Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of PEDOT-PVA/PEGDA DN Hydrogels for Supercapacitors
2.2. Characterizations of the PEDOT-PVA/PEGDA DN Hydrogel
2.3. Electrochemical Performance of PEDOT-PVA/PEGDA DN Hydrogel as Supercapacitor Electrode
2.4. Mechanical Performance of PEDOT-PVA/PEGDA DN Hydrogel
2.5. Electrochemical Performance of PEDOT-PVA/PEGDA DN Hydrogel-Based Flexible Supercapacitor
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of PEDOT-PVA/PEGDA DN Hydrogel
4.3. Assembly of Supercapacitors
4.4. Characterization of PEDOT-PVA/PEGDA DN Hydrogel
4.5. Electrochemical Characterization of PEDOT-PVA/PEGDA DN Hydrogel Electrodes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, D.; Zhu, Y.; Cheng, W.; Xu, G.; Wang, Q.; Liu, S.; Li, J.; Chen, C.; Yu, H.; Hu, L. A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. Matter 2020, 2, 390–403. [Google Scholar] [CrossRef]
- Carlberg, J.C.; Inganäs, O. Poly(3,4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors. J. Electrochem. Soc. 1997, 144, L61–L64. [Google Scholar] [CrossRef]
- Hu, L.; Xu, K. Nonflammable Electrolyte Enhances Battery Safety. Proc. Natl. Acad. Sci. USA 2014, 111, 3205–3206. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.S.; Chen, Z.; Freunberger, S.A.; Ji, X.; Sun, Y.K.; Amine, K.; Yushin, G.; Nazar, L.F.; Cho, J.; Bruce, P.G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994–10024. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Shown, I.; Ganguly, A.; Chen, L.C.; Chen, K.H. Conducting Polymer-Based Flexible Supercapacitor. Energy Sci. Eng. 2015, 3, 2–26. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Zhu, Y.; Cheng, W.; Zhao, D.; Xu, G.; Yu, H. Assembly of Silver Nanowires and PEDOT:PSS with Hydrocellulose toward Highly Flexible, Transparent and Conductivity-Stable Conductors. Chem. Eng. J. 2020, 392, 123644. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Li, C.; Sun, X.; Meng, Q.; Ma, Y.; Wei, Z. Chemically Crosslinked Hydrogel Film Leads to Integrated Flexible Supercapacitors with Superior Performance. Adv. Mater. 2015, 27, 7451–7457. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Chen, Q.; Chen, L.; Zhang, N.; Ma, M. Semicrystalline Conductive Hydrogels for High-Energy and Stable Flexible Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 8163–8172. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, H.; Chen, F.; Chen, L.; Zhang, N.; Ma, M. Supramolecular Hydrogels for High-Voltage and Neutral-PH Flexible Supercapacitors. ACS Appl. Energy Mater. 2018, 1, 4261–4268. [Google Scholar] [CrossRef]
- Chen, Q.; Wei, D.; Chen, H.; Zhu, L.; Jiao, C.; Liu, G.; Huang, L.; Yang, J.; Wang, L.; Zheng, J. Simultaneous Enhancement of Stiffness and Toughness in Hybrid Double-Network Hydrogels via the First, Physically Linked Network. Macromolecules 2015, 48, 8003–8010. [Google Scholar] [CrossRef]
- Li, L.; Wu, P.; Yu, F.; Ma, J. Double Network Hydrogels for Energy/Environmental Applications: Challenges and Opportunities. J. Mater. Chem. A Mater. 2022, 10, 9215–9247. [Google Scholar] [CrossRef]
- Yang, W.; Furukawa, H.; Gong, J.P.; Gong, J.P.; Yang, W.; Furukawa, H. Highly Extensible Double-Network Gels with Self-Assembling Anisotropic Structure. Adv. Mater. 2008, 20, 4499–4503. [Google Scholar] [CrossRef]
- Huang, M.; Hou, Y.; Li, Y.; Wang, D.; Zhang, L. High Performances of Dual Network PVA Hydrogel Modified by PVP Using Borax as the Structure-Forming Accelerator. Des. Monomers Polym. 2017, 20, 505–513. [Google Scholar] [CrossRef]
- Nonoyama, T.; Gong, J.P. Tough Double Network Hydrogel and Its Biomedical Applications. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 393–410. [Google Scholar] [CrossRef]
- Kishi, R.; Hiroki, K.; Tominaga, T.F.; Sano, K.I.; Okuzaki, H.; Martinez, J.G.; Otero, T.F.; Osada, Y. Electro-Conductive Double-Network Hydrogels. J. Polym. Sci. B Polym. Phys. 2012, 50, 790–796. [Google Scholar] [CrossRef]
