Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of Basic Properties of Starch Gel and Nano-MoS2
2.2. Evaluation of Oil Displacement Efficiency of Nano-MoS2 under Different Core Permeabilities
2.3. Evaluation of Combination System Oil Displacement Efficiency under Different Heterogeneity Extents Using a Parallel Model
2.4. Evaluation of Oil Displacement Efficiency of Starch Gel and Nano-MoS2 in Inter- and Intralayer Heterogeneous Model
2.4.1. Evaluation of Oil Displacement Effectiveness in Intralayer Heterogeneous Reservoirs
2.4.2. Evaluation of Oil Displacement Effectiveness in Interlayer Heterogeneous Reservoirs
3. Conclusions
- The combination system comprising starch gel and nano-molybdenum disulfide exhibits notable thermal stability. At 95 °C, the starch gel consistently forms a rigid gel. Concurrently, nano-MoS2 exhibits significant capabilities in reducing interfacial tension and effectively emulsifying crude oil.
- Under high-temperature (95 °C) heterogeneous reservoir conditions, the injection of 0.2 PV starch gel, followed by 0.3 PV of a 0.005% mass concentration nano-MoS2 solution, effectively plugged dominant channels. This forced the nano-MoS2 towards uninvaded areas, simultaneously enhancing sweep efficiency and displacement efficiency and significantly improving oil recovery by over 10 percentage points.
- This study indicates that this combination displacement technology holds promise for enhancing oil recovery in high-temperature heterogeneous reservoirs of the Henan Oilfield, providing foundational support for further field applications.
4. Materials and Methods
4.1. Experimental Materials and Instruments
4.2. Experimental Methods
4.2.1. Preparation and Evaluation of Basic Properties of Starch Gel and Nano-MoS2 Solution
4.2.2. Evaluation of Oil Displacement Efficiency of Nano-MoS2 Solution in Cores
4.2.3. Evaluation of Oil Displacement Efficiency of Starch Gel and Nano-MoS2 in Parallel Cores
4.2.4. Evaluation of Oil Displacement Efficiency of Starch Gel and Nano-MoS2 in Heterogeneity Models
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Tian, Y.; Yu, X.; Wang, C.; Yao, B.; Wang, S.; Winterfeld, P.H.; Wang, X.; Yang, Z.; Wang, Y.; et al. Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel 2017, 210, 425–445. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, W.; Hou, J.; You, Z. Review on physical and chemical factors affecting fines migration in porous media. Water Res. 2022, 214, 118172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, Z.; Ju, Y.; Tian, Y.; Jin, Y.; Chang, W. Visualization of water channeling and displacement diversion by polymer gel treatment in 3D printed heterogeneous porous media. J. Pet. Sci. Eng. 2021, 198, 108238. [Google Scholar] [CrossRef]
- Alajmi, A.F.; Gharbi, R.; Algharaib, M. The effect of heterogeneity and well configuration on the performance of hot water flood. J. Pet. Sci. Eng. 2014, 122, 524–533. [Google Scholar] [CrossRef]
- Yuan, B.; Wood, D.A. A comprehensive review of formation damage during enhanced oil recovery. J. Pet. Sci. Eng. 2018, 167, 287–299. [Google Scholar] [CrossRef]
- Kang, W.-L.; Zhou, B.-B.; Issakhov, M.; Gabdullin, M. Advances in enhanced oil recovery technologies for low permeability reservoirs. Pet. Sci. 2022, 19, 1622–1640. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Zhou, D.; Wang, F.; Li, S.; Li, J.; Chen, X.; Cao, A.; Han, H. Experimental study on sweep characteristics of gas gravity drainage in the interlayer oil reservoir. Front. Energy Res. 2021, 9, 760315. [Google Scholar] [CrossRef]
- Tang, H.; Wen, X.; Zhang, X.; Ren, X.; Liu, H. Water-oil displacing modeling experiment of interlayer heterogeneous conglomerate reservoir. J. Southwest Pet. Univ. Sci. Technol. Ed. 2014, 36, 129. [Google Scholar]
