020, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Mun, S.; Ko, H.; Zhai, L.; Kafy, A.; Kim, J. Renewable smart materials. Smart Mater. Struct. 2016, 25, 073001. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Maurizzi, E.; Bigi, F.; Quartieri, A.; De Leo, R.; Volpelli, L.A.; Pulvirenti, A. The Green Era of Food Packaging: General Considerations and New Trends. Polymers 2022, 14, 4257. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Zargar, M.; Forough, M. Renewable and Recyclable Polymeric Materials for Food Packaging: A New Open Special Issue in Materials. Materials 2022, 15, 5845. [Google Scholar] [CrossRef]
- Luoma, E.; Välimäki, M.; Ollila, J.; Heikkinen, K.; Immonen, K. Bio-Based Polymeric Substrates for Printed Hybrid Electronics. Polymers 2022, 14, 1863. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Krauter, V.; Krauter, S.; Agriopoulou, S.; Weinrich, R.; Herbes, C.; Scholten, P.B.V.; Uysal-Unalan, I.; Sogut, E.; Kopacic, S.; et al. Bioplastics for Food Packaging: Environmental Impact, Trends and Regulatory Aspects. Foods 2022, 11, 3087. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials 2022, 12, 1843. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Q.; Li, X.; Meng, Y.; Ling, Z.; Ji, Z.; Chen, F. Preparation and Characterization of Degradable Cellulose−Based Paper with Superhydrophobic, Antibacterial, and Barrier Properties for Food Packaging. Int. J. Mol. Sci. 2022, 23, 11158. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Zou, Y.; Farooq, S.; Walayat, N.; Zhang, H.; Faieta, M.; Pittia, P.; Huang, Q. Bio-aerogels: Fabrication, properties and food applications. Crit. Rev. Food Sci. Nutr. 2022, 63, 6687–6709. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, J.P.; Bruni, G.P.; Fabra, M.J.; Zavareze, E.d.R.; López-Rubio, A.; Martínez-Sanz, M. Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocoll. 2019, 89, 337–350. [Google Scholar] [CrossRef]
- Liu, P.; Chen, X.; Li, Y.; Cheng, P.; Tang, Z.; Lv, J.; Aftab, W.; Wang, G. Aerogels Meet Phase Change Materials: Fundamentals, Advances, and Beyond. ACS Nano 2022, 16, 15586–15626. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Lin, D. Composite Aerogels for Biomedical and Environmental Applications. Curr. Pharm. Des. 2020, 26, 5807–5818. [Google Scholar] [CrossRef] [PubMed]
- Selvasekaran, P.; Chidambaram, R. Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci. Technol. 2021, 112, 455–470. [Google Scholar] [CrossRef]
- Montes, S.; Maleki, H. Aerogels and their applications. In Colloidal Metal Oxide Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Oves, M.; Rauf, M.; Warsi, M.; Husain, F.; Ansari, M.; Ismail, I. Aerogels as microbial disinfectant. In Advances in Aerogel Composites for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 201–215. [Google Scholar] [CrossRef]
- Le Thanh-Blicharz, J.; Lewandowicz, J.; Małyszek, Z.; Kowalczewski, P.; Walkowiak, K.; Masewicz, Ł.; Baranowska, H.M. Water Behavior of Aerogels Obtained from Chemically Modified Potato Starches during Hydration. Foods 2021, 10, 2724. [Google Scholar] [CrossRef]
- El-Naggar, M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef]
- Zou, F.; Budtova, T. Tailoring the morphology and properties of starch aerogels and cryogels via starch source and process parameter. Carbohydr. Polym. 2020, 255, 117344. [Google Scholar] [CrossRef]
- Adulpadungsak, K.; Lilitchan, S.; Aryusuk, K. The physical and chemical properties of policosanol-based organogel shortening for replacing saturated and trans-fat in cookies. NU Int. J. Sci. 2020, 17, 1–13. [Google Scholar]
- Narvaez, L.E.M.; Ferreira, L.M.d.M.C.; Sanches, S.; Gyles, D.A.; Silva-Júnior, J.O.C.; Costa, R.M.R. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022, 27, 2733. [Google Scholar] [CrossRef]
- Abdullah, T.; Colombani, T.; Alade, T.; Bencherif, S.A.; Memić, A. Injectable Lignin-co-Gelatin Cryogels with Antioxidant and Antibacterial Properties for Biomedical Applications. Biomacromolecules 2021, 22, 4110–4121. [Google Scholar] [CrossRef] [PubMed]
- Savina, I.N.; Zoughaib, M.; Yergeshov, A.A. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Blánquez, A.; Domínguez, G.; Borrero-López, A.M.; Valencia, C.; Hernández, M.; Arias, M.E.; Rodríguez, J. Assessment of Sustainability of Bio Treated Lignocellulose-Based Oleogels. Polymers 2021, 13, 267. [Google Scholar] [CrossRef]
