In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Inks
2.2. Fabrication and Mechanical Characterization of OC Scaffolds
2.3. Morphological Characterization of OC Scaffolds
2.4. Structural and Mechanical Characterization of Native OC Tissue vs. Fabricated OC Scaffold
2.5. Cell Viability Data and Proliferation on Fabricated OC Scaffolds
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Ink Formulations
4.3. Rheological and Thermogravimetric Analysis
4.4. Scaffold Fabrication
4.4.1. PCL Mesh Layer
4.4.2. Hydrogel Layers and Incorporation of PCL Mesh
4.5. Scaffold Characterization
4.5.1. Morphology by SEM
4.5.2. Swelling and Degradation Tests
4.6. Characterization of Native OC Tissue
4.6.1. Native OC Tissue Harvesting
4.6.2. Mechanical Testing by Compression
4.6.3. OC Native Tissue Morphology and EDX Analysis
4.6.4. Micro-CT Analysis
4.7. Cell Culture
4.7.1. Cell Viability and Morphology
4.7.2. Monitoring Cell Migration Through Hydrogel Layers and PCL Mesh
4.7.3. SEM Imaging of Scaffolds with Cells
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, Y.P.; Moses, J.C.; Bhardwaj, N.; Mandal, B.B. Injectable Hydrogels: A New Paradigm for Osteochondral Tissue Engineering. J. Mater. Chem. B 2018, 6, 5499–5529. [Google Scholar] [CrossRef] [PubMed]
- Conaghan, P.G.; Arden, N.; Avouac, B.; Migliore, A.; Rizzoli, R. Safety of Paracetamol in Osteoarthritis: What Does the Literature Say? Drugs Aging 2019, 36, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Gadjanski, I.; Vunjak-Novakovic, G. Challenges in Engineering Osteochondral Tissue Grafts with Hierarchical Structures. Expert Opin. Biol. Ther. 2015, 15, 1583–1599. [Google Scholar] [CrossRef]
- Lyons, T.J.; Stoddart, R.W.; McClure, S.F.; McClure, J. The Tidemark of the Chondro-Osseous Junction of the Normal Human Knee Joint. J. Mol. Histol. 2005, 36, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Simkin, P.A. Consider the Tidemark. J. Rheumatol. 2012, 39, 890–892. [Google Scholar] [CrossRef]
- Alexander, P.G.; Gottardi, R.; Lin, H.; Lozito, T.P.; Tuan, R.S. Three-Dimensional Osteogenic and Chondrogenic Systems to Model Osteochondral Physiology and Degenerative Joint Diseases. Exp. Biol. Med. 2014, 239, 1080–1095. [Google Scholar] [CrossRef]
- Chen, R.; Chen, S.; Chen, X.M.; Long, X. Study of the Tidemark in Human Mandibular Condylar Cartilage. Arch. Oral Biol. 2011, 56, 1390–1397. [Google Scholar] [CrossRef]
- Gannon, F.H.; Sokoloff, L. Histomorphometry of the Aging Human Patella: Histologic Criteria and Controls. Osteoarthr. Cartil. 1999, 7, 173–181. [Google Scholar] [CrossRef]
- Hoemann, C.D.; Lafantaisie-Favreau, C.H.; Lascau-Coman, V.; Chen, G.; Guzmán-Morales, J. The Cartilage-Bone Interface. J. Knee Surg. 2012, 25, 85–97. [Google Scholar] [CrossRef]
- Clark, J.M. The Structure of Vascular Channels in the Subchondral Plate. J. Anat. 1990, 171, 105. [Google Scholar]
- Galois, L.; Freyria, A.M.; Herbage, D.; Mainard, D. Cartilage Tissue Engineering: State-of-the-Art and Future Approaches. Pathol. Biol. 2005, 53, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, S.; Naccarato, T.; Prakash-Damani, M.; Chou, Y.; Chu, C.Q.; Zhu, Y. Regeneration of Hyaline-like Cartilage in Situ with SOX9 Stimulation of Bone Marrow-Derived Mesenchymal Stem Cells. PLoS ONE 2017, 12, e0180138. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xi, L.; Yu, M.; Fan, Z.; Wang, W.; Ju, A.; Liang, Z.; Zhou, G.; Ren, W. Regeneration of Articular Cartilage Defects: Therapeutic strategies and Perspectives. J. Tissue Eng. 2023, 14, 20417314231164765. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, P.; Yang, X.; Liu, L.; Zhang, Y.; Wang, Q.; Zhao, H. Biomaterial-Based Scaffolds in Promotion of Cartilage Regeneration: Recent Advances and Emerging Applications. J. Orthop. Translat. 2023, 41, 54. [Google Scholar] [CrossRef]