- Zhang, W.; Zhang, J.; Xie, J. Research on reservoir bed heterogeneity, interlayers and seal layers and controlling factors of 2+ 3 sands of upper second member, Shahejie Formation, in the west of the Pucheng Oilfield. Pet. Sci. 2008, 5, 135–144. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, W.; Zhang, B.; Zheng, C.; Hong, F.; Hao, J. Characterization method of tight sandstone reservoir heterogeneity and tight gas accumulation mechanism, Jurassic Formation, Sichuan Basin, China. Geofluids 2022, 2022, 9420835. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yang, H.; Yang, H.; Wu, T.; Wu, H.; Wang, H.; Yu, F.; Jiang, H. Compatibility evaluation of in-depth profile control agents in dominant channels of low-permeability reservoirs. J. Pet. Sci. Eng. 2020, 194, 107529. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Liu, Z.; Zhang, J.; Chen, C.; Ma, M. Investigation on matching relationship and plugging mechanism of self-adaptive micro-gel (SMG) as a profile control and oil displacement agent. Powder Technol. 2020, 364, 774–784. [Google Scholar] [CrossRef]
- Hua, Z.; Lin, M.; Guo, J.; Xu, F.; Li, Z.; Li, M. Study on plugging performance of cross-linked polymer microspheres with reservoir pores. J. Pet. Sci. Eng. 2013, 105, 70–75. [Google Scholar] [CrossRef]
- Yu, B.; Zhao, S.; Long, Y.; Bai, B.; Schuman, T. Comprehensive evaluation of a high-temperature resistant re-crosslinkable preformed particle gel for water management. Fuel 2022, 309, 122086. [Google Scholar] [CrossRef]
- Zhao, G.; Dai, C.; You, Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system. Pet. Explor. Dev. 2018, 45, 481–490. [Google Scholar] [CrossRef]
- Yin, H.; Yin, X.; Cao, R.; Zeng, P.; Wang, J.; Wu, D.; Luo, X.; Zhu, Y.; Zheng, Z.; Feng, Y. In situ crosslinked weak gels with ultralong and tunable gelation times for improving oil recovery. Chem. Eng. J. 2021, 432, 134350. [Google Scholar] [CrossRef]
- Elsharafi, M.O.; Bai, B. Effect of weak preformed particle gel on unswept oil zones/areas during conformance control treatments. Ind. Eng. Chem. Res. 2012, 51, 11547–11554. [Google Scholar] [CrossRef]
- Hua, Z.; Lin, M.; Dong, Z.; Li, M.; Zhang, G.; Yang, J. Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres. J. Colloid Interface Sci. 2014, 424, 67–74. [Google Scholar] [CrossRef]
- Abdulbaki, M.; Huh, C.; Sepehrnoori, K.; Delshad, M.; Varavei, A. A critical review on use of polymer microgels for conformance control purposes. J. Pet. Sci. Eng. 2014, 122, 741–753. [Google Scholar] [CrossRef]
- Zhang, F.; Hou, B.; Wang, S.; Chen, H.; Yang, J.; Fan, H.; Gui, L. Study on the Profile Control and Oil Displacement Mechanism of a Polymer Nano-microsphere for Oilfield. Energy Fuels 2023, 37, 2692–2701. [Google Scholar] [CrossRef]
- Yongqiang, T.; Jirui, H.; Chenghui, L. Water shut off in a horizontal well: Lab experiments with starch graft copolymer agent. J. Pet. Sci. Eng. 2013, 108, 230–238. [Google Scholar] [CrossRef]
- Zhao, F.; Hao, H.; Hou, J.; Hou, L.; Song, Z. CO2 mobility control and sweep efficiency improvement using starch gel or ethylenediamine in ultra-low permeability oil layers with different types of heterogeneity. J. Pet. Sci. Eng. 2015, 133, 52–65. [Google Scholar] [CrossRef]
- Hao, H.; Hou, J.; Zhao, F.; Song, Z.; Hou, L.; Wang, Z. Gas channeling control during CO2 immiscible flooding in 3D radial flow model with complex fractures and heterogeneity. J. Pet. Sci. Eng. 2016, 146, 890–901. [Google Scholar] [CrossRef]
- Luo, Q.; Tang, K.; Bai, L.; Li, K.; Sun, P.; Xu, C.; Zhao, Y.; Zhu, D. Development of in-situ starch grafted copolymerized gels for conglomerate reservoir conformance control and oil recovery improvement. J. Pet. Sci. Eng. 2021, 210, 110005. [Google Scholar] [CrossRef]