- Papadaki, A.; Cipolatti, E.P.; Aguieiras, E.C.G.; Pinto, M.C.C.; Kopsahelis, N.; Freire, D.M.G.; Mandala, I.; Koutinas, A.A. Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations. Food Bioprocess Technol. 2019, 12, 899–909. [Google Scholar] [CrossRef]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef]
- Gaisina, B.; Orazzhanova, L.; Sabitova, A.; Bayakhmetova, B.; Sharipkhan, Z. Synthesis and application of biocompatible cryogels. Bull. Shakarim Univ. Tech. Sci. 2023, 3, 6–15. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Wang, C.; Xiao, Y.; Lin, W. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications. Polymers 2021, 13, 2299. [Google Scholar] [CrossRef]
- Wendels, S.; Porto, D.d.S.; Avérous, L. Synthesis of Biobased and Hybrid Polyurethane Xerogels from Bacterial Polyester for Potential Biomedical Applications. Polymers 2021, 13, 4256. [Google Scholar] [CrossRef]
- Pramanik, R.; Ganivada, B.; Ram, F.; Shanmuganathan, K.; Arockiarajan, A. Influence of nanocellulose on mechanics and morphology of polyvinyl alcohol xerogels. J. Mech. Behav. Biomed. Mater. 2019, 90, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Sakuma, W.; Yasui, H.; Daicho, K.; Saito, T.; Fujisawa, S.; Isogai, A.; Kanamori, K. Nanocellulose Xerogels with High Porosities and Large Specific Surface Areas. Front. Chem. 2019, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Awadallah-F, A.; Al-Muhtaseb, S.A. Influence of Chitosan Addition on Resorcinol–Formaldehyde Xerogel Structure. Appl. Sci. 2019, 9, 4582. [Google Scholar] [CrossRef]
- Yahya, E.B.; Jummaat, F.; Amirul, A.A.; Adnan, A.S.; Olaiya, N.G.; Abdullah, C.K.; Rizal, S.; Mohamad Haafiz, M.K.; Abdul Khalil, H.P.S. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics 2020, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, S.; Ying, Z.; Liu, J.; Zhou, Y.; Chen, F. Engineering of Aerogel-Based Biomaterials for Biomedical Applications. Int. J. Nanomed. 2020, 15, 2363–2378. [Google Scholar] [CrossRef] [PubMed]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef] [PubMed]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of polysaccharide-based materials as advanced food packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Mikkonen, K.S.; García-González, C.A. Aerogels as porous structures for food applications: Smart ingredients and novel packaging materials. Food Struct. 2021, 28, 100188. [Google Scholar] [CrossRef]
- Wang, L.; Sánchez-Soto, M.; Abt, T.; Maspoch, M.L.; Santana, O.O. Microwave-crosslinked bio-based starch/clay aerogels. Polymer Int. 2016, 65, 899–904. [Google Scholar] [CrossRef]
- Warrier, S.K.; Mathew, S.S.; Pothan, L.A.; Ajish, K.R. Biomedical Applications of Polysaccharide-Based Aerogels: A Review. Curr. Appl. Polym. Sci. 2022. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Adnan, A.; Yahya, E.B.; Olaiya, N.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.; Oyekanmi, A.; et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- Mandin, S.; Moreau, S.; Talantikite, M.; Novalès, B.; Maigret, J.-E.; Cathala, B.; Moreau, C. Cellulose Nanofibrils/Xyloglucan Bio-Based Aerogels with Shape Recovery. Gels 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, H.; Yu, Y.; Li, H.; Li, H.; Bai, J.; Shi, F.; Liu, J. Bacterial cellulose biomass aerogels for oil-water separation and thermal insulation. J. Environ. Chem. Eng. 2023, 11, 110403. [Google Scholar] [CrossRef]
- Andrew, L.J.; Gillman, E.R.; Walters, C.M.; Lizundia, E.; MacLachlan, M.J. Multi-Responsive Supercapacitors from Chiral Nematic Cellulose Nanocrystal-Based Activated Carbon Aerogels. Small 2023, 19, e2301947. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Guo, X.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Facile Preparation of Cellulose Aerogels with Controllable Pore Structure. Nanomaterials 2023, 13, 613. [Google Scholar] [CrossRef] [PubMed]
