Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications
Abstract
:1. Introduction
2. Classifications of Nanogels
3. Synthesis Aspects of Stimuli-Responsive Nanogels
4. Inherent Properties of Nanogels
4.1. Biocompatibility and Degradability
4.2. Swelling Property in Aqueous Media
4.3. Higher Drug Loading Capacity and Drug Release
4.4. Colloidal Stability
4.5. Non-Immunologic Response
5. Biomedical Applications of Stimuli-Responsive Nanogels Systems
5.1. Single Stimulus-Responsive Systems
5.1.1. pH-Responsive Nanogels
5.1.2. Temperature-Responsive Nanogels
5.1.3. Glutathione (GSH)-Responsive Nanogels
5.1.4. Biomolecule-Responsive Nanogels
Glucose-Responsive Nanogels
Protein/Enzyme-Responsive Nanogels
5.1.5. Light-Responsive Nanogels
5.1.6. Electric/Magnetic Field-Responsive Nanogels
5.2. Dual Stimuli-Responsive Nanogel Systems
5.2.1. pH- and Temperature-Responsive Nanogels
5.2.2. pH- and Glutathion (GSH)-Responsive Nanogels
5.2.3. Temperature- and Glutathion (GSH)-Responsive Nanogels
5.2.4. Other Dual Responsive Nanogels
5.3. Multi-Stimuli-Responsive Nanogel Systems
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sana, S.S.; Arla, S.K.; Badineni, V.; Boya, V.K.N. Development of poly (acrylamide-co-diallyldimethylammoniumchloride) nanogels and study of their ability as drug delivery devices. SN Appl. Sci. 2019, 1, 1716. [Google Scholar] [CrossRef]
- Suner, S.S.; Sahiner, M.; Sengel, S.B.; Rees, D.; Reed, W.F.; Nurettin, S. Responsive Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications—Types and Triggers; Hamdy, A.S., Abu-Thabit, N.Y., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 453–500. [Google Scholar]
- Shah, S.; Rangaraj, N.; Laxmikeshav, K.; Sampathi, S. Nanogels as drug carriers—Introduction, chemical aspects, release mechanisms and potential applications. Int. J. Pharm. 2020, 581, 119268. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, N.; Sagbas, S.; Aktas, N. Preparation of Macro-, Micro-, and Nano-Sized Poly(Tannic Acid) Particles with Controllable Degradability and Multiple Biomedical Uses. Polym. Degrad. Stab. 2016, 129, 96–105. [Google Scholar] [CrossRef]
- Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter 2011, 7, 5908–5916. [Google Scholar] [CrossRef]
- Preman, N.K.; Barki, R.R.; Vijayan, A.; Sanjeeva, S.G.; Johnson, R.P. Recent developments in stimuli-responsive polymer nanogels for drug delivery and diagnostics: A review. Eur. J. Pharm. Biopharm. 2020, 157, 121–153. [Google Scholar] [CrossRef] [PubMed]
- Vicario-de-la-Torre, M.; Forcada, J. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels 2017, 3, 16. [Google Scholar] [CrossRef]
- Jha, A.; Rama, A.; Ladani, B.; Verma, N.; Kannan, S.; Naha, A. Temperature and pH-responsive nanogels as intelligent drug delivery systems: A comprehensive review. J. Appl. Pharm. Sci. 2021, 11, 001–016. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J.; Wu, J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater. Sci. 2021, 9, 574–589. [Google Scholar] [CrossRef]
- Kumar, P.; Liu, B.; Behl, G. A comprehensive outlook of synthetic strategies and applications of redox-responsive nanogels in drug delivery. Macromol. Biosci. 2019, 19, 1900071. [Google Scholar] [CrossRef]
- Mauri, E.; Giannitelli, S.M.; Trombetta, M.; Rainer, A. Synthesis of nanogels: Current trends and future outlook. Gels 2021, 7, 36. [Google Scholar] [CrossRef]
- Sultana, F.; Imran-Ul-Haque, M.; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci. 2013, 3, S95–S105. [Google Scholar] [CrossRef]
- Wang, H.; Gao, L.; Fan, T.; Zhang, C.; Zhang, B.; Al-Hartomy, O.A.; Al-Ghamdi, A.; Wageh, S.; Qiu, M.; Zhang, H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS Appl. Mater. Interfaces 2021, 13, 54621–54647. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jin, X.; Cong, Y.; Liu, Y.; Fu, J. Degradable Natural Polymer Hydrogels for Articular Cartilage Tissue Engineering. J. Chem. Technol. Biotechnol. 2012, 88, 327–339. [Google Scholar] [CrossRef]
- Uthaman, S.; Maya, S.; Jayakumar, R.; Cho, C.-S.; Park, I.-K. Carbohydrate-based nanogels as drug and gene delivery systems. J. Nanosci. Nanotechnol. 2014, 14, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Anooj, E.; Charumathy, M.; Sharma, V.; Vibala, B.; Gopukumar, S.; Jainab, S.B.; Vallinayagam, S. Nanogels: An overview of properties, biomedical applications, future research trends and developments. J. Mol. Struct. 2021, 1239, 130446. [Google Scholar] [CrossRef]
- Rolland, J.P.; Maynor, B.W.; Euliss, L.E.; Exner, A.E.; Denison, G.M.; DeSimone, J.M. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 2005, 127, 10096–10100. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Rosa, E.; Smaldone, G.; Morelli, G.; Accardo, A. Peptide-Based Hydrogels and Nanogels for Delivery of Doxorubicin. Int. J. Nanomed. 2021, 16, 1617–1630. [Google Scholar] [CrossRef]
- Rosa, E.; Diaferia, C.; Gallo, E.; Morelli, G.; Accardo, A. Stable Formulations of Peptide-Based Nanogels. Molecules 2020, 25, 3455. [Google Scholar] [CrossRef]
- Shimoda, A.; Sawada, S.; Kano, A.; Maruyama, A.; Moquin, A.; Winnik, F.M.; Akiyoshi, K. Dual Crosslinked Hydrogel Nanoparticles by Nanogel Bottom-up Method for Sustained-Release Delivery. Colloids Surf. B Biointerfaces 2012, 99, 38–44. [Google Scholar] [CrossRef]