- Qin, L.; Yang, G.; Li, D.; Ou, K.; Zheng, H.; Fu, Q.; Sun, Y. High Area Energy Density of All-Solid-State Supercapacitor Based on Double-Network Hydrogel with High Content of Graphene/PANI Fiber. Chem. Eng. J. 2022, 430, 133045. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, C.; Li, T.; Ma, P.; Bai, H.; Xie, Y.; Chen, M.; Dong, W. Enhanced Thermal Stability and UV-Shielding Properties of Poly (Vinyl Alcohol) Based on Esculetin. J. Phys. Chem. B 2017, 121, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, W.; Ma, L.; Yang, J.; Gao, M.; Wang, K.; Yu, H.; Lv, R.; Fu, M. Robust Double-Network Polyvinyl Alcohol-Polypyrrole Hydrogels as High-Performance Electrodes for Flexible Supercapacitors. J. Colloid. Interface Sci. 2023, 652, 540–548. [Google Scholar] [CrossRef]
- Chen, X.; Dong, C.; Wei, K.; Yao, Y.; Feng, Q.; Zhang, K.; Han, F.; Mak, A.F.T.; Li, B.; Bian, L. Supramolecular Hydrogels Cross-Linked by Preassembled Host–Guest PEG Cross-Linkers Resist Excessive, Ultrafast, and Non-Resting Cyclic Compression. NPG Asia Mater. 2018, 10, 788–799. [Google Scholar] [CrossRef]
- Lee, S.; Park, C.H. Conductivity, Superhydrophobicity and Mechanical Properties of Cotton Fabric Treated with Polypyrrole by in-Situ Polymerization Using the Binary Oxidants Ammonium Peroxodisulfate and Ferric Chloride. Text. Res. J. 2018, 89, 2376–2394. [Google Scholar] [CrossRef]
- Wei, H.; Lei, M.; Zhang, P.; Leng, J.; Zheng, Z.; Yu, Y. Orthogonal Photochemistry-Assisted Printing of 3D Tough and Stretchable Conductive Hydrogels. Nat. Commun. 2021, 12, 2082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, M.; Jiang, C.; Zhu, P.; Sun, B.; Gao, Q.; Gao, C.; Liu, R. Highly Adhesive and Self-Healing γ-PGA/PEDOT:PSS Conductive Hydrogels Enabled by Multiple Hydrogen Bonding for Wearable Electronics. Nano Energy 2022, 95, 106991. [Google Scholar] [CrossRef]
- Lue, S.J.; Chen, J.Y.; Yang, J.M. Crystallinity and Stability of Poly(Vinyl Alcohol)-Fumed Silica Mixed Matrix Membranes. J. Macromol. Sci. Part. B 2007, 47, 39–51. [Google Scholar] [CrossRef]
- Cheng, Y.; Ren, X.; Duan, L.; Gao, G. A Transparent and Adhesive Carboxymethyl Cellulose/Polypyrrole Hydrogel Electrode for Flexible Supercapacitors. J. Mater. Chem. C Mater. 2020, 8, 8234–8242. [Google Scholar] [CrossRef]
- Yang, J.; Fan, Y.; Xiong, X.; Jiang, Q.; Li, P.; Jian, J.; Chen, L. Highly Conductive and Adhesive Wearable Sensors Based on PVA/PAM/SF/PEDOT:PSS Double Network Hydrogels. Appl. Phys. A 2024, 130, 157. [Google Scholar] [CrossRef]
- Naderi, H.R.; Ganjali, M.R.; Dezfuli, A.S. High-Performance Supercapacitor Based on Reduced Graphene Oxide Decorated with Europium Oxide Nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 3035–3044. [Google Scholar] [CrossRef]
- Lefebvre, M.; Qi, Z.; Rana, D.; Pickup, P.G. Chemical Synthesis, Characterization, and Electrochemical Studies of Poly(3,4-Ethylenedioxythiophene)/Poly(Styrene-4-Sulfonate) Composites. Chem. Mater. 1999, 11, 262–268. [Google Scholar] [CrossRef]
- Li, Z.; Ma, G.; Ge, R.; Qin, F.; Dong, X.; Meng, W.; Liu, T.; Tong, J.; Jiang, F.; Zhou, Y.; et al. Free-Standing Conducting Polymer Films for High-Performance Energy Devices. Angew. Chem. Int. Ed. Engl. 2015, 55, 979–982. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 16, 578–580. [Google Scholar] [CrossRef]
- Gong, J.P.; Komatsu, N.; Nitta, T.; Osada, Y. Electrical Conductance of Polyelectrolyte Gels. J. Phys. Chem. B 1997, 101, 740–745. [Google Scholar] [CrossRef]