- Tofanica, B.-M.; Belosinschi, D.; Volf, I. Gels, Aerogels and Hydrogels: A Challenge for the Cellulose-Based Product Industries. Gels 2022, 8, 497. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, M.A.; Yahya, E.B.; Abdul Khalil, H.P.S.; Rahman, A.A.; Ismail, M.A. Recent progress in modification strategies of nanocellulose-based aerogels for oil absorption application. Polymers 2022, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.C.F.; Habibi, Y.; Colodette, J.L.; Elder, T.; Lucia, L.A. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels. Cellulose 2012, 19, 1945–1956. [Google Scholar] [CrossRef]
- Heath, L.; Thielemans, W. Cellulose nanowhisker aerogels. Green Chem. 2010, 12, 1448–1453. [Google Scholar] [CrossRef]
- Rostamitabar, M.; Seide, G.; Jockenhoevel, S.; Ghazanfari, S. Effect of cellulose characteristics on the properties of the wet-spun aerogel fibers. Appl. Sci. 2021, 11, 1525. [Google Scholar] [CrossRef]
- Revin, V.V.; Nazarova, N.B.; Tsareva, E.E.; Liyaskina, E.V.; Revin, V.D.; Pestov, N.A. Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020, 8, 1392. [Google Scholar] [CrossRef] [PubMed]
- Gavillon, R.; Budtova, T. Aerocellulose: New Highly Porous Cellulose Prepared from Cellulose−NaOH Aqueous Solutions. Biomacromolecules 2008, 9, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Ni, J.-P.; Tian, C.; Su, Z.-H. Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int. J. Biol. Macromol. 2021, 172, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.; Ramos, A.; Ferraz, E.; Ferreira, P.J.; Rasteiro, M.G.; Gamelas, J.A. Design of cellulose nanofibre-based composites with high barrier properties. Cellulose 2023, 30, 10157–10174. [Google Scholar] [CrossRef]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Long, L.-Y.; Weng, Y.-X.; Wang, Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed]
- Buchtová, N.; Pradille, C.; Bouvard, J.L.; Budtova, T. Mechanical properties of cellulose aerogels and cryogels. Soft Matter 2019, 15, 7901–7908. [Google Scholar] [CrossRef]
- Karadagli, I.; Schulz, B.; Schestakow, M.; Milow, B.; Gries, T.; Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 2015, 106, 105–114. [Google Scholar] [CrossRef]
- de Oliveira, J.P.; Bruni, G.P.; el Halal, S.L.M.; Bertoldi, F.C.; Dias, A.R.G.; Zavareze, E.d.R. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. Int. J. Biol. Macromol. 2019, 124, 175–184. [Google Scholar] [CrossRef]
- Jaafar, Z.; Quelennec, B.; Moreau, C.; Lourdin, D.; Maigret, J.; Pontoire, B.; D’orlando, A.; Coradin, T.; Duchemin, B.; Fernandes, F.; et al. Plant cell wall inspired xyloglucan/cellulose nanocrystals aerogels produced by freeze-casting. Carbohydr. Polym. 2020, 247, 116642. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef] [PubMed]
- Geng, H. A facile approach to light weight, high porosity cellulose aerogels. Int. J. Biol. Macromol. 2018, 118, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; He, C.; Wang, S.; Chen, Y. A thermally stable and hydrophobic composite aerogel made from cellulose nanofibril aerogel impregnated with silica particles. J. Mater. Sci. 2018, 53, 7072–7082. [Google Scholar] [CrossRef]
- Chang, X.; Chen, D.; Jiao, X. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B 2008, 112, 7721–7725. [Google Scholar] [CrossRef] [PubMed]
- Christy, E.; Rajeswari, A.; Gopi, S.; Pius, A. Chitin and chitosan-based aerogels. In Handbook of Chitin and Chitosan; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–334. [Google Scholar] [CrossRef]
- Guerrero-Alburquerque, N.; Zhao, S.; Adilien, N.; Koebel, M.M.; Lattuada, M.; Malfait, W.J. Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Appl. Mater. Interfaces 2020, 12, 22037–22049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiao, Q.; Xiao, Y.; Li, Z.; Xiong, S.; Ding, F.; He, J. Chitosan Based Aerogels with Low Shrinkage by Chemical Cross-Linking and Supramolecular Interaction. Gels 2022, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Ching, Y.C.; Chuah, C.H. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr. Polym. 2020, 231, 115744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; He, J.; Xiong, S.; Xiao, Q.; Xiao, Y.; Ding, F.; Ji, H.; Yang, Z.; Li, Z. Construction and Nanostructure of Chitosan/Nanocellulose Hybrid Aerogels. Biomacromolecules 2021, 22, 3216–3222. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Risen, W. Polymer-Attached Functional Inorganic-Organic Hybrid Nano-composite Aerogels. In MRS Proceedings; Springer: Berlin/Heidelberg, Germany, 2002; p. 740. [Google Scholar] [CrossRef]