- Qin, C.; Ma, J.; Chen, L.; Ma, H.; Zhuang, H.; Zhang, M.; Huan, Z.; Chang, J.; Ma, N.; Wu, C. 3D Bioprinting of Multicellular Scaffolds for Osteochondral Regeneration. Mater. Today 2021, 49, 68–84. [Google Scholar] [CrossRef]
- Lafuente-Merchan, M.; Ruiz-Alonso, S.; García-Villén, F.; Gallego, I.; Gálvez-Martín, P.; Saenz-del-Burgo, L.; Pedraz, J.L. Progress in 3D Bioprinting Technology for Osteochondral Regeneration. Pharmaceutics 2022, 14, 1578. [Google Scholar] [CrossRef]
- Xu, J.; Ji, J.; Jiao, J.; Zheng, L.; Hong, Q.; Tang, H.; Zhang, S.; Qu, X.; Yue, B. 3D Printing for Bone-Cartilage Interface Regeneration. Front. Bioeng. Biotechnol. 2022, 10, 828921. [Google Scholar] [CrossRef]
- Chen, F.M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86–168. [Google Scholar] [CrossRef]
- Moazzam, M.; Shehzad, A.; Sultanova, D.; Mukasheva, F.; Trifonov, A.; Berillo, D.; Akilbekova, D. Macroporous 3D Printed Structures for Regenerative Medicine Applications. Bioprinting 2022, 28, e00254. [Google Scholar] [CrossRef]
- Zhanbassynova, A.; Mukasheva, F.; Abilev, M.; Berillo, D.; Trifonov, A.; Akilbekova, D. Impact of Hydroxyapatite on Gelatin/Oxidized Alginate 3D-Printed Cryogel Scaffolds. Gels 2024, 10, 406. [Google Scholar] [CrossRef]
- Krishnakumar, G.S.; Sampath, S.; Muthusamy, S.; John, M.A. Importance of Crosslinking Strategies in Designing Smart Biomaterials for Bone Tissue Engineering: A Systematic Review. Mater. Sci. Eng. C 2019, 96, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.P.; Moses, J.C.; Bandyopadhyay, A.; Mandal, B.B. 3D Bioprinted Silk-Based In Vitro Osteochondral Model for Osteoarthritis Therapeutics. Adv. Healthc. Mater. 2022, 11, 2200209. [Google Scholar] [CrossRef] [PubMed]
- Kilian, D.; Ahlfeld, T.; Akkineni, A.R.; Bernhardt, A.; Gelinsky, M.; Lode, A. 3D Bioprinting of Osteochondral Tissue Substitutes–in Vitro-Chondrogenesis in Multi-Layered Mineralized Constructs. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Pirosa, A.; Gottardi, R.; Alexander, P.G.; Puppi, D.; Chiellini, F.; Tuan, R.S. An in Vitro Chondro-Osteo-Vascular Triphasic Model of the Osteochondral Complex. Biomaterials 2021, 272, 120773. [Google Scholar] [CrossRef]
- Scalzone, A.; Cerqueni, G.; Wang, X.N.; Ferreira-Duarte, A.; Dalgarno, K.; Mattioli-Belmonte, M.; Gentile, P. An In Vitro Engineered Osteochondral Model as Tool to Study Osteoarthritis Environment. Adv. Healthc. Mater. 2023, 12, 2202030. [Google Scholar] [CrossRef]
- Yucekul, A.; Ozdil, D.; Kutlu, N.H.; Erdemli, E.; Aydin, H.M.; Doral, M.N. Tri-Layered Composite Plug for the Repair of Osteochondral Defects: In Vivo Study in Sheep. J. Tissue Eng. 2017, 8, 2041731417697500. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Thompson, E.; Matsiko, A.; Schepens, A.; Gleeson, J.P.; O’brien, F.J. Multi-Layered Collagen-Based Scaffolds for Osteochondral Defect Repair in Rabbits. Acta Biomater. 2016, 32, 149–160. [Google Scholar] [CrossRef]