- Sekine, Y.; Moritani, Y.; Ikeda-Fukazawa, T.; Sasaki, Y.; Akiyoshi, K. A Hybrid Hydrogel Biomaterial by Nanogel Engineering: Bottom-up Design with Nanogel and Liposome Building Blocks to Develop a Multidrug Delivery System. Adv. Healthc. Mater. 2012, 1, 722–728. [Google Scholar] [CrossRef]
- Tai, M.-R.; Ji, H.; Chen, J.; Liu, X.; Song, B.; Zhong, S.; Rifai, A.; Nisbet, D.R.; Barrow, C.J.; Williams, R.J.; et al. Biomimetic Triumvirate Nanogel Complexes via Peptide-Polysaccharide-Polyphenol Self-Assembly. Int. J. Biol. Macromol. 2023, 251, 126232. [Google Scholar] [CrossRef] [PubMed]
- Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. 2009, 48, 5418–5429. [Google Scholar] [CrossRef] [PubMed]
- Matusiak, M.; Kadłubowski, S.; Rosiak, J.M. Nanogels Synthesized by Radiation-Induced Intramolecular Crosslinking of Water-Soluble Polymers. Radiat. Phys. Chem. 2020, 169, 108099. [Google Scholar] [CrossRef]
- Kadlubowski, S. Radiation-Induced Synthesis of Nanogels Based on Poly(N-Vinyl-2-Pyrrolidone)—A Review. Radiat. Phys. Chem. 2014, 102, 29–39. [Google Scholar] [CrossRef]
- Matusiak, M.; Kadlubowski, S.; Ulanski, P. Radiation-Induced Synthesis of Poly(Acrylic Acid) Nanogels. Radiat. Phys. Chem. 2018, 142, 125–129. [Google Scholar] [CrossRef]
- Sütekin, S.D.; Güven, O. Application of Radiation for the Synthesis of Poly(N-Vinyl Pyrrolidone) Nanogels with Controlled Sizes from Aqueous Solutions. Appl. Radiat. Isot. 2019, 145, 161–169. [Google Scholar] [CrossRef]
- Keskin, D.; Zu, G.; Forson, A.M.; Tromp, L.; Sjollema, J.; van Rijn, P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact. Mater. 2021, 6, 3634–3657. [Google Scholar] [CrossRef]
- Rogero, S.O.; Malmonge, S.M.; Lugão, A.B.; Ikeda, T.I.; Miyamaru, L.; Cruz, Á.S. Biocompatibility study of polymeric biomaterials. Artif. Organs 2003, 27, 424–427. [Google Scholar] [CrossRef]
- Aslantürk, Ö.S. In vitro cytotoxicity and cell viability assays: Principles, advantages, and disadvantages. In Genotoxicity—A Predictable Risk to Our Actual World; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2018; Volume 2, pp. 64–80. [Google Scholar]
- Das, D.; Rameshbabu, A.P.; Ghosh, P.; Patra, P.; Dhara, S.; Pal, S. Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells. Carbohydr. Polym. 2017, 171, 27–38. [Google Scholar] [CrossRef]
- Pereira, P.; Pedrosa, S.S.; Correia, A.; Lima, C.F.; Olmedo, M.P.; González-Fernández, Á.; Vilanova, M.; Gama, F.M. Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol. In Vitro 2015, 29, 638–646. [Google Scholar] [CrossRef]
- Wei, M.; Gao, Y.; Jiang, S.; Nie, J.; Sun, F. Design of photoinitiator-functionalized hydrophilic nanogels with uniform size and excellent biocompatibility. Polym. Chem. 2019, 10, 2812–2821. [Google Scholar] [CrossRef]
- Guo, H.; Li, F.; Qiu, H.; Zheng, Q.; Yang, C.; Tang, C.; Hou, Y. Chitosan-based nanogel enhances chemotherapeutic efficacy of 10-hydroxycamptothecin against human breast cancer cells. Int. J. Polym. Sci. 2019, 2019, 1914976. [Google Scholar] [CrossRef]
- Kankala, R.K.; Wang, S.-B.; Chen, A.-Z.; Zhang, Y.S. Self-assembled nanogels: From particles to scaffolds and membranes. In Handbook of Nanomaterials for Cancer Theranostics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 33–62. [Google Scholar]
- Pikabea, A.; Aguirre, G.; Miranda, J.I.; Ramos, J.; Forcada, J. Understanding of nanogels swelling behavior through a deep insight into their morphology. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2017–2025. [Google Scholar] [CrossRef]
- Mackiewicz, M.; Stojek, Z.; Karbarz, M. Synthesis of cross-linked poly (acrylic acid) nanogels in an aqueous environment using precipitation polymerization: Unusually high volume change. R. Soc. Open Sci. 2019, 6, 190981. [Google Scholar] [CrossRef]
- Tamura, G.; Shinohara, Y.; Tamura, A.; Sanada, Y.; Oishi, M.; Akiba, I.; Nagasaki, Y.; Sakurai, K.; Amemiya, Y. Dependence of the swelling behavior of a pH-responsive PEG-modified nanogel on the cross-link density. Polym. J. 2012, 44, 240–244. [Google Scholar] [CrossRef]
- Daniel-da-Silva, A.L.; Ferreira, L.; Gil, A.M.; Trindade, T. Synthesis and swelling behavior of temperature responsive κ-carrageenan nanogels. J. Colloid Interface Sci. 2011, 355, 512–517. [Google Scholar] [CrossRef]
- Yadav, H.K.; Al Halabi, N.A.; Alsalloum, G.A. Nanogels as novel drug delivery systems—A review. J Pharm. Pharm. Res. 2017, 1, 1–8. [Google Scholar]
- Tan, J.P.; Zeng, A.Q.; Chang, C.C.; Tam, K.C. Release kinetics of procaine hydrochloride (PrHy) from pH-responsive nanogels: Theory and experiments. Int. J. Pharm. 2008, 357, 305–313. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, Y.; Wang, J.; Zhai, G. New progress and prospects: The application of nanogel in drug delivery. Mater. Sci. Eng. C 2016, 60, 560–568. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
- Schubert, J.; Chanana, M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms. Curr. Med. Chem. 2018, 25, 4553–4586. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Gray, D.M.; Niezabitowska, E.; McDonald, T.O. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. Nanoscale 2021, 13, 7879–7896. [Google Scholar] [CrossRef] [PubMed]