- Pan, J.; Li, Y.; Chen, K.; Zhang, Y.; Zhang, H. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking. Carbohydr. Polym. 2021, 266, 118102. [Google Scholar] [CrossRef]
- Takeshita, S.; Zhao, S.; Malfait, W.J.; Koebel, M.M. Chemistry of chitosan aerogels: Three-dimensional pore control for tailored applications. Angew. Chem. Int. Ed. 2021, 60, 9828–9851. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Y.; Huang, Y.; Ni, L.; Zhao, J.; Huang, C.; Chen, X.; Chen, X.; Wu, Z.; Wu, D.; et al. Investigation of the structural, physical properties, antioxidant, and antimicrobial activity of chitosan- nano-silicon aerogel composite edible films incorporated with okara powder. Carbohydr. Polym. 2020, 250, 116842. [Google Scholar] [CrossRef] [PubMed]
- Özen, E.; Yildirim, N.; Dalkiliç, B.; Ergun, M. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Cienc. Tecnol. 2021, 23. [Google Scholar] [CrossRef]
- Mallepally, R.R.; Bernard, I.; Marin, M.A.; Ward, K.R.; McHugh, M.A. Superabsorbent alginate aerogels. J. Supercrit. Fluids 2013, 79, 202–208. [Google Scholar] [CrossRef]
- Lovskaya, D.; Menshutina, N. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Materials 2020, 13, 329. [Google Scholar] [CrossRef] [PubMed]
- Gordienko, M.G.; Palchikova, V.V.; Kalenov, S.V.; Lebedev, E.A.; Belov, A.A.; Menshutina, N.V. The alginate–chitosan composite sponges with biogenic Ag nanoparticles produced by combining of cryostructuration, ionotropic gelation and ion replacement methods. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 34–44. [Google Scholar] [CrossRef]
- Shang, K.; Liao, W.; Wang, J.; Wang, Y.-T.; Wang, Y.-Z.; Schiraldi, D.A. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Appl. Mater. Interfaces 2016, 8, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Lu, L.; Zhang, W.; Shi, J.; Cao, Y. Reinforced low density alginate-based aerogels: Preparation, hydrophobic modification and characterization. Carbohydr. Polym. 2012, 88, 1093–1099. [Google Scholar] [CrossRef]
- Raman, S.; Gurikov, P.; Smirnova, I. Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. J. Supercrit. Fluids 2015, 106, 23–33. [Google Scholar] [CrossRef]
- Chen, H.-B.; Wang, Y.-Z.; Schiraldi, D.A. Foam-like materials based on whey protein isolate. Eur. Polym. J. 2013, 49, 3387–3391. [Google Scholar] [CrossRef]
- Alnaief, M.; Alzaitoun, M.; García-González, C.A.; Smirnova, I. Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr. Polym. 2011, 84, 1011–1018. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, Z. Natural polysaccharide-based aerogels and their applications in oil–water separations: A review. J. Mater. Chem. A 2022, 10, 8129–8158. [Google Scholar] [CrossRef]
- Agulhon, P.; Robitzer, M.; David, L.; Quignard, F. Structural Regime Identification in Ionotropic Alginate Gels: Influence of the Cation Nature and Alginate Structure. Biomacromolecules 2012, 13, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Françon, H.; Wang, Z.; Marais, A.; Mystek, K.; Piper, A.; Granberg, H.; Malti, A.; Gatenholm, P.; Larsson, P.A.; Wågberg, L. Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Adv. Funct. Mater. 2020, 30, 1909383. [Google Scholar] [CrossRef]
- Zhang, A.; Zou, Y.; Xi, Y.; Wang, P.; Zhang, Y.; Wu, L.; Zhang, H. Fabrication and characterization of bamboo shoot cellulose/sodium alginate composite aerogels for sustained release of curcumin. Int. J. Biol. Macromol. 2021, 192, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, W.; Huang, R.; Zhang, Y.; Jia, C.; Zhao, H.; Chen, W.; Xue, Y. Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polymers 2020, 12, 2583. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Barros, A.A.; Quraishi, S.; Gurikov, P.; Raman, S.P.; Smirnova, I.; Duarte, A.R.C.; Reis, R.L. Preparation of macroporous alginate-based aerogels for biomedical applications. J. Supercrit. Fluids 2015, 106, 152–159. [Google Scholar] [CrossRef]
- Gonçalves, V.; Gurikov, P.; Poejo, J.; Matias, A.; Heinrich, S.; Duarte, C.; Smirnova, I. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur. J. Pharm. Biopharm. 2016, 107, 160–170. [Google Scholar] [CrossRef]
