Dried Porous Biomaterials from Mealworm Protein Gels: Proof of Concept and Impact of Drying Method on Structural Properties and Zinc Retention
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Aerogels and Lyophilized Hydrogels
2.2. Retention of Zinc during Drying of Mealworm Protein Hydrogels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Mealworm Protein Hydrogels, Lyophilized Hydrogels and Aerogels
4.3. Fourier Transform Infrared Spectroscopy
4.4. Determination of the Specific Surface Area
4.5. High-Resolution Scanning Electron Microscopy and X-ray Spectra
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smirnova, I.; Gurikov, P. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels. Annu. Rev. Chem. Biomol. Eng. 2017, 7, 307–334. [Google Scholar] [CrossRef]
- Sonu, S.S.; Rai, N.; Chauhan, I. Multifunctional Aerogels: A Comprehensive Review on Types, Synthesis and Applications of Aerogels. J. Sol-Gel Sci. Technol. 2023, 105, 324–336. [Google Scholar] [CrossRef]
- Zhao, S.; Malfait, W.J.; Guerrero-Alburquerque, N.; Koebel, M.M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew. Chem. Int. Ed. 2018, 57, 7580–7608. [Google Scholar] [CrossRef] [PubMed]
- Nita, L.E.; Ghilan, A.; Rusu, A.G.; Neamtu, I.; Chiriac, A.P. New Trends in Bio-Based Aerogels. Pharmaceutics 2020, 12, 449. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z. Hybrid Aerogels Derived from Banana Peel and Waste Paper for Efficient Oil Absorption and Emulsion Separation. J. Clean. Prod. 2018, 199, 411–419. [Google Scholar] [CrossRef]
- Gaggero, G.; Subrahmanyam, R.P.; Schroeter, B.; Gurikov, P.; Delucchi, M. Organic Bio-Based Aerogel from Food Waste: Preparation and Hydrophobization. Gels 2022, 8, 691. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Mikkonen, K.S.; García-González, C.A. Aerogels as Porous Structures for Food Applications: Smart Ingredients and Novel Packaging Materials. Food Struct. 2021, 28, 100188. [Google Scholar] [CrossRef]
- Selvasekaran, P.; Chidambaram, R. Bioaerogels as Food Materials: A State-of-the-Art on Production and Application in Micronutrient Fortification and Active Packaging of Foods. Food Hydrocoll. 2022, 131, 107760. [Google Scholar] [CrossRef]
- Selvasekaran, P.; Chidambaram, R. Food-Grade Aerogels Obtained from Polysaccharides, Proteins, and Seed Mucilages: Role as a Carrier Matrix of Functional Food IngredientsNo Title. Trends Food Sci. Technol. 2021, 112, 455–470. [Google Scholar] [CrossRef]
- Beal, T.; Massiot, E