- Leng, G.; Yan, W.; Li, F.; Wang, B.; Yuan, G.; Chu, C.; Li, Y.; Gao, C. Improved oil recovery in sandstone reservoirs with deep profile control technology: A comparative study between modified starch gel and polymer gel. Geoenergy Sci. Eng. 2023, 226, 211697. [Google Scholar] [CrossRef]
- Li, W.; Dai, C.; Jan, O.; Hafiz, A.; Tao, J.; He, X.; Zhao, G. Adsorption and retention behaviors of heterogeneous combination flooding system composed of dispersed particle gel and surfactant. Colloid Surface A. 2018, 538, 250–261. [Google Scholar] [CrossRef]
- Hadia, N.J.; Ng, Y.H.; Stubbs, L.P.; Torsæter, O. High salinity and high temperature stable colloidal silica nanoparticles with wettability alteration ability for eor applications. Nanomaterials 2021, 11, 707. [Google Scholar] [CrossRef]
- Gizzatov, A.; Mashat, A.A.; Kosynkin, D.V.; Alhazza, N.; Kmetz, A.; Eichmann, S.L.; Abdel-Fattah, A.I. Nanofluid of petroleum sulfonate nanocapsules for enhanced oil recovery in high-temperature and high-salinity reservoirs. Energy Fuels 2019, 33, 11567–11573. [Google Scholar] [CrossRef]
- Zhu, D.; Wei, L.; Wang, B.; Feng, Y. Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs. Energies 2014, 7, 3858–3871. [Google Scholar] [CrossRef]
- Lu, T.; Li, Z.; Zhou, Y.; Zhang, C. Enhanced oil recovery of low-permeability cores by SiO2 nanofluid. Energy Fuels 2017, 31, 5612–5621. [Google Scholar] [CrossRef]
- Murshed, S.M.S.; Tan, S.H.; Nguyen, N.T. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D Appl. Phys. 2008, 41, 085502. [Google Scholar] [CrossRef]
- Rezvani, H.; Panahpoori, D.; Riazi, M.; Parsaei, R.; Tabaei, M.; Cortés, F.B. A novel foam formulation by Al2O3/SiO2 nanoparticles for EOR applications: A mechanistic study. J. Mol. Liq. 2020, 304, 112730. [Google Scholar] [CrossRef]
- Bahraminejad, H.; Manshad, A.K.; Riazi, M.; Ali, J.A.; Sajadi, S.M.; Keshavarz, A. CuO/TiO2/PAM as a novel introduced hybrid agent for water—Oil interfacial tension and wettability optimization in chemical enhanced oil recovery. Energy Fuels 2019, 33, 10547–10560. [Google Scholar] [CrossRef]
- Alnarabiji, M.S.; Yahya, N.; Nadeem, S.; Adil, M.; Baig, M.K.; Ben Ghanem, O.; Azizi, K.; Ahmed, S.; Maulianda, B.; Klemeš, J.J.; et al. Nanofluid enhanced oil recovery using induced ZnO nanocrystals by electromagnetic energy: Viscosity increment. Fuel 2018, 233, 632–643. [Google Scholar] [CrossRef]
- AfzaliTabar, M.; Alaei, M.; Bazmi, M.; Khojasteh, R.R.; Koolivand-Salooki, M.; Motiee, F.; Rashidi, A. Facile and economical preparation method of nanoporous graphene/silica nanohybrid and evaluation of its Pickering emulsion properties for Chemical Enhanced oil Recovery (C-EOR). Fuel 2017, 206, 453–466. [Google Scholar] [CrossRef]
- Esmaeilzadeh, P.; Hosseinpour, N.; Bahramian, A.; Fakhroueian, Z.; Arya, S. Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air–water and n-heptane–water interfaces. Fluid Phase Equilibria 2014, 361, 289–295. [Google Scholar] [CrossRef]
- Hill, D.; Barron, A.R.; Alexander, S. Controlling the wettability of plastic by thermally embedding coated aluminium oxide nanoparticles into the surface. J. Colloid Interface Sci. 2020, 567, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Alnarabiji, M.S.; Husein, M.M. Application of bare nanoparticle-based nanofluids in enhanced oil recovery. Fuel 2020, 267, 117262. [Google Scholar] [CrossRef]
- Zhang, H.; Ramakrishnan, T.S.; Nikolov, A.; Wasan, D. Enhanced oil recovery driven by nanofilm structural disjoining pressure: Flooding experiments and microvisualization. Energy Fuels 2016, 30, 2771–2779. [Google Scholar] [CrossRef]