- Greco, I.; Varon, C.; Iorio, C. Synthesis and Characterization of a new Alginate-Gelatine Aerogel for Tissue Engineering. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 3915–3918. [Google Scholar] [CrossRef]
- Mary, S.; Pothan, L. Chapter 4: Starch Based Aerogels: Processing and Morphology. In Biobased Aerogels: Polysaccharide and Protein-Based Materials; Royal Society of Chemistry: London, UK, 2018; pp. 42–53. [Google Scholar] [CrossRef]
- Zhu, F. Starch based aerogels: Production, properties and applications. Trends Food Sci. Technol. 2019, 89, 1–10. [Google Scholar] [CrossRef]
- Zheng, Q.; Tian, Y.; Ye, F.; Zhou, Y.; Zhao, G. Fabrication and application of starch-based aerogel: Technical strategies. Trends Food Sci. Technol. 2020, 99, 608–620. [Google Scholar] [CrossRef]
- Zhai, Z.; Zheng, Y.; Du, T.; Tian, Z.; Ren, B.; Xu, Y.; Wang, S.; Zhang, L.; Liu, Z. Green and sustainable carbon aerogels from starch for supercapacitors and oil-water separation. Ceram. Int. 2021, 47, 22080–22087. [Google Scholar] [CrossRef]
- Fonseca, L.M.; da Silva, F.T.; Bruni, G.P.; Borges, C.D.; Zavareze, E.d.R.; Dias, A.R.G. Aerogels based on corn starch as carriers for pinhão coat extract (Araucaria angustifolia) rich in phenolic compounds for active packaging. Int. J. Biol. Macromol. 2020, 169, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Bouvard, J.L.; Pradille, C.; Budtova, T. Ice-templated additive-free porous starches with tuned morphology and properties. Eur. Polym. J. 2022, 176, 111403. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Ye, Y.; Shi, J.; Yan, M.; Liu, L.; Zhu, H.; Guo, J. Structure and performance preparation on alginate-based fibrous aerogel with double network. Int. J. Polym. Anal. Charact. 2021, 26, 218–227. [Google Scholar] [CrossRef]
- Dogenski, M.; Navarro-Díaz, H.J.; de Oliveira, J.V.; Ferreira, S.R.S. Properties of starch-based aerogels incorporated with agar or microcrystalline cellulose. Food Hydrocoll. 2020, 108, 106033. [Google Scholar] [CrossRef]
- Mary, S.K.; Koshy, R.R.; Arunima, R.; Thomas, S.; Pothen, L.A. A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. Carbohydr. Polym. Technol. Appl. 2022, 3, 100190. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Xiao, M.; Riffat, S.B.; Su, Y.; Jiang, F. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch-based aerogel strengthened by wheat straw. Carbohydr. Polym. 2018, 197, 284–291. [Google Scholar] [CrossRef]
- Rudaz, C.; Courson, R.; Bonnet, L.; Calas-Etienne, S.; Sallée, H.; Budtova, T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules 2014, 15, 2188–2195. [Google Scholar] [CrossRef]
- Chen, H.-B.; Chiou, B.-S.; Wang, Y.-Z.; Schiraldi, D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5, 1715–1721. [Google Scholar] [CrossRef]
- Fraeye, I.; Duvetter, T.; Doungla, E.; Van Loey, A.; Hendrickx, M. Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci. Technol. 2010, 21, 219–228. [Google Scholar] [CrossRef]
- Oakenfull, D.A.; Scott, A.L.; Chai, E.U. The mechanism of formation of mixed gels by high methoxyl pectins and alginates. Gums Stabilisers Food Ind. 1990, 5, 243–264. [Google Scholar]
- Chen, H.-B.; Li, X.-L.; Chen, M.-J.; He, Y.-R.; Zhao, H.-B. Self-cross-linked melamine-formaldehyde-pectin aerogel with excellent water resistance and flame retardancy. Carbohydr. Polym. 2018, 206, 609–615. [Google Scholar] [CrossRef]
- Betz, M.; García-González, C.A.; Subrahmanyam, R.; Smirnova, I.; Kulozik, U. Preparation of novel whey protein-based aerogels as drug carriers for life science applications. J. Supercrit. Fluids 2012, 72, 111–119. [Google Scholar] [CrossRef]
- Tkalec, G.; Knez, Z.; Novak, Z. Formation of polysaccharide aerogels in ethanol. RSC Adv. 2015, 5, 77362–77371. [Google Scholar] [CrossRef]
- Ishwarya S, P.; Nisha, P. Advances and prospects in the food applications of pectin hydrogels. Crit. Rev. Food. Sci. Nutr. 2022, 62, 4393–4417. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, J.C.; Hughes, M.; Lucia, L.A.; Laine, J.; Ekman, K.; Rojas, O.J. Soy protein–nanocellulose composite aerogels. Cellulose 2013, 20, 2417–2426. [Google Scholar] [CrossRef]