- Sagar, V.; Vashist, A.; Gupta, R.; Nair, M. Nanogels for biomedical applications: Challenges and prospects. In Nanogels for Biomedical Applications; Vashist, A., Kaushik, A.K., Ahmad, S., Nair, M., Eds.; Royal Society of Chemistry: London, UK, 2017; pp. 290–300. [Google Scholar]
- Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev. 2012, 64, 836–851. [Google Scholar] [CrossRef]
- Manimaran, V.; Nivetha, R.P.; Tamilanban, T.; Narayanan, J.; Vetriselvan, S.; Fuloria, N.K.; Chinni, S.V.; Sekar, M.; Fuloria, S.; Wong, L.S.; et al. Nanogels as novel drug nanocarriers for CNS drug delivery. Front. Mol. Biosci. 2023, 10, 1232109. [Google Scholar] [CrossRef] [PubMed]
- Rashidzadeh, H.; Rezaei, S.J.T.; Danafar, H.; Ramazani, A. Multifunctional pH-responsive nanogel for malaria and cancer treatment: Hitting two targets with one arrow. J. Drug Deliv. Sci. Technol. 2022, 76, 103740. [Google Scholar] [CrossRef]
- Naranjo, A.G.; Cobas, H.V.; Gupta, N.K.; López, K.R.; Peña, A.A.; Sacasas, D.; Brito, R.Á. 5-Fluorouracil uptake and release from pH-responsive nanogels: An experimental and computational study. J. Mol. Liq. 2022, 362, 119716. [Google Scholar] [CrossRef]
- Jayakumar, R.; Nair, A.; Rejinold, N.S.; Maya, S.; Nair, S. Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohydr. Polym. 2012, 87, 2352–2356. [Google Scholar] [CrossRef]
- Manchun, S.; Dass, C.R.; Cheewatanakornkool, K.; Sriamornsak, P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr. Polym. 2015, 126, 222–230. [Google Scholar] [CrossRef]
- Sahu, P.; Kashaw, S.K.; Sau, S.; Kushwah, V.; Jain, S.; Agrawal, R.K.; Iyer, A.K. pH responsive 5-fluorouracil loaded biocompatible nanogels for topical chemotherapy of aggressive melanoma. Colloids Surf. B Biointerfaces 2019, 174, 232–245. [Google Scholar] [CrossRef]
- Yang, H.Y.; Li, Y.; Jang, M.-S.; Fu, Y.; Wu, T.; Lee, J.H.; Lee, D.S. Green preparation of pH-responsive and dual targeting hyaluronic acid nanogels for efficient protein delivery. Eur. Polym. J. 2019, 121, 109342. [Google Scholar] [CrossRef]
- Liu, L.; Luan, S.; Zhang, C.; Wang, R.; Zhang, Y.; Zhang, M.; Sheng, Q.; Han, G.; Wang, T.; Song, S. Encapsulation and pH-responsive release of bortezomib by dopamine grafted hyaluronate nanogels. Int. J. Biol. Macromol. 2021, 183, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, Y.; Xue, Y.; Wu, Y.; Liu, Y.; Cheng, X.; Tang, R. pH-sensitive and tumor-targeting nanogels based on ortho ester-modified PEG for improving the in vivo anti-tumor efficiency of doxorubicin. Colloids Surf. B Biointerfaces 2021, 207, 112024. [Google Scholar] [CrossRef] [PubMed]
- Arunraj, T.R.; Sanoj Rejinold, N.; Ashwin Kumar, N.; Jayakumar, R. Bio-Responsive Chitin-Poly(L-Lactic Acid) Composite Nanogels for Liver Cancer. Colloids Surf. B Biointerfaces 2014, 113, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Zangabad, P.S.; Ghasemi, A.; Amiri, M.; Bahrami, M.; Malekzad, H.; Asl, H.G.; Mahdieh, Z.; Bozorgomid, M.; Ghasemi, A.; et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl. Mater. Interfaces 2016, 8, 21107–21133. [Google Scholar] [CrossRef] [PubMed]
- Ghaeini-Hesaroeiye, S.; Razmi Bagtash, H.; Boddohi, S.; Vasheghani-Farahani, E.; Jabbari, E. Thermoresponsive nanogels based on different polymeric moieties for biomedical applications. Gels 2020, 6, 20. [Google Scholar] [CrossRef]
- Majstorovic, N.; Agarwal, S. Strong, Stretchable, Dual-Responsive PNIPAM Nanogel Cross-Linked UCST-Type Macrogels for Biomedical Applications. ACS Appl. Polym. Mater. 2022, 4, 5996–6005. [Google Scholar] [CrossRef]
- Zhou, H.; Xie, W.; Guo, A.; Chen, B.; Hu, S.; Zheng, M.; Yu, H.; Tian, H.; Li, L. Temperature sensitive nanogels for real-time imaging during transcatheter arterial embolization. Des. Monomers Polym. 2023, 26, 31–44. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, H.-J.; Kim, D.-H.; Chang, W.-S.; Vales, T.P.; Kim, J.-W.; Kim, K.-H.; Kim, J.-K. Thermo-sensitive nanogel-laden bicontinuousmicroemulsion drug-eluting contact lenses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1159–1169. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, Y.; Zhao, Y.; Ren, M.; Li, Y.; Lu, G.; Wu, K.; He, S. Topotecan-loaded thermosensitivenanocargo for tumor therapy: In vitro and in vivo analyses. Int. J. Pharm. 2021, 606, 120871. [Google Scholar] [CrossRef]
- Sahle, F.F.; Giulbudagian, M.; Bergueiro, J.; Lademann, J.; Calderón, M. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale 2017, 9, 172–182. [Google Scholar] [CrossRef]
- Li, L.; Fu, L.; Ai, X.; Zhang, J.; Zhou, J. Design and Fabrication of Temperature-Sensitive Nanogels with Controlled Drug Release Properties for Enhanced Photothermal Sterilization. Chem. A Eur. J. 2017, 23, 18180–18186. [Google Scholar] [CrossRef] [PubMed]