- Kishi, R.; Kubota, K.; Miura, T.; Yamaguchi, T.; Okuzaki, H.; Osada, Y. Mechanically Tough Double-Network Hydrogels with High Electronic Conductivity. J. Mater. Chem. C Mater. 2013, 2, 736–743. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Wu, Y.; Nolin, A.; Lo, C.-Y.; Guo, T.; Dhong, C.; Martin, D.C.; Kayser, L. V Electronically Conductive Hydrogels by in Situ Polymerization of a Water-Soluble EDOT-Derived Monomer. Adv. Eng. Mater. 2022, 24, 2200280. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Q.; Song, S.; Duan, L.; Gao, G. Bioinspired Dynamic Cross-Linking Hydrogel Sensors with Skin-like Strain and Pressure Sensing Behaviors. Chem. Mater. 2019, 31, 9522–9531. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Cao, Y.; Yang, Y.; Yang, Y.; Gao, Y.; Ma, Z.; Wang, J.; Wang, W.; Wu, D. Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Appl. Mater. Interfaces 2020, 12, 25334–25344. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, Y.; Zhang, H.; Wang, Y.; Fan, X.; Liu, T. Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing. Chem. Mater. 2021, 33, 6146–6157. [Google Scholar] [CrossRef]
- Yan, Y.; He, C.; Zhang, L.; Dong, H.; Zhang, X. Freeze-Resistant, Rapidly Polymerizable, Ionic Conductive Hydrogel Induced by Deep Eutectic Solvent (DES) after Lignocellulose Pretreatment for Flexible Sensors. Int. J. Biol. Macromol. 2023, 224, 143–155. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Jiang, D.; Guo, N.; Wang, Y.; Ding, T.; Weng, L. A Highly Stretchable, Sensing Durability, Transparent, and Environmentally Stable Ion Conducting Hydrogel Strain Sensor Built by Interpenetrating Ca2+-SA and Glycerol-PVA Double Physically Cross-Linked Networks. Adv. Compos. Hybrid. Mater. 2022, 5, 1712–1729. [Google Scholar] [CrossRef]
- Lin, F.; Zhu, Y.; You, Z.; Li, W.; Chen, J.; Zheng, X.; Zheng, G.; Song, Z.; You, X.; Xu, Y. Ultrastrong and Tough Urushiol-Based Ionic Conductive Double Network Hydrogels as Flexible Strain Sensors. Polymers 2023, 15, 3219. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Y.; Xu, Z.; Guo, Y.; Luo, X. High-Performance Supercapacitor and Antifouling Biosensor Based on Conducting Polyaniline-Hyaluronic Acid Hydrogels. J. Mater. Sci. 2023, 58, 1171–1182. [Google Scholar] [CrossRef]
- Bertana, V.; Scordo, G.; Camilli, E.; Ge, L.; Zaccagnini, P.; Lamberti, A.; Marasso, S.L.; Scaltrito, L. 3D Printed Supercapacitor Exploiting PEDOT-Based Resin and Polymer Gel Electrolyte. Polymers 2023, 15, 2657. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Lu, C.; Sun, S.; Zhang, K. Electrochemical Properties of PEDOT: PSS /V2O5 Hybrid Fiber Based Supercapacitors. J. Phys. Chem. Solids 2019, 129, 234–241. [Google Scholar] [CrossRef]
- Shih, C.C.; Lin, Y.C.; Gao, M.; Wu, M.; Hsieh, H.C.; Wu, N.L.; Chen, W.C. A Rapid and Green Method for the Fabrication of Conductive Hydrogels and Their Applications in Stretchable Supercapacitors. J. Power Sources 2019, 426, 205–215. [Google Scholar] [CrossRef]
- Li, J.; Yan, W.; Zhang, G.; Sun, R.; Ho, D. Natively Stretchable Micro-Supercapacitors Based on a PEDOT:PSS Hydrogel. J. Mater. Chem. C Mater. 2021, 9, 1685–1692. [Google Scholar] [CrossRef]
- Zeng, J.; Dong, L.; Sha, W.; Wei, L.; Guo, X. Highly Stretchable, Compressible and Arbitrarily Deformable All-Hydrogel Soft Supercapacitors. Chem. Eng. J. 2020, 383, 123098. [Google Scholar] [CrossRef]
- Zhu, B.; Chan, E.W.C.; Li, S.Y.; Sun, X.; Travas-Sejdic, J. Soft, Flexible and Self-Healable Supramolecular Conducting Polymer-Based Hydrogel Electrodes for Flexible Supercapacitors. J. Mater. Chem. C Mater. 2022, 10, 14882–14891. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, B.; Du, L.; Zhou, Z.; Sun, X.; Travas-Sejdic, J.; Zhu, B. Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors. Gels 2024, 10, 688. https://doi.org/10.3390/gels10110688
Quan B, Du L, Zhou Z, Sun X, Travas-Sejdic J, Zhu B. Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors. Gels. 2024; 10(11):688. https://doi.org/10.3390/gels10110688
Chicago/Turabian StyleQuan, Bu, Linjie Du, Zixuan Zhou, Xin Sun, Jadranka Travas-Sejdic, and Bicheng Zhu. 2024. "Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors" Gels 10, no. 11: 688. https://doi.org/10.3390/gels10110688
APA StyleQuan, B., Du, L., Zhou, Z., Sun, X., Travas-Sejdic, J., & Zhu, B. (2024). Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors. Gels, 10(11), 688. https://doi.org/10.3390/gels10110688