- Patel, H.; Shah, S.; Ahmed, R.; Ucan, S. Effects of nanoparticles and temperature on heavy oil viscosity. J. Pet. Sci. Eng. 2018, 167, 819–828. [Google Scholar] [CrossRef]
- Raj, I.; Qu, M.; Xiao, L.; Hou, J.; Li, Y.; Liang, T.; Yang, T.; Zhao, M. Ultralow concentration of molybdenum disulfide nanosheets for enhanced oil recovery. Fuel 2019, 251, 514–522. [Google Scholar] [CrossRef]
- Wei, P.; Luo, Q.; Edgehouse, K.J.; Hemmingsen, C.M.; Rodier, B.J.; Pentzer, E.B. 2D particles at fluid–fluid interfaces: Assembly and templating of hybrid structures for advanced applications. ACS Appl. Mater. Interfaces 2018, 10, 21765–21781. [Google Scholar] [CrossRef] [PubMed]
- Nonomura, Y.; Komura, S.; Tsujii, K. Adsorption of disk-shaped Janus beads at liquid–liquid interfaces. Langmuir 2004, 20, 11821–11823. [Google Scholar] [CrossRef]
- Qu, M.; Hou, J.; Liang, T.; Qi, P. Amphiphilic rhamnolipid molybdenum disulfide nanosheets for oil recovery. ACS Appl. Nano Mater. 2021, 4, 2963–2972. [Google Scholar] [CrossRef]
- Liang, T.; Hou, J.; Xi, J. Mechanisms of nanofluid based modification MoS2 nanosheet for enhanced oil recovery in terms of interfacial tension, wettability alteration and emulsion stability. J. Dispers. Sci. Technol. 2023, 44, 26–37. [Google Scholar] [CrossRef]
- Qu, M.; Liang, T.; Hou, J.; Liu, Z.; Yang, E.; Liu, X. Laboratory study and field application of amphiphilic molybdenum disulfide nanosheets for enhanced oil recovery. J. Pet. Sci. Eng. 2022, 208, 109695. [Google Scholar] [CrossRef]
- Liang, T.; Yang, C.; Zhang, Y.; Li, P.; Qu, M.; Hou, J. Research and Application Progress of Nanofluid for Enhanced Oil Recovery. Xinjiang Oil Gas 2023, 19, 29–41. [Google Scholar]
- Xu, H.; Li, Y.; Yu, G.-L.; Yang, S.-S.; Li, B.-J.; Zhou, F.-J.; Yao, E.-D.; Bai, H.; Liu, Z.-Y. The enhancement of performance and imbibition effect of slickwater-based fracturing fluid by using MoS2 nanosheets. Pet. Sci. 2023, 20, 2187–2201. [Google Scholar] [CrossRef]
- Sydansk, R.D.; Argabright, P.A. Conformance Improvement in a Subterranean Hydrocarbon-Bearing Formation Using a Polymer Gel. U.S. Patent No. 4683949, 4 August 1987. [Google Scholar]
- Sydansk, R.D. A newly developed chromium (lll) gel technology. SPE Reserv. Eng. 1990, 5, 346–352. [Google Scholar] [CrossRef]
- Motraghi, F.; Manshad, A.K.; Akbari, M.; Ali, J.A.; Sajadi, S.M.; Iglauer, S.; Keshavarz, A. Interfacial tension reduction of hybrid crude-oil/mutual-solvent systems under the influence of water salinity, temperature and green SiO2/KCl/Xanthan nanocomposites. Fuel 2023, 340, 127464. [Google Scholar] [CrossRef]
- Hassan, M.E.; Nielsen, R.F.; Calhoun, J.C. Effect of pressure and temperature on oil-water interfacial tensions for a series of hydrocarbons. J. Pet. Technol. 1953, 5, 299–306. [Google Scholar] [CrossRef]
- Gaonkar, A.G. Effects of salt, temperature, and surfactants on the interfacial tension behavior of a vegetable oil/water system. J. Colloid Interf. Sci. 1992, 149, 256–260. [Google Scholar] [CrossRef]
- Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle stabilized oil in water emulsions: A critical review. J. Pet. Sci. Eng. 2018, 163, 217–242. [Google Scholar] [CrossRef]
- Stancik, E.J.; Kouhkan, M.; Fuller, G.G. Coalescence of particle-laden fluid interfaces. Langmuir 2004, 20, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Simovic, S.; Prestidge, C.A. Nanoparticles of varying hydrophobicity at the emulsion droplet−water interface: Adsorption and coalescence stability. Langmuir 2004, 20, 8357–8365. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.-Y.; Zhao, Y.-H.; Zhang, H.-J.; Zhao, Q.; Shi, C.-Y.; Qin, J.-H.; Su, Z.-H.; Wang, G.-Q.; Liu, Y.; Hou, J.-R. Combined imbibition system with black nanosheet and low-salinity water for improving oil recovery in tight sandstone reservoirs. Pet. Sci. 2023, 20, 1562–1571. [Google Scholar] [CrossRef]