- Zavgorodnya, O.; Carmona-Moran, C.A.; Kozlovskaya, V.; Liu, F.; Wick, T.M.; Kharlampieva, E. Temperature-responsive nanogel multilayers of poly (N-vinylcaprolactam) for topical drug delivery. J. Colloid Interface Sci. 2017, 506, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Wang, J.; Ge, L.; Zhu, J. Development of a thermally responsive nanogel based on chitosan–poly (N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. J. Pharm. Sci. 2014, 103, 2012–2021. [Google Scholar] [CrossRef] [PubMed]
- Mollazadeh, S.; Mackiewicz, M.; Yazdimamaghani, M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Mater. Sci. Eng. C 2021, 118, 111536. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Xia, X.; Yu, B.; Tao, L.; Wang, Q.; Huang, S.-W.; Yu, F. Selenylsulfide bond-launched reduction-responsive superparamagnetic nanogel combined of acid-responsiveness for achievement of efficient therapy with low side effect. ACS Appl. Mater. Interfaces 2017, 9, 30253–30257. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xi, Y.; Zhang, Y.; Wu, Q.; Meng, R.; Zheng, B.; Rei, L. Redox-sensitive gelatin/silica-aptamer nanogels for targeted siRNA delivery. Nanoscale Res. Lett. 2019, 14, 273. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-S.; Jin, Y.-F.; Tong, Q.-S.; Huang, Y.-C.; Gao, Z.-L.; Zheng, S.-J.; Zhang, J.-Y.; Wang, J.; Du, J.-Z. A Redox-responsive Prodrug Nanogel of TLR7/8 Agonist for Improved Cancer Immunotherapy. Chin. J. Polym. Sci. 2023, 41, 32–39. [Google Scholar] [CrossRef]
- Degirmenci, A.; Ipek, H.; Sanyal, R.; Sanyal, A. Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur. Polym. J. 2022, 181, 111645. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, T.; Qiu, W.; Liang, M.; Gao, Y.; Xue, P.; Kang, Y.; Xu, Z. Bioresponsive prodrug nanogel-based polycondensate strategy deepens tumor penetration and potentiates oxidative stress. Chem. Eng. J. 2021, 420, 127657. [Google Scholar] [CrossRef]
- Zhao, L.; Xiao, C.; Gai, G.; Ding, J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem. Commun. 2016, 52, 7633–7652. [Google Scholar] [CrossRef]
- Sharifzadeh, G.; Hosseinkhani, H. Biomolecule-responsive hydrogels in medicine. Adv. Healthc. Mater. 2017, 6, 1700801. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhang, X. Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization. J. Biomater. Sci. Polym. Ed. 2019, 30, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xiao, C.; Ding, J.; He, P.; Tang, Z.; Pang, X.; Zhuang, X.; Chen, X. Facile one-pot synthesis of glucose-sensitive nanogel via thiol-ene click chemistry for self-regulated drug delivery. Actabiomaterialia 2013, 9, 6535–6543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Hu, J.; Gao, W. Glucose oxidase–polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Appl. Mater. Interfaces 2017, 9, 23528–23535. [Google Scholar] [CrossRef]
- Volpatti, L.R.; Matranga, M.A.; Cortinas, A.B.; Delcassian, D.; Daniel, K.B.; Langer, R.; Anderson, D.G. Glucose-responsive nanoparticles for rapid and extended self-regulated insulin delivery. ACS Nano 2019, 14, 488–497. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, Y.; Zhao, Q.; Wang, Z.; Xu, Z.; Jia, X. An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 19899–19906. [Google Scholar] [CrossRef]
- Yang, H.Y.; Du, J.M.; Jang, M.-S.; Mo, X.W.; Sun, X.S.; Lee, D.S.; Lee, J.H.; Fu, Y. CD44-targeted and enzyme-responsive photo-cross-linked nanogels with enhanced stability for in vivo protein delivery. Biomacromolecules 2021, 22, 3590–3600. [Google Scholar] [CrossRef]
- Yu, M.; Ji, N.; Wang, Y.; Dai, L.; Xiong, L.; Sun, Q. Starch-Based Nanoparticles: Stimuli Responsiveness, Toxicity, and Interactions with Food Components. Compr. Rev. Food Sci. Food Saf. 2020, 20, 1075–1100. [Google Scholar] [CrossRef]
- Yu, H.S.; Koo, M.; Choi, S.; Na, K.; Oh, K.T.; Youn, Y.S.; Lee, E.S. Facile Fabrication of Hyaluronated Starch Nanogels for Efficient Docetaxel Delivery. J. Bioact. Compat. Polym. 2019, 34, 321–330. [Google Scholar] [CrossRef]
- Yang, D.; Lv, X.; Xue, L.; Yang, N.; Hu, Y.; Weng, L.; Fu, N.; Wang, L.; Dong, X. A lipase-responsive antifungal nanoplatform for synergistic photodynamic/photothermal/pharmaco-therapy of azole-resistant Candida albicans infections. Chem. Commun. 2019, 55, 15145–15148. [Google Scholar] [CrossRef]
- Das, D.; Alhusaini, Q.F.; Kaur, K.; Raoufi, M.; Schönherr, H. Enzyme-responsive biopolymeric nanogel fibers by extrusion: Engineering of high-surface-area hydrogels and application in bacterial enzyme detection. ACS Appl. Mater. Interfaces 2021, 13, 12928–12940. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.-H.; Bao, Y.; Yang, X.-Z.; Wang, Y.-C.; Sun, B.; Wang, J. Lipase-sensitive polymeric triple-layered nanogel for “on-demand” drug delivery. J. Am. Chem. Soc. 2012, 134, 4355–4362. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, 1807333. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Ye, H.; Chen, Y.; Zhu, R.; Yin, L. Photoresponsive Drug/Gene Delivery Systems. Biomacromolecules 2018, 19, 1840–1857. [Google Scholar]
- Augé, A.; Camerel, F.; Benoist, A.; Zhao, Y. Near-infrared light-responsive UCST-nanogels using an efficient nickel-bis (dithiolene) photothermal crosslinker. Polym. Chem. 2020, 11, 3863–3875. [Google Scholar] [CrossRef]
