Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Situ Polymerization and Properties of GNPEs
2.2. Electrochemical Performances of GNPEs
3. Conclusions
4. Materials and Methods
4.1. Sources
4.2. Electrodes Preparation
4.3. In Situ Polymerization of GNPEs and Cell Assembly
4.4. Instrumentations and Measurements
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Bülow, F.; Meisen, T. A Review on Methods for State of Health Forecasting of Lithium-Ion Batteries Applicable in Real-World Operational Conditions. J. Energy Storage 2023, 57, 105978. [Google Scholar] [CrossRef]
- Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour. Conserv. Recycl. 2023, 188, 106690. [Google Scholar] [CrossRef]
- Tang, S.; Guo, W.; Fu, Y. Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Adv. Energy Mater. 2021, 11, 2000802. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Zhong, L.; Yan, C.; Srinivasan, M.; Seh, Z.W.; Liu, C.; Pan, H.; Li, S.; Wen, Y.; et al. Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2101474. [Google Scholar] [CrossRef] [PubMed]
- Edge, J.S.; O’Kane, S.; Prosser, R.; Kirkaldy, N.D.; Patel, A.N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J. Lithium Ion Battery Degradation: What You Need to Know. Phys. Chem. Chem. Phys. 2021, 23, 8200–8221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Courtier, N.E.; Zhang, Z.; Liu, K.; Bailey, J.J.; Boyce, A.M.; Richardson, G.; Shearing, P.R.; Kendrick, E.; Brett, D.J.L. A Review of Lithium-Ion Battery Electrode Drying: Mechanisms and Metrology. Adv. Energy Mater. 2022, 12, 2102233. [Google Scholar] [CrossRef]
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling—Overview of Techniques and Trends. ACS Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Li, Q.; Wang, K. A Comprehensive Review on the State of Charge Estimation for Lithium-Ion Battery Based on Neural Network. Int. J. Energy Res. 2022, 46, 5423–5440. [Google Scholar] [CrossRef]
- Mao, S.; Wu, Q.; Ma, F.; Zhao, Y.; Wu, T.; Lu, Y. Advanced Liquid Electrolytes Enable Practical Applications of High-Voltage Lithium-Metal Full Batteries. Chem. Commun. 2021, 57, 840–858. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Materials for Lithium-Ion Battery Safety. Sci. Adv. 2018, 4, aas9820. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18–42. [Google Scholar] [CrossRef]
- Kim, J.Y.; Shin, D.O.; Chang, T.; Kim, K.M.; Jeong, J.; Park, J.; Lee, Y.M.; Cho, K.Y.; Phatak, C.; Hong, S.; et al. Effect of the Dielectric Constant of a Liquid Electrolyte on Lithium Metal Anodes. Electrochim. Acta 2019, 300, 299–305. [Google Scholar] [CrossRef]
- Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, Y.; Tang, F.; Zhao, J.; Li, S. Mixed Salts of Lithium Difluoro (Oxalate) Borate and Lithium Tetrafluorobotate Electrolyte on Low-Temperature Performance for Lithium-Ion Batteries. J. Electrochem. Soc. 2017, 164, A1873. [Google Scholar] [CrossRef]
- Zhao, W.; Ren, F.; Yan, Q.; Liu, H.; Yang, Y. A Facile Synthesis of Non-Aqueous LiPO2F2 Solution as the Electrolyte Additive for High Performance Lithium Ion Batteries. Chin. Chem. Lett. 2020, 31, 3209–3212. [Google Scholar] [CrossRef]
- Giffin, G.A. Ionic Liquid-Based Electrolytes for “beyond Lithium” Battery Technologies. J. Mater. Chem. A Mater. 2016, 4, 13378–13389. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, W.H. Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. ChemElectroChem 2015, 2, 22–36. [Google Scholar] [CrossRef]
- Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31, 2007598. [Google Scholar] [CrossRef]
- Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Single-Ion Conducting Gel Polymer Electrolytes: Design, Preparation and Application. J. Mater. Chem. A Mater. 2020, 8, 1557–1577. [Google Scholar] [CrossRef]
- Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y. Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10, 1237. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H.; Ding, F. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z. A Review of Composite Solid-State Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures. Chem. Soc. Rev. 2020, 49, 8790–8839. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A.K.; Wang, S.; Yu, J.; Yamauchi, Y. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18, 2103617. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5, 2326–2352. [Google Scholar] [CrossRef]
- Hikima, K.; Huy Phuc, N.H.; Tsukasaki, H.; Mori, S.; Muto, H.; Matsuda, A. High Ionic Conductivity of Multivalent Cation Doped Li6PS5Cl Solid Electrolytes Synthesized by Mechanical Milling. RSC Adv. 2020, 10, 22304–22310. [Google Scholar] [CrossRef]
- Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M. Synthesis, Structure and Electrochemical Performance of the Argyrodite Li6PS5Cl Solid Electrolyte for Li-Ion Solid State Batteries. Electrochim. Acta 2016, 215, 93–99. [Google Scholar] [CrossRef]
- Park, K.H.; Bai, Q.; Kim, D.H.; Oh, D.Y.; Zhu, Y.; Mo, Y.; Jung, Y.S. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Adv. Energy Mater. 2018, 8, 1800035. [Google Scholar] [CrossRef]
- Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y. In Situ Preparation of Gel Polymer Electrolyte for Lithium Batteries: Progress and Perspectives. InfoMat 2022, 4, e12232. [Google Scholar] [CrossRef]
- Bocharova, V.; Sokolov, A.P. Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules 2020, 53, 4141–4157. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Huang, H.; Li, W.; Wang, J. Facile Design of Novel Nanocellulose-Based Gel Polymer Electrolyte for Lithium-Ion Batteries Application. Chem. Eng. J. 2022, 445, 136568. [Google Scholar] [CrossRef]
- Wei, J.; Yue, H.; Shi, Z.; Li, Z.; Li, X.; Yin, Y.; Yang, S. In Situ Gel Polymer Electrolyte with Inhibited Lithium Dendrite Growth and Enhanced Interfacial Stability for Lithium-Metal Batteries. ACS Appl. Mater. Interfaces 2021, 13, 32486–32494. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Yang, J.; Liu, G.; Liu, H.; Li, S.; Tang, C.; Mei, J.; Li, Y.; Hui, D. Flexible Solid Electrolyte Based on UV Cured Polyurethane Acrylate/Succinonitrile-Lithium Salt Composite Compatibilized by Tetrahydrofuran. Compos. B Eng. 2017, 120, 35–41. [Google Scholar] [CrossRef]
- Oh, B.; Jung, W.I.; Kim, D.W.; Rhee, H.W. Preparation of UV Curable Gel Polymer Electrolytes and Their Electrochemical Properties. Bull. Korean Chem. Soc. 2002, 23, 683–687. [Google Scholar] [CrossRef]
- Mindemark, J.; Lacey, M.J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative Host Materials for Li+-Conducting Solid Polymer Electrolytes. Prog. Polym. Sci. 2018, 81, 114–143. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, J.; Jin, H.; Gao, C.; Liu, H.; Cai, N.; Liu, Y.; Zhang, P.; Wang, M. In Situ Initiator-Free Gelation of Highly Concentrated LiFSI-DOL Solid Polymer Electrolyte for High Performance Lithium-Metal Batteries. Mater. Today Energy 2020, 20, 100623. [Google Scholar] [CrossRef]
- Foran, G.; Verdier, N.; Lepage, D.; Prébé, A.; Aymé-Perrot, D.; Dollé, M. Thermal and Electrochemical Properties of Solid Polymer Electrolytes Prepared via Lithium Salt-Catalyzed Epoxide Ring Opening Polymerization. Appl. Sci. 2021, 11, 1561. [Google Scholar] [CrossRef]
- Zhi, M.; Liu, Q.; Chen, H.; Chen, X.; Feng, S.; He, Y. Thermal Stability and Flame Retardancy Properties of Epoxy Resin Modified with Functionalized Graphene Oxide Containing Phosphorus and Silicon Elements. ACS Omega 2019, 4, 10975–10984. [Google Scholar] [CrossRef]
- Xue, C.; Qin, Y.; Fu, H.; Fan, J. Thermal Stability, Mechanical Properties and Ceramization Mechanism of Epoxy Resin/Kaolin/Quartz Fiber Ceramifiable Composites. Polymers 2022, 14, 3372. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, F.; Mallik, A.K.; Chisty, A.H.; Robel, F.N.; Shahruzzaman, M.; Haque, P.; Rahman, M.M.; Hano, N.; Takafuji, M.; Ihara, H. Remarkable Enhancement of Thermal Stability of Epoxy Resin through the Incorporation of Mesoporous Silica Micro-Filler. Heliyon 2021, 7, e05959. [Google Scholar] [CrossRef] [PubMed]