- Guillen, V.R.; Carvalho, M.S.; Alvarado, V. Pore scale and macroscopic displacement mechanisms in emulsion flooding. Transport Porous Med. 2012, 94, 197–206. [Google Scholar] [CrossRef]
- Ding, M.-C.; Li, Q.; Yuan, Y.-J.; Wang, Y.-F.; Zhao, N.; Han, Y.-G. Permeability and heterogeneity adaptability of surfactant-alternating-gas foam for recovering oil from low-permeability reservoirs. Pet. Sci. 2022, 19, 1185–1197. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, H.; Xu, L.; Li, K.; Yu, L.; Li, Y.; Dong, M. Further enhanced oil recovery by branched-preformed particle gel/HPAM/surfactant mixed solutions after polymer flooding in parallel-sandpack models. RSC Adv. 2017, 7, 39564–39575. [Google Scholar] [CrossRef]
- Le, N.N.H.; Sugai, Y.; Vo-Thanh, H.; Nguele, R.; Ssebadduka, R.; Wei, N. Experimental investigation on plugging performance of CO2 microbubbles in porous media. J. Pet. Sci. Eng. 2022, 211, 110187. [Google Scholar] [CrossRef]
Core ID | Gas Permeability (mD) | Initial Water Flooding Recovery Rate (%) | Final Recovery Rate (%) | Enhance Recovery Rate (%) |
---|---|---|---|---|
1 | 100 | 36.07 | 54.10 | 18.03 |
2 | 200 | 45.72 | 65.78 | 20.06 |
3 | 300 | 47.95 | 62.47 | 14.52 |
4 | 500 | 50.86 | 63.17 | 12.31 |
Core ID | Gas Permeability (mD) | Initial Water Flooding Recovery Rate (%) | Nano-MoS2 Flooding Enhance Recovery Rate (%) | Combination Displacement Enhance Recovery Rate (%) | Final Recovery Rate (%) |
---|---|---|---|---|---|
3 | 100 | 37.47 | 5.90 | 4.72 | 48.10 |
300 | 44.77 | 7.44 | 6.34 | 58.55 | |
Whole | 41.18 | 6.69 | 5.54 | 53.41 | |
4 | 100 | 30.15 | 2.48 | 6.80 | 39.43 |
500 | 46.63 | 7.80 | 5.84 | 60.27 | |
Whole | 38.58 | 5.20 | 6.31 | 50.09 |
Core ID | Gas Permeability (mD) | Initial Water Flooding Recovery Rate (%) | Nano-MoS2 Flooding Enhance Recovery Rate (%) | Combination Displacement Enhance Recovery Rate (%) | Final Recovery Rate (%) |
---|---|---|---|---|---|
5 | 80 | 27.47 | 5.07 | 15.33 | 47.87 |
200 | |||||
400 |
Core ID | Gas Permeability (mD) | Initial Water Flooding Recovery Rate (%) | Nano-MoS2 Flooding Enhance Recovery Rate (%) | Combination Displacement Enhance Recovery Rate (%) | Final Recovery Rate (%) |
---|---|---|---|---|---|
6 | 80 | 15.16 | 3.59 | 2.05 | 21.82 |
200 | 12.70 | 1.84 | 5.64 | 20.59 | |
400 | 4.51 | 1.02 | 4.51 | 10.04 | |
Whole | 32.77 | 6.45 | 12.20 | 52.45 |
Ion(s) | HCO3− | Cl− | SO42− | Ca2+ | Mg2+ | K+ | Na+ | Salinity |
---|---|---|---|---|---|---|---|---|
Concentration, mg/L | 1476.68 | 2512.25 | 777.87 | 23.42 | 4.03 | 86.23 | 2524 | 7755.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, Y.; Wang, Z.; Li, H.; Zhao, Y.; Pan, Y.; Liu, Y.; Yuan, W.; Hou, J. Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir. Gels 2024, 10, 127. https://doi.org/10.3390/gels10020127
Zhang L, Liu Y, Wang Z, Li H, Zhao Y, Pan Y, Liu Y, Yuan W, Hou J. Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir. Gels. 2024; 10(2):127. https://doi.org/10.3390/gels10020127
Chicago/Turabian StyleZhang, Lianfeng, Yanhua Liu, Zhengxin Wang, Hao Li, Yuheng Zhao, Yinuo Pan, Yang Liu, Weifeng Yuan, and Jirui Hou. 2024. "Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir" Gels 10, no. 2: 127. https://doi.org/10.3390/gels10020127
APA StyleZhang, L., Liu, Y., Wang, Z., Li, H., Zhao, Y., Pan, Y., Liu, Y., Yuan, W., & Hou, J. (2024). Evaluation of Profile Control and Oil Displacement Effect of Starch Gel and Nano-MoS2 Combination System in High-Temperature Heterogeneous Reservoir. Gels, 10(2), 127. https://doi.org/10.3390/gels10020127