- Chen, Q.; Li, X.; Xie, Y.; Hu, W.; Cheng, Z.; Zhong, H.; Zhu, H. Azo modified hyaluronic acid based nanocapsules: CD44 targeted, UV-responsive decomposition and drug release in liver cancer cells. Carbohydr. Polym. 2021, 267, 118152. [Google Scholar] [CrossRef]
- Hang, C.; Zou, Y.; Zhong, Y.; Zhong, Z.; Meng, F. NIR and UV-responsive degradable hyaluronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin delivery. Colloids Surf. B Biointerfaces 2017, 158, 547–555. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Doroudian, M.; Bagherifard, M.; Bahmanpour, M. Magnetic and light-responsive nanogels based on chitosan functionalized with Au nanoparticles and poly (N-isopropylacrylamide) as a remotely triggered drug carrier. New J. Chem. 2020, 44, 17302–17312. [Google Scholar] [CrossRef]
- Panja, S.; Dey, G.; Bharti, R.; Mandal, P.; Mandal, M.; Chattopadhyay, S. Metal ion ornamented ultrafast light-sensitive nanogel for potential in vivo cancer therapy. Chem. Mater. 2016, 28, 8598–8610. [Google Scholar] [CrossRef]
- Kumar, N.; Sauraj; Kumar, A. Environmentally Sensitive Nanocomposite Hydrogels for Biomedical Applications; Elsevier eBooks: Amsterdam, The Netherlands, 2023; pp. 517–540. [Google Scholar]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/ Electro-Responsive Polymers toward Manufacturing, Characterization, and Biomedical/ Soft Robotic Applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- Salazar, M.; Grijalva, A.; Fernández-Quiroz, D.; Castillo-Ortega, M.M.; Encinas, J.C.; Herrera-Franco, P.J.; del Castillo-Castro, T. Nanocomposite Hydrogels of Gellan Gum and Polypyrrole for Electro-Stimulated Ibuprofen Release Application. React. Funct. Polym. 2022, 176, 105296. [Google Scholar] [CrossRef]
- Pellá, M.C.G.; Simão, A.R.; Lima-Tenório, M.K.; Scariot, D.B.; Nakamura, C.V.; Muniz, E.C.; Rubira, A.F. Magnetic Chitosan Microgels: Synthesis, Characterization, and Evaluation of Magnetic Field Effect over the Drug Release Behavior. Carbohydr. Polym. 2020, 250, 116879. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34, 3647–3657. [Google Scholar] [CrossRef]
- Aminoleslami, D.; Porrang, S.; Vahedi, P.; Davaran, S. Synthesis and Characterization of a Novel Dual-Responsive Nanogel for Anticancer Drug Delivery. Oxidative Med. Cell. Longev. 2022, 2022, 1548410. [Google Scholar] [CrossRef] [PubMed]
- Macchione, M.A.; Bedoya, D.A.; Rivero-Buceta, E.; Botella, P.; Strumia, M.C. Mesoporous Silica and Oligo (Ethylene Glycol) Methacrylates-Based Dual-Responsive Hybrid Nanogels. Nanomaterials 2022, 12, 3835. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Niu, S.; Williams, G.R.; Wu, J.; Zhang, X.; Zhu, L.-M. Peptide functionalized dual-responsive chitosan nanoparticles for controlled drug delivery to breast cancer cells. Colloids Surf. A Physicochem. Eng. Asp. 2019, 564, 122–130. [Google Scholar] [CrossRef]
- Dinari, A.; Abdollahi, M.; Sadeghizadeh, M. Design and fabrication of dual responsive lignin-based nanogel via “grafting from” atom transfer radical polymerization for curcumin loading and release. Sci. Rep. 2021, 11, 1962. [Google Scholar] [CrossRef]
- Abedi, F.; Davaran, S.; Hekmati, M.; Akbarzadeh, A.; Baradaran, B.; Moghaddam, S.V. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J. Nanobiotechnol. 2021, 19, 18. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, E.-J.; Lim, J.H.; Cho, H.K.; Hong, W.J.; Jeon, H.H.; Chung, B.G. Dual stimuli-triggered nanogels in response to temperature and pH changes for controlled drug release. Nanoscale Res. Lett. 2019, 14, 77. [Google Scholar] [CrossRef]
- Miceli, E.; Wedepohl, S.; Blanco, E.R.O.; Rimondino, G.N.; Martinelli, M.; Strumia, M.; Molina, M.; Kar, M.; Calderón, M. Semi-interpenetrated, dendritic, dual-responsive nanogels with cytochrome c corona induce controlled apoptosis in HeLa cells. Eur. J. Pharm. Biopharm. 2018, 130, 115–122. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, Q.; Mu, K.; Xie, H.; Zhu, Y.; Zhu, W.; Zhao, Y.; Xu, H.; Yang, X. pH/temperature sensitive magnetic nanogels conjugated with Cy5. 5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials 2013, 34, 7418–7428. [Google Scholar] [CrossRef]
- Meng, Y.; Qiu, C.; Li, X.; McClements, D.J.; Sang, S.; Jiao, A.; Jin, Z. Polysaccharide-Based Nano-Delivery Systems for Encapsulation, Delivery, and PH-Responsive Release of Bioactive Ingredients. Crit. Rev. Food Sci. Nutr. 2022, 64, 187–201. [Google Scholar] [CrossRef]
- Li, D.; Xu, W.; Liu, H. Fabrication of Chitosan Functionalized Dual Stimuli-Responsive Injectable Nanogel to Control Delivery of Doxorubicin. Colloid Polym. Sci. 2023, 301, 879–891. [Google Scholar] [CrossRef]
- Wen, Y.; Oh, J.K. Intracellular Delivery Cellulose-Based Bionanogels with Dual Temperature/PH-Response for Cancer Therapy. Colloids Surf. B Biointerfaces 2015, 133, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Yang, X.; He, L.; Zheng, R.; Min, J.; Su, H.; Shan, S.; Jia, Q. Facile preparation of pH/reduction dual-stimuli responsive dextran nanogel as environment-sensitive carrier of doxorubicin. Polymer 2020, 200, 122585. [Google Scholar] [CrossRef]
- Yang, L.; Ling, J.; Wang, N.; Jiang, Y.; Lu, Y.; Yang, L.-Y.; Uoyang, X.-k. Delivery of doxorubicin by dual responsive carboxymethyl chitosan based nanogel and in vitro performance. Mater. Today Commun. 2022, 31, 103781. [Google Scholar] [CrossRef]