- Herzberger, J.; Niederer, K.; Pohlit, H.; Seiwert, J.; Worm, M.; Wurm, F.R.; Frey, H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem. Rev. 2016, 116, 2170–2243. [Google Scholar] [CrossRef] [PubMed]
- Crivello, J.V.; Lee, J.L. Recent Advances in Thermally and Photochemically Initiated Cationic Polymerization. Polym. J. 1985, 17, 73–83. [Google Scholar] [CrossRef]
- Crivello, J.V. Radical-Promoted Visible Light Photoinitiated Cationic Polymerization of Epoxides. J. Macromol. Sci. Part A Pure Appl. Chem. 2009, 46, 474–483. [Google Scholar] [CrossRef]
- Stanford, J.L.; Ryan, A.J.; Yang, Y. Photoinitiated Cationic Polymerization of Epoxides. Polym. Int. 2001, 50, 986–997. [Google Scholar] [CrossRef]
- Zhou, D.; Fan, L.Z.; Fan, H.; Shi, Q. Electrochemical Performance of Trimethylolpropane Trimethylacrylate-Based Gel Polymer Electrolyte Prepared by in Situ Thermal Polymerization. Electrochim. Acta 2013, 89, 334–338. [Google Scholar] [CrossRef]
- Wang, Q.J.; Zhang, P.; Wang, B.; Fan, L.Z. A Novel Gel Polymer Electrolyte Based on Trimethylolpropane Trimethylacrylate/Ionic Liquid via in Situ Thermal Polymerization for Lithium-Ion Batteries. Electrochim. Acta 2021, 370, 137706. [Google Scholar] [CrossRef]
- Kang, S.J.; Park, K.; Park, S.H.; Lee, H. Unraveling the Role of LiFSI Electrolyte in the Superior Performance of Graphite Anodes for Li-Ion Batteries. Electrochim. Acta 2018, 259, 949–954. [Google Scholar] [CrossRef]
- Lu, H.; Zeng, S.; Zhao, D.; Wang, J.; Quan, Y.; Xu, F.; Li, F.; Li, S. Optimizing the Composition of LiFSI-Based Electrolytes by a Method Combining Simplex with Normalization. RSC Adv. 2021, 11, 26102–26109. [Google Scholar] [CrossRef]
- Huangzhang, E.; Zeng, X.; Yang, T.; Liu, H.; Sun, C.; Fan, Y.; Hu, H.; Zhao, X.; Zuo, X.; Nan, J. A Localized High-Concentration Electrolyte with Lithium Bis(Fluorosulfonyl) Imide (LiFSI) Salt and F-Containing Cosolvents to Enhance the Performance of Li||LiNi0.8Co0.1Mn0.1O2 Lithium Metal Batteries. Chem. Eng. J. 2022, 439, 135534. [Google Scholar] [CrossRef]
- Chen, X.; Yao, N.; Zeng, B.S.; Zhang, Q. Ion–Solvent Chemistry in Lithium Battery Electrolytes: From Mono-Solvent to Multi-Solvent Complexes. Fundam. Res. 2021, 1, 393–398. [Google Scholar] [CrossRef]
- Wang, A.A.; Greenbank, S.; Li, G.; Howey, D.A.; Monroe, C.W. Current-Driven Solvent Segregation in Lithium-Ion Electrolytes. Cell Rep. Phys. Sci. 2022, 3, 101047. [Google Scholar] [CrossRef]
- Zeng, Z.; Liang, W.-I.; Liao, H.-G.; Xin, H.L.; Chu, Y.-H.; Zheng, H. Visualization of Electrode–Electrolyte Interfaces in LiPF6/EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM. Nano Lett. 2014, 14, 1745–1750. [Google Scholar] [CrossRef]
- Sampson, K.; Paik, A.; Duvall, B.; Whalen, D.L. Transition-State Effects in Acid-Catalyzed Aryl Epoxide Hydrolyses. J. Org. Chem. 2004, 69, 5204–5211. [Google Scholar] [CrossRef]
- Bulut, U.; Crivello, J.V. Investigation of the Reactivity of Epoxide Monomers in Photoinitiated Cationic Polymerization. J. Polym. Sci. A Polym. Chem. 2005, 43, 3205–3220. [Google Scholar] [CrossRef]
- Shi, F.; Ross, P.N.; Somorjai, G.A.; Komvopoulos, K. The Chemistry of Electrolyte Reduction on Silicon Electrodes Revealed by in Situ ATR-FTIR Spectroscopy. J. Phys. Chem. C 2017, 121, 14476–14483. [Google Scholar] [CrossRef]
- Yi, L.; Zou, C.; Chen, X.; Liu, J.; Cao, S.; Tao, X.; Zang, Z.; Liu, L.; Chang, B.; Shen, Y.; et al. One-Step Synthesis of PVDF-HFP/PMMA-ZrO2Gel Polymer Electrolyte to Boost the Performance of a Lithium Metal Battery. ACS Appl. Energy Mater. 2022, 5, 7317–7327. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. A Glimpse on All-Solid-State Li-Ion Battery (ASSLIB) Performance Based on Novel Solid Polymer Electrolytes: A Topical Review. J. Mater. Sci. 2020, 55, 6242–6304. [Google Scholar] [CrossRef]
- Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study. J. Am. Chem. Soc. 2013, 135, 9829–9842. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Judez, X.; Li, C.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L.M.; Zhang, H.; Armand, M. Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. J. Am. Chem. Soc. 2018, 140, 9921–9933. [Google Scholar] [CrossRef] [PubMed]
- Sharova, V.; Moretti, A.; Diemant, T.; Varzi, A.; Behm, R.J.; Passerini, S. Comparative Study of Imide-Based Li Salts as Electrolyte Additives for Li-Ion Batteries. J. Power Sources 2018, 375, 43–52. [Google Scholar] [CrossRef]
- Siva, G.; Aziz, M.A.; Kumar, G.G. Engineered Tubular Nanocomposite Electrocatalysts Based on CuS for High-Performance, Durable Glucose Fuel Cells and Their Stack. ACS Sustain. Chem. Eng. 2018, 6, 5929–5939. [Google Scholar] [CrossRef]
- Jiao, S.; Ren, X.; Cao, R.; Engelhard, M.H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; et al. Stable Cycling of High-Voltage Lithium Metal Batteries in Ether Electrolytes. Nat. Energy 2018, 3, 739–746. [Google Scholar] [CrossRef]
- Kumar, G.G.; Chung, S.H.; Kumar, T.R.; Manthiram, A. Three-Dimensional Graphene–Carbon Nanotube–Ni Hierarchical Architecture as a Polysulfide Trap for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 20627–20634. [Google Scholar] [CrossRef]
- Budi, A.; Basile, A.; Opletal, G.; Hollenkamp, A.F.; Best, A.S.; Rees, R.J.; Bhatt, A.I.; O’Mullane, A.P.; Russo, S.P. Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide. J. Phys. Chem. C 2012, 116, 19789–19797. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Q.; Qi, F.; Zhang, J.; Liu, K.; Li, J.; Chen, W.; Du, Y.; Jin, Y.; Liang, Y.; et al. Epoxy Containing Solid Polymer Electrolyte for Lithium Ion Battery. Electrochim. Acta 2019, 318, 302–313. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Q.; Wang, S.; Zhou, Y.; Song, D.; Zhang, H.; Shi, X.; Zhang, L. Li Salt Initiated In-Situ Polymerized Solid Polymer Electrolyte: New Insights via in-Situ Electrochemical Impedance Spectroscopy. Chem. Eng. J. 2022, 429, 132483. [Google Scholar] [CrossRef]
- Jin, L.; Jang, G.; Lim, H.; Zhang, W.; Kim, W.; Jang, H. An In Situ Polymeric Electrolyte with Low Interfacial Resistance on Electrodes for Lithium-Ion Batteries. Adv. Mater. Interfaces 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Yu, T.Y.; Yeh, S.C.; Lee, J.Y.; Wu, N.L.; Jeng, R.J. Epoxy-Based Interlocking Membranes for All Solid-State Lithium Ion Batteries: The Effects of Amine Curing Agents on Electrochemical Properties. Polymers 2021, 13, 3244. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Lan, J.L.; Yu, Y.; Du, Z.; Yang, X. Integrative Preparation of Mesoporous Epoxy Resin-Ceramic Composite Electrolytes with Multilayer Structure for Dendrite-Free Lithium Metal Batteries. J. Mater. Chem. A Mater. 2018, 6, 19094–19106. [Google Scholar] [CrossRef]
- Li, S.; Jiang, H.; Tang, T.; Nie, Y.; Zhang, Z.; Zhou, Q. Improved Electrochemical and Mechanical Performance of Epoxy-Based Electrolytes Doped with Mesoporous TiO2. Mater. Chem. Phys. 2018, 205, 23–28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Lim, H.; Bae, W.; Song, S.; Joo, K.; Jang, H.; Kim, W. Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries. Gels 2024, 10, 40. https://doi.org/10.3390/gels10010040
Jin L, Lim H, Bae W, Song S, Joo K, Jang H, Kim W. Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries. Gels. 2024; 10(1):40. https://doi.org/10.3390/gels10010040
Chicago/Turabian StyleJin, Lei, Hyunmin Lim, Wansu Bae, Subeen Song, Kijong Joo, Hohyoun Jang, and Whangi Kim. 2024. "Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries" Gels 10, no. 1: 40. https://doi.org/10.3390/gels10010040
APA StyleJin, L., Lim, H., Bae, W., Song, S., Joo, K., Jang, H., & Kim, W. (2024). Crosslinked Gel Polymer Electrolyte from Trimethylolpropane Triglycidyl Ether by In Situ Polymerization for Lithium-Ion Batteries. Gels, 10(1), 40. https://doi.org/10.3390/gels10010040