- Chen, T.; Bai, J.; Tian, J.; Huang, P.; Zheng, H.; Wang, J. A Single Integrated Osteochondral in Situ Composite Scaffold with a Multi-Layered Functional Structure. Colloids Surf. B Biointerfaces 2018, 167, 354–363. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Suo, H.; Yan, M.; Yin, J.; Fu, J. 3D Printing of Biomimetic Multi-Layered GelMA/NHA Scaffold for Osteochondral Defect Repair. Mater. Des. 2019, 171, 107708. [Google Scholar] [CrossRef]
- Yildirim, N.; Amanzhanova, A.; Kulzhanova, G.; Mukasheva, F.; Erisken, C. Osteochondral Interface: Regenerative Engineering and Challenges. ACS Biomater. Sci. Eng. 2023, 9, 1205–1223. [Google Scholar] [CrossRef]
- Levingstone, T.J.; Matsiko, A.; Dickson, G.R.; O’Brien, F.J.; Gleeson, J.P. A Biomimetic Multi-Layered Collagen-Based Scaffold for Osteochondral Repair. Acta Biomater. 2014, 10, 1996–2004. [Google Scholar] [CrossRef] [PubMed]
- Barui, S.; Ghosh, D.; Laurencin, C.T. Osteochondral Regenerative Engineering: Challenges, State-of-the-Art and Translational Perspectives. Regen. Biomater. 2023, 10, rbac109. [Google Scholar] [CrossRef]
- Echeverria Molina, M.I.; Malollari, K.G.; Komvopoulos, K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front. Bioeng. Biotechnol. 2021, 9, 617141. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, A.; Van Blitterswijk, C.; Moroni, L. The Osteochondral Interface as a Gradient Tissue: From Development to the Fabrication of Gradient Scaffolds for Regenerative Medicine. Birth Defects Res. C Embryo Today 2015, 105, 34–52. [Google Scholar] [CrossRef]
- Chen, P.; Li, L.; Dong, L.; Wang, S.; Huang, Z.; Qian, Y.; Wang, C.; Liu, W.; Yang, L. Gradient Biomineralized Silk Fibroin Nanofibrous Scaffold with Osteochondral Inductivity for Integration of Tendon to Bone. ACS Biomater. Sci. Eng. 2021, 7, 841–851. [Google Scholar] [CrossRef]
- Ergun, A.; Yu, X.; Valdevit, A.; Ritter, A.; Kalyon, D.M. In Vitro Analysis and Mechanical Properties of Twin Screw Extruded Single-Layered and Coextruded Multilayered Poly(Caprolactone) Scaffolds Seeded with Human Fetal Osteoblasts for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2011, 99, 354–366. [Google Scholar] [CrossRef]
- Ozkan, S.; Kalyon, D.M.; Yu, X. Functionally Graded Beta-TCP/PCL Nanocomposite Scaffolds: In Vitro Evaluation with Human Fetal Osteoblast Cells for Bone Tissue Engineering. J. Biomed. Mater. Res. A 2010, 92, 1007–1018. [Google Scholar] [CrossRef]
- Erisken, C.; Kalyon, D.M.; Wang, H.; Örnek-Ballanco, C.; Xu, J. Osteochondral Tissue Formation through Adipose-Derived Stromal Cell Differentiation on Biomimetic Polycaprolactone Nanofibrous Scaffolds with Graded Insulin and Beta-Glycerophosphate Concentrations. Tissue Eng. Part A 2011, 17, 1239–1252. [Google Scholar] [CrossRef]
- Ghosh, S.; Haldar, S.; Gupta, S.; Chauhan, S.; Mago, V.; Roy, P.; Lahiri, D. Single Unit Functionally Graded Bioresorbable Electrospun Scaffold for Scar-Free Full-Thickness Skin Wound Healing. Biomater. Adv. 2022, 139. [Google Scholar] [CrossRef]
- Guo, W.; Jiang, Z.; Zhong, H.; Chen, G.; Li, X.; Yan, H.; Zhang, C.; Zhao, L. 3D Printing of Multifunctional Gradient Bone Scaffolds with Programmable Component Distribution and Hierarchical Pore Structure. Compos. Part A Appl. Sci. Manuf. 2023, 166, 107361. [Google Scholar] [CrossRef]
- Tourlomousis, F.; Jia, C.; Karydis, T.; Mershin, A.; Wang, H.; Kalyon, D.M.; Chang, R.C. Machine Learning Metrology of Cell Confinement in Melt Electrowritten Three-Dimensional Biomaterial Substrates. Microsyst. Nanoeng. 2019, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of Synthetic and Hybrid Scaffolds in Cartilage Tissue Engineering. Membranes 2020, 10, 348. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, Y.; Li, G.; Lin, Q.; Zhang, W.; Liu, H.; Su, J. Articular Cartilage Repair Biomaterials: Strategies and Applications. Mater. Today Bio. 2024, 24, 100948. [Google Scholar] [CrossRef] [PubMed]