- Yuan, Y.; Solin, N. Protein-based luminescent aerogels with elastic properties. Green Chem. Lett. Rev. 2022, 15, 508–518. [Google Scholar] [CrossRef]
- Andlinger, D.J.; Bornkeßel, A.C.; Jung, I.; Schroeter, B.; Smirnova, I.; Kulozik, U. Microstructures of potato protein hydrogels and aerogels produced by thermal crosslinking and supercritical drying. Food Hydrocoll. 2021, 112, 106305. [Google Scholar] [CrossRef]
- Fitzpatrick, S.E.; Deb-Choudhury, S.; Ranford, S.; Staiger, M.P. Novel protein-based bio-aerogels derived from canola seed meal. J. Mater. Sci. 2020, 55, 4848–4863. [Google Scholar] [CrossRef]
- Perez-Cantu, L.; Liebner, F.; Smirnova, I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo(alkylene glycol)-α,ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014, 195, 303–310. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Nagaraju, D.H.; Jiang, L.; Marinov, V.R.; Lubineau, G.; Alshareef, H.N.; Oh, M. Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalyst-Free Synthesis and its Application in Energy Storage Devices. Adv. Funct. Mater. 2015, 25, 3193–3202. [Google Scholar] [CrossRef]
- Jõul, P.; Ho, T.T.; Kallavus, U.; Konist, A.; Leiman, K.; Salm, O.-S.; Kulp, M.; Koel, M.; Lukk, T. Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels. Materials 2022, 15, 2861. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, O.; Budtova, T. All-cellulose composite aerogels and cryogels. Compos. Part A Appl. Sci. Manuf. 2020, 137, 106027. [Google Scholar] [CrossRef]
- Gawryla, M.D.; Arndt, E.M.; Sánchez-Soto, M.; Schiraldi, D.A. Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process. Materials 2018, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Li, S.L.; Cheng, J.B.; Zhang, A.N.; Wang, Y.Z.; Zhao, H.B. Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. J. Hazard. Mater. 2021, 403, 123977. [Google Scholar] [CrossRef] [PubMed]
- Subrahmanyam, R.; Gurikov, P.; Meissner, I.; Smirnova, I. Preparation of biopolymer aerogels using green solvents. J. Vis. Exp. 2016, 113, 22718. [Google Scholar]
- Borghei, M.; Miettunen, K.; Greca, L.G.; Poskela, A.; Lehtonen, J.; Lepikko, S.; Tardy, B.L.; Lund, P.; Subramanian, V.; Rojas, O.J. Biobased aerogels with different surface charge as electrolyte carrier membranes in quantum dot-sensitized solar cell. Cellulose 2018, 25, 3363–3375. [Google Scholar] [CrossRef]
- Borisova, A.; De Bruyn, M.; Budarin, V.L.; Shuttleworth, P.S.; Dodson, J.R.; Segatto, M.L.; Clark, J.H. A Sustainable Freeze-Drying Route to Porous Polysaccharides with Tailored Hierarchical Meso- and Macroporosity. Macromol. Rapid Commun. 2015, 36, 774–779. [Google Scholar] [CrossRef]
- Li, W.; Li, Z.; Wang, W.; Li, Z.; Li, Q.; Qin, C.; Cao, F. Green approach to facilely design hydrophobic aerogel directly from bagasse. Ind. Crop. Prod. 2021, 172, 113957. [Google Scholar] [CrossRef]
- Wang, L.; Sánchez-Soto, M. Green bio-based aerogels prepared from recycled cellulose fiber suspensions. RSC Adv. 2015, 5, 31384–31391. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Ding, L.; Chen, L.; Wang, F.; Pu, J.; Jiang, S. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chem. Lett. 2021, 32, 3105–3108. [Google Scholar] [CrossRef]
- Simionescu, B.C.; Neamtu, A.; Balhui, C.; Danciu, M.; Ivanov, D.; David, G. Macroporous structures based on biodegradable polymers—candidates for biomedical application. J. Biomed. Mater. Res. Part A 2013, 101, 2689–2698. [Google Scholar] [CrossRef] [PubMed]
- Grishechko, L.; Amaral-Labat, G.; Szczurek, A.; Fierro, V.; Kuznetsov, B.; Celzard, A. Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 2013, 168, 19–29. [Google Scholar] [CrossRef]
- Kenar, J.A.; Eller, F.J.; Felker, F.C.; Jackson, M.A.; Fanta, G.F. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate. Green Chem. 2014, 16, 1921–1930. [Google Scholar] [CrossRef]
- Seantier, B.; Bendahou, D.; Bendahou, A.; Grohens, Y.; Kaddami, H. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 2016, 138, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Hatami, T.; Viganó, J.; Mei, L.H.I.; Martínez, J. Production of alginate-based aerogel particles using supercritical drying: Experiment, comprehensive mathematical model, and optimization. J. Supercrit. Fluids 2020, 160, 104791. [Google Scholar] [CrossRef]