- Mackiewicz, M.; Romanski, J.; Krug, P.; Mazur, M.; Stojek, Z.; Karbarz, M. Tunable environmental sensitivity and degradability of nanogels based on derivatives of cystine and poly (ethylene glycols) of various length for biocompatible drug carrier. Eur. Polym. J. 2019, 118, 606–613. [Google Scholar] [CrossRef]
- Qu, Y.; Chu, B.; Wei, X.; Lei, M.; Hu, D.; Zha, R.; Zhong, L.; Wang, M.; Wang, F.; Qian, Z. Redox/pH dual-stimuli responsive camptothecin prodrug nanogels for “on-demand” drug delivery. J. Control. Release 2019, 296, 93–106. [Google Scholar] [CrossRef]
- Cheng, X.; Jin, Y.; Qi, R.; Fan, W.; Li, H.; Sun, X.; Lai, S. Dual pH and oxidation-responsive nanogelscrosslinked by diselenide bonds for controlled drug delivery. Polymer 2016, 101, 370–378. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Wen, Q.; Ni, C. Preparation of xanthan gum nanogels and their pH/redox responsiveness in controlled release. J. Appl. Polym. Sci. 2019, 136, 47921. [Google Scholar] [CrossRef]
- Rao, K.M.; Suneetha, M.; Kumar, D.V.; Kim, H.J.; Seok, Y.J.; Han, S.S. Dual responsive poly (vinyl caprolactam)-based nanogels for tunable intracellular doxorubicin delivery in cancer cells. Pharmaceutics 2022, 14, 852. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.M.; Town, A.R.; Niezabitowska, E.; Rannard, S.P.; McDonald, T.O. Dual-responsive degradable core–shell nanogels with tuneable aggregation behaviour. RSC Adv. 2022, 12, 2196–2206. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, H.; Bie, N.; Xu, Q.; Yong, T.; Wang, Q.; Gan, L.; Yang, X. Zwitterionic temperature/redox-sensitive nanogels for near-infrared light-triggered synergistic thermo-chemotherapy. ACS Appl. Mater. Interfaces 2017, 9, 23564–23573. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Liu, Y.; Huang, F.; Wu, G.; Liu, Y.; Zhang, Z.; Ding, Y.; Lv, J.; Ma, R.; et al. Glucose and H2O2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. Nanoscale 2019, 11, 9163–9175. [Google Scholar] [CrossRef]
- Wang, H.; Di, J.; Sun, Y.; Fu, J.; Wei, Z.; Matsui, H.; Alonson, A.D.C.; Zhou, S. Biocompatible PEG-chitosan@ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv. Funct. Mater. 2015, 25, 5537–5547. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Yao, X.; Zhang, Z.; He, C.; Zhang, J.; Chen, X. Dual responsive supramolecular nanogels for intracellular drug delivery. Chem. Commun. 2014, 50, 3789–3791. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Zhang, W.; Yi, C.; Yan, L.; Tian, Y. Zwitterionic nanogels with temperature sensitivity and redox-degradability for controlled drug release. Colloids Surf. B Biointerfaces 2021, 206, 111959. [Google Scholar] [CrossRef]
- Shen, N.; Lei, B.; Wang, Y.; Xu, S.; Liu, H. Redox/ultrasound dual stimuli-responsive nanogel for precisely controllable drug release. New J. Chem. 2018, 42, 9472–9481. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, K.; Guo, Y.; Liu, P.; Chen, Q.; Fan, H.; Sun, T.; Jiang, C. ROS/Electro Dual-Reactive Nanogel for Targeting Epileptic Foci to Remodel Aberrant Circuits and Inflammatory Microenvironment. ACS Nano 2023, 17, 7847–7864. [Google Scholar] [CrossRef]
- Pillarisetti, S.; Vijayan, V.; Rangasamy, J.; Bardhan, R.; Uthaman, S.; Park, I.-K. A multi-stimuli responsive alginate nanogel for anticancer chemo-photodynamic therapy. J. Ind. Eng. Chem. 2023, 123, 361–370. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Zhao, H.; Liu, L. Ca2+-Chelation-Induced Fabrication of Multistimuli-Responsive Charged Nanogels from Phospholipid–Polymer Conjugates and Use for Drug/Protein Loading. Langmuir 2022, 38, 6612–6622. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tang, Z.; Peng, S.; Zhang, J.; Wang, W.; Wang, Q.; Lin, W.; Lin, X.; Zu, X.; Luo, H.; et al. pH/redox/UV irradiation multi-stimuli responsive nanogels from star copolymer micelles and Fe3+ complexation for “on-demand” anticancer drug delivery. React. Funct. Polym. 2020, 149, 104532. [Google Scholar] [CrossRef]
- Chen, S.; Bian, Q.; Wang, P.; Zheng, X.; Lv, L.; Dang, Z.; Wang, G. Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polym. Chem. 2017, 8, 6150–6157. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, X.; Wang, G. Selective release of hydrophobic and hydrophilic cargos from multi-stimuli-responsive nanogels. ACS Appl. Mater. Interfaces 2016, 8, 28888–28896. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Wu, D.; Zeng, H.; Hall, D.G.; Narain, R. Multiresponsive and Self-Healing Hydrogel via Formation of Polymer–Nanogel Interfacial Dynamic Benzoxaborole Esters at Physiological pH. ACS Appl. Mater. Interfaces 2019, 11, 44742–44750. [Google Scholar] [CrossRef]
- Manzanares-Guevara, L.A.; Licea-Claverie, A.; Oroz-Parra, I.; Bernaldez-Sarabia, J.; Diaz-Castillo, F.; Licea-Navarro, A.F. Smart nanoformulation based on stimuli-responsive nanogels and curcumin: Promising therapy against colon cancer. ACS Omega 2020, 5, 9171–9184. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, J.; Yang, K.; Cai, P.; Xiao, H. Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. Mater. Sci. Eng. C 2021, 118, 111357. [Google Scholar] [CrossRef]