- Berillo, D.; Volkova, N. Preparation and Physicochemical Characteristics of Cryogel Based on Gelatin and Oxidised Dextran. J. Mater. Sci. 2014, 49, 4855–4868. [Google Scholar] [CrossRef]
- Erisken, C.; Kalyon, D.M.; Wang, H. Functionally Graded Electrospun Polycaprolactone and β-Tricalcium Phosphate Nanocomposites for Tissue Engineering Applications. Biomaterials 2008, 29, 4065–4073. [Google Scholar] [CrossRef]
- Mukasheva, F.; Moazzam, M.; Yernaimanova, B.; Shehzad, A.; Zhanbassynova, A.; Berillo, D.; Akilbekova, D. Design and Characterization of 3D Printed Pore Gradient Hydrogel Scaffold for Bone Tissue Engineering. Bioprinting 2024, 39, e00341. [Google Scholar] [CrossRef]
- Volkova, N.; Berillo, D. Water Uptake as a Crucial Factor on the Properties of Cryogels of Gelatine Cross-Linked by Dextran Dialdehyde. Gels 2021, 7, 159. [Google Scholar] [CrossRef]
- Kim, I.L.; Mauck, R.L.; Burdick, J.A. Hydrogel Design for Cartilage Tissue Engineering: A Case Study with Hyaluronic Acid. Biomaterials 2011, 32, 8771–8782. [Google Scholar] [CrossRef]
- Sommer, M.R.; Vetsch, J.R.; Leemann, J.; Müller, R.; Studart, A.R.; Hofmann, S. Silk Fibroin Scaffolds with Inverse Opal Structure for Bone Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 2074–2084. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; Boaru, D.L.; Perez-Exposito, R.E.; Fraile-Martinez, O.; García-Montero, C.; Diaz, R.; Bujan, J.; García-Honduvilla, N.; Lopez-Gonzalez, L.; Álvarez-Mon, M.; et al. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023, 9, 885. [Google Scholar] [CrossRef]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Eng. Part B Rev. 2010, 16, 371. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, Y.; Li, J.; Oliver, B.G.; Wang, B.; Li, H.; Yong, K.T.; Li, J.J. Biomimetic Multizonal Scaffolds for the Reconstruction of Zonal Articular Cartilage in Chondral and Osteochondral Defects. Bioact. Mater. 2025, 43, 510–549. [Google Scholar] [CrossRef]
- Yu, L.; Cavelier, S.; Hannon, B.; Wei, M. Recent Development in Multizonal Scaffolds for Osteochondral Regeneration. Bioact. Mater. 2023, 25, 122–159. [Google Scholar] [CrossRef] [PubMed]
- Jurak, M.; Wiącek, A.E.; Ładniak, A.; Przykaza, K.; Szafran, K. What affects the biocompatibility of polymers? Adv. Colloid. Interface Sci. 2021, 294, 102451. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Effanga, V.E.; Akilbekova, D.; Mukasheva, F.; Zhao, X.; Kalyon, D.M.; Erisken, C. In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface. Gels 2024, 10, 745. https://doi.org/10.3390/gels10110745
Effanga VE, Akilbekova D, Mukasheva F, Zhao X, Kalyon DM, Erisken C. In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface. Gels. 2024; 10(11):745. https://doi.org/10.3390/gels10110745
Chicago/Turabian StyleEffanga, Victoria Effiong, Dana Akilbekova, Fariza Mukasheva, Xiao Zhao, Dilhan M. Kalyon, and Cevat Erisken. 2024. "In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface" Gels 10, no. 11: 745. https://doi.org/10.3390/gels10110745
APA StyleEffanga, V. E., Akilbekova, D., Mukasheva, F., Zhao, X., Kalyon, D. M., & Erisken, C. (2024). In Vitro Investigation of 3D Printed Hydrogel Scaffolds with Electrospun Tidemark Component for Modeling Osteochondral Interface. Gels, 10(11), 745. https://doi.org/10.3390/gels10110745