- Gawryla, M.D.; Berg, O.v.D.; Weder, C.; Schiraldi, D.A. Clay aerogel/cellulose whisker nanocomposites: A nanoscale wattle and daub. J. Mater. Chem. 2009, 19, 2118. [Google Scholar] [CrossRef]
- Hoepfner, S.; Ratke, L.; Milow, B. Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 2008, 15, 121–129. [Google Scholar] [CrossRef]
- García-González, C.A.; Uy, J.J.; Alnaief, M.; Smirnova, I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr. Polym. 2012, 88, 1378–1386. [Google Scholar] [CrossRef]
- Aaltonen, O.; Jauhiainen, O. The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr. Polym. 2009, 75, 125–129. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, Q.; Zhu, J.; Li, J.; Cai, Z.; Chen, L.; Gong, S. Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv. 2016, 6, 96518–96526. [Google Scholar] [CrossRef]
- Kim, C.H.; Youn, H.J.; Lee, H.L. Preparation of cross-linked cellulose nanofibril aerogel with water absorbency and shape recovery. Cellulose 2015, 22, 3715–3724. [Google Scholar] [CrossRef]
- Yang, H.; Sheikhi, A.; van de Ven, T.G.M. Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir 2016, 32, 11771–11779. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Hsieh, Y.-L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A 2014, 2, 6337–6342. [Google Scholar] [CrossRef]
- Sescousse, R.; Smacchia, A.; Budtova, T. Influence of lignin on cellulose-NaOH-water mixtures properties and on Aerocellulose morphology. Cellulose 2010, 17, 1137–1146. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Kuang, Y.; Xiao, M.; Su, M.; Jiang, F. Microstructure and filtration performance of konjac glucomannan-based aerogels strengthened by wheat straw. Int. J. Low-Carbon Technol. 2019, 14, 335–343. [Google Scholar] [CrossRef]
- Zamora-Sequeira, R.; Ardao, I.; Starbird, R.; García-González, C.A. Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. Carbohydr. Polym. 2018, 189, 304–312. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, Y.; Fan, B.; Yao, Q.; Wang, H.; Jin, C.; Sun, Q. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Sci. Rep. 2016, 6, 32383. [Google Scholar] [CrossRef]
- Fontes-Candia, C.; Erboz, E.; Martínez-Abad, A.; López-Rubio, A.; Martínez-Sanz, M. Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocoll. 2019, 96, 151–160. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, H. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins. Int. J. Biol. Macromol. 2019, 136, 936–943. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem. 2022, 374, 131763. [Google Scholar] [CrossRef]
- Falua, K.J.; Pokharel, A.; Babaei-Ghazvini, A.; Ai, Y.; Acharya, B. Valorization of starch to biobased materials: A review. Polymers 2022, 14, 2215. [Google Scholar] [CrossRef]
- White, R.J.; Yoshizawa, N.; Antonietti, M.; Titirici, M.-M. A sustainable synthesis of nitrogen-doped carbon aerogels. Green Chem. 2011, 13, 2428–2434. [Google Scholar] [CrossRef]
- Franco, P.; Aliakbarian, B.; Perego, P.; Reverchon, E.; De Marco, I. Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications. Ind. Eng. Chem. Res. 2018, 57, 15105–15113. [Google Scholar] [CrossRef]
- Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties, and applications. J. Mater. Chem. A 2017, 5, 16105–16117. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Xu, G.; Xu, Y.; Wang, F.; Shen, H. Ultralight, hydrophobic, sustainable, cost-effective and floating kapok/microfibrillated cellulose aerogels as speedy and recyclable oil superabsorbents. J. Hazard. Mater. 2021, 406, 124758. [Google Scholar] [CrossRef]
- Mirmoeini, S.S.; Hosseini, S.H.; Javid, A.L.; Koutamehr, M.E.; Sharafi, H.; Molaei, R.; Moradi, M. Essential oil-loaded starch/cellulose aerogel: Preparation, characterization and application in cheese packaging. Int. J. Biol. Macromol. 2023, 244, 125356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, H.; Peng, C.; Ma, J.; Huang, S.; Wang, R.; Wu, B.; Xiong, Q.; Peng, D.; Huang, S.; et al. Application of protein/polysaccharide aerogels in drug delivery system: A review. Int. J. Biol. Macromol. 2023, 125727. [Google Scholar] [CrossRef] [PubMed]