Stimuli | Nanogels | Drug/Cargo | Therapeutic Field | Ref. |
---|---|---|---|---|
pH | Methacrylic acid and bovine serum albumin (PMAA-BSA)-based nanogel | chloroquine (CQ) | malaria and cancer | [49] |
polyvinylpyrrolidone (PVP)-based nanogel | 5-fluorouracil (5-FU) | colorectal cancer | [50] | |
chitin nanogels | doxorubicin (DOX) | cancer therapeutic agent | [51] | |
dextrin nanogels cross-linked with formaldehyde (FDNGs) and glyoxal (GDNGs) | DOX | colorectal cancer therapy | [52] | |
chitosan-based nanogel (FCNGL) | 5-Fluorouracil | melanoma animal tumor | [53] | |
hyaluronic acid nanogels (HA-mPEG-Diet nanogels) | Cytochrome C (CC) | protein delivery and cancer therapy | [54] | |
hyaluronate nanogels | bortezomib (BTZ) | chemotherapy | [55] | |
nanogels based on ortho ester-modified PEG | DOX | anti-tumor | [56] | |
chitin-based nanogel Dox–chitin–PLA CNGs | DOX | liver cancer | [57] | |
Temperature | activated poly(N-isopropylacrylamide) (PNIPAM) nanogels and N-acryloylglycinamide (NAGA)-based nanogel | - | tissue engineering | [60] |
(N-isopropylacrylamide)-acrylic acid copolymer (NIPAM-co-AA) and iohexol-based nanogel | - | digital subtraction angiography | [61] | |
poly(N-isopropylacrylamide) (PNIPAM)-based nanogel | Timolol maleate (TM) | contact lenses | [62] | |
TCN-TS-NC nanocargo | topotecan (TCN) | tumor therapy | [63] | |
dendritic Polyglycerol- N-isopropylacrylamide (dPG-NIPAm)-based nanogels | coumarin 6 dye | controlled delivery of drugs through the hair follicle | [64] | |
poly (N-isopropylacrylamide) and poly(3,4-ethylenedioxythiophene) based nanogel (PEDOT@PNIPAAm) | curcumin (Cur) | antioxidant and antibacterial | [65] | |
poly (N-vinylcaprolactam) nanoparticles (νPVCL) | sodium diclofenac | topical delivery of multiple drugs | [66] | |
nanogel based on chitosan and N-isopropylacrylamide with acrylamide blended CTS–poly (NIPAAm-co-AAm5.5) | Paclitaxel (PTX) | anticancer drugs and hyperthermia | [67] | |
Bioreduction/redox | Se-S alginate nanogel (MDSeSAN-gel) | DOX | cancer therapy | [69] |
Gelatin/Silica-Aptamer -based nanogels (Apt-GS/siRNA) | siRNA | tumor therapy | [70] | |
2-((2-hydroxyethyl)disulfanyl)ethylMethacrylate (HSEMA)-based nanogel | R848 | cancer immunotherapy | [71] | |
Dextran and β-cyclodextrin (βCD)-based nanogel with bisadamantine as cross-linker | DOX | breast cancer | [72] | |
nanogels (DPH NGs) based on reductive cross-linking of purpurin 18 and 10-hydroxycamplothecin | hydroxycamplothecin (HCPT) | chemotherapy | [73] | |
Biomolecule (glucose/enzyme, etc.) | 3-acrylamidophenylboronic acid (AAPBA), 2-(acrylamido) glucopyranose (AGA) and boron dipyrromethene (BODIPYMA)-based nanogel p(AAPBA-AGA-BODIPYMA) | Insulin | self-regulated insulin delivery | [76] |
N-acryloyl-3-aminophenylboronic acid, poly(ethylene glycol) diacrylate, pentaerythritol tetra (3-mercaptopropionate), and methoxyl poly(ethylene glycol) acrylate-based nanogel | Alizarin red S (ARS) and insulin | self-regulated drug delivery | [77] | |
Glucose oxidase (GOX) polymer nanogel | Glucose oxidase (GOX) | synergistic cancer starving and oxidation therapy | [78] | |
acetalated-dextran polymeric nanoparticles | Insulin | controlled insulin delivery for diabetes | [79] | |
G4 PAMAM (polyamidoamine) dendrimers-based nanogel | DOX | cancer therapy | [80] | |
photo-cross-linked nanogels (EPNGs) | cytochrome c (CC) | cancer therapy | [81] | |
hyaluronated starch nanogels | Docetaxel (DTX | tumor therapy | [83] | |
poly(ethylene glycol)–poly(e-caprolactone), diketopyrrolopyrrole, fluconazole-based nanogel (PGL-DPP–FLU NPs) | Fluconazole (FLU) | antifungal | [84] | |
ketone-functionalized water-soluble pullulan derivative and carbonic dihydrazide-based nanogel | - | bacterial enzyme detection | [85] | |
Light | nanogel based on acrylamide and acrylonitrile copolymer cross-linked with nickel-bis(dithiolene) complex | - | NIR light-controlled drug delivery and photothermaltreatment | [89] |
anionic azobenzene-functionalized hyaluronic acid and cationic poly diallyl dimethylammonium chloride polymers-based nanogel | DOX | UV-controlled intracellular drug release in cancer chemotherapy | [90] | |
hyaluronic acid-g-7-N,N-diethylamino-4-hydroxymethylcoumarin (HA-CM)-based nanogel | DOX | NIR and UV-responsive drug release in cancer chemotherapy | [91] | |
nanogel based on chitosan–poly(N-isopropylacrylamide) (PNIPAM) and modified with gold and magnetic nanoparticles | - | visible light-sensitive drug carrier | [92] | |
pentaerythritol poly(caprolactone)-bpoly (acrylic acid)-based nanogel | DOX | tumor therapy | [93] |
Stimuli | Nanogels | Drug/Cargo | Therapeutic Field | Ref. |
---|---|---|---|---|
pH/temperature | N-vinyl caprolactam (VCL) and acrylic acid (AA)-based nanogel cross-linked with triethylene glycol dimethacrylate (TEGDMA) | Doxorubicin (Dox) | breast cancer | [99] |
Mesoporous silica nanoparticles (MSNs), oligo(ethylene glycol) methacrylate, and acrylic acid (AA) or itaconic acid (IA)-based nanogel | Camptothecin (CPT) | cancer therapy | [100] | |
chitosan/poly(N-isopropylacrylamide) nanoparticles | paclitaxel (PTX) | breast cancer | [101] | |
lignin-based lignin-g-P(NIPAM-co-DMAEMA) (LNDNG) nanogel | curcumin | drugs delivery | [102] | |
N-Isopropylacrylamide (NIPAAm) and N,N-dimethyl-aminoethyl methacrylate (DMAEMA)-based nanogel P(NIPAAm-co-DMAEMA) | doxorubicin and curcumin | combined cancer therapy | [103] | |
Poly-N-isopropyl acrylamide and acrylic acid-based nanogels (PNIPAM-co-AAc) | β-lapachone | intestine-specific drug delivery | [104] | |
dendritic polyglycerol (dPG), poly(Nisopropylacrylamide) (pNIPAM) and poly (4-acryloylamine-4-(carboxyethyl) heptanodioic acid) (pABC)-based nanogel | cytochrome c (cyt c) | release of a therapeutic protein | [105] | |
magnetic nanogels conjugated with Cy5.5-labled lactoferrin (Cy5.5-Lf-MPNA nanogels) | Cy5.5 | glioma (brain tumor) | [106] | |
chitosan-functionalized nanogel CS/P(MAAco-NIPAM) | DOX | drug delivery | [108] | |
cellulose-based nanogel (DuR-BNGs) | DOX | cancer therapy | [109] | |
pH/bioreduction | dextran-based (Dex-SS) nanogels | DOX | cancer therapy | [110] |
modified carboxymethyl chitosan (CMCS)-based nanogel using N-N′-bis(acryloyl)cysteamine (BAC) as cross-linking agents | DOX | tumor therapy | [111] | |
PEG-based nanogel cross-linked with linker N,N′-bis(methacryloyl)cystine–(mBISS). | DOX | cancer therapy | [112] | |
methacrylic acid (MAA), Camptothecin (CPT) and N,N′-methylenebisacrylamide (Bis) | Camptothecin (CPT) | tumor therapy | [113] | |
Diselenide-cross-linked polyurethane nanogel | indomethacin (IND) | chemotherapy | [114] | |
Xanthan gum based nanogelscross-linked by cystamine tetra-acylhydrazine (CTA) | DOX | anti-cancer | [115] | |
Temperature and redox | Cys-BIS-P (VCL-HEA) nanogel | DOX | anti-cancer | [116] |
PNIPAM (N-isopropyl methacrylamide) and PNIPMAM (N-isopropylmethacrylamide)-based nanogel using bis(acryloyl)cystamine (BAC) as cross-linker | - | nanomedicine | [117] | |
Indocyanine green- and anticancer drug Doxorubicin-loaded nanogels (I/D@NG) | DOX | thermo-chemotherapy | [118] | |
Glucose/H2O2 | poly (ethylene glycol) and poly (cyclic phenylboronic ester) and Glucose oxidase (GOx)-based nanogel | insulin | diabetes therapy | [119] |
pH/light | poly(ethylene glycol) (PEG), chitosan, and graphitic carbon dots (CDs)-based nanogel | DOX | synergistic cancer therapy | [120] |
pH/reduction | dextran-grafted benzimidazole (Dex-g-BM) and thiol-β-cyclodextrin-based nanogel | DOX | cancer chemotherapy | [121] |
Temperature/redox | zwitterionic P(VCL-ss-DMAPS) nanogel based on N-vinylcaprolactam and 2-(methacryloyloxy) ethyldimethyl-(3- sulfopropyl) ammonium hydroxide | DOX | tumor therapy | [122] |
Redox/ultrasound | PEIm-PNIPAMn-PEIm gel cross-linked by disulfide-containing BACy followed by perfluorohexane (PFH) incorporation | DOX | tumor therapy | [123] |
ROS/electroresponsive | sodium sulfonate and α-methyl-tryptophan based nanogel | phenytoin (PHT) | antiepileptic treatment | [124] |
Stimuli | Nanogels | Drug/Cargo | Therapeutic Field | Ref. |
---|---|---|---|---|
pH/redox/light | oxidized alginate (OA), 4-mercaptophenylboronic acid, pheophorbide A and adipic acid dihydrazide-based nanogel | DOX | breast cancer and melanoma | [125] |
polymer micelles self-assembled by six-arm star-shaped copolymer of 6AS-PCL-PAAPPEGMA-based nanogel | DOX | cancer therapy | [127] | |
poly(acrylic acid-co-spiropyran methacrylate) cross-linked by disulfide-containing N,N-bis(acryloyl)cystaminenanogel | DOX | delivery and fluorescence cell imaging | [128] | |
pH/temperature/light | poly (2-(dimethylamino) ethyl methacrylate) and hydrophobic photocleavable o-nitrobenzyllinkage-based nanogel | Coumarin 102 and rhodamine B (RhB) | tissue engineering and combination chemotherapy | [129] |
pH/ROS/sugar/ATP/ temperature | hydrogels based on interfacial polymer nanogel benzoxaborolate | self-healing | tissue engineering and controlled drug delivery | [130] |
pH/temperature/redox | N,N′- diethylaminoethyl methacrylate and poly(ethyleneglycol) methacrylate-based nanogel cross-linked with EGDMA (ethylene glycol Dimethacrylate), DVA (divinylacetal), BAC (N,N′-bis(acryloyl) cystamine) and FDAC (fluorescein diacrylate) | curcumin | colon cancer therapy | [131] |
methacrylated monocarboxylic sugarcane bagasse cellulose (MAMC-SBC) and N-isopropylacrylamide (NIPAM) based nanogel cross-linked with cystaminebisacrylamide (CBA) | DOX | cancer therapy | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Singh, S.; Sharma, P.; Kumar, B.; Kumar, A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024, 10, 61. https://doi.org/10.3390/gels10010061
Kumar N, Singh S, Sharma P, Kumar B, Kumar A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels. 2024; 10(1):61. https://doi.org/10.3390/gels10010061
Chicago/Turabian StyleKumar, Naveen, Sauraj Singh, Piyush Sharma, Bijender Kumar, and Anuj Kumar. 2024. "Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications" Gels 10, no. 1: 61. https://doi.org/10.3390/gels10010061
APA StyleKumar, N., Singh, S., Sharma, P., Kumar, B., & Kumar, A. (2024). Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels, 10(1), 61. https://doi.org/10.3390/gels10010061