- Baysal, G.; Demirci, C.; Özpinar, H. Proporties and Synthesis of Biosilver Nanofilms for Antimicrobial Food Packaging. Polymers 2023, 15, 689. [Google Scholar] [CrossRef]
- Syeda, H.I.; Yap, P.-S. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water. Sci. Total Environ. 2022, 807, 150606. [Google Scholar] [CrossRef]
- Thai, Q.B.; Le, D.K.; Luu, T.P.; Hoang, N.; Nguyen, D.; Duong, H. Aerogels from wastes and their applications. JOJ Mater. Sci. 2019, 5, 10–19080. [Google Scholar]
- García-González, C.A.; Budtova, T.; Durães, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019, 24, 1815. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Han, S.; Li, J.; Sun, Q. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydr. Polym. 2015, 123, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Namli, S.; Guven, O.; Simsek, F.N.; Gradišek, A.; Sumnu, G.; Yener, M.E.; Oztop, M. Effects of deacetylation degree of chitosan on the structure of aerogels. Int. J. Biol. Macromol. 2023, 250, 126123. [Google Scholar] [CrossRef] [PubMed]
- Idumah, C.I.; Ezika, A.C.; Okpechi, V.U. Emerging trends in polymer aerogel nanoarchitectures, surfaces, interfaces and applications. Surf. Interfaces 2021, 25, 101258. [Google Scholar] [CrossRef]
Type of Raw Materials for Aerogel Production | Advantages | Disadvantages |
---|---|---|
Alginate-based aerogels |
|
|
Cellulose-based aerogels |
|
|
Chitosan-based aerogels |
|
|
Lignin-based aerogels |
|
|
Pectin-based aerogels |
|
|
Protein-based aerogels |
|
|
Starch-based aerogels |
|
|
Drying Method | Conditions | Preparations Prior to Drying Procedure | Advantages and Limitations |
---|---|---|---|
Freeze drying | Pressure under 100 mBar −80 °C < temperature < −40 °C | Use of additives or surfactants to modify the properties of the gel and prevent structural collapse during | Advantages: The removal of solvents from the gel via sublimation, preserving the porous structure; a controlled and uniform drying process; sublimation during freeze drying helps prevent shrinkage and cracking in the aerogel structure. Limitations: time-consuming process; increasing production costs; variations in ice crystal size during freezing can lead to structural irregularities within the aerogel that affect its mechanical and thermal properties. |
Ambient drying | Room temperature Ambient pressure | Hydrophobization of the matrix; use of solvent that easily evaporates (water, alcohol, other organic solvents) | Advantages: Not-high costs; safe procedure. Limitations: not appropriate for fragile and hydrophilic matrices. |
Supercritical drying | 40 °C < temperature < 70 °C 70 Bar < Pressure < 200 Bar | Solvent should be compatible with CO2 (if used); no solvent conversion should occur during direct supercritical drying | Advantages: relatively fast, enabling efficient and time-saving production; removal of solvents without leaving residues, resulting in highly pure aerogel materials, occurs. Limitations: need for specialized high-pressure equipment and controlled environments presents limitation. |
Microwave drying | 40 °C < temperature < 80 °C Frequency: 2.45 GHz or 5.8 GHz | Composition of the gel precursor; ensuring a homogenous mixture of the gel precursor; proper stirring and mixing of the gel precursor solution to ensure homogeneity and uniform distribution of components. | Advantages: Acceleration of drying process; consistent drying and minimizing the risk of uneven structures or cracks in the aerogel; precise control of temperature and power. Limitations: occurs in microwaves, which can lead to rapid evaporation of volatile components, potentially affecting the composition and properties of the aerogel. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabič-Brodnjak, U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2024, 10, 27. https://doi.org/10.3390/gels10010027
Vrabič-Brodnjak U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels. 2024; 10(1):27. https://doi.org/10.3390/gels10010027
Chicago/Turabian StyleVrabič-Brodnjak, Urška. 2024. "Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions" Gels 10, no. 1: 27. https://doi.org/10.3390/gels10010027
APA StyleVrabič-Brodnjak, U. (2024). Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels, 10(1), 27. https://doi.org/10.3390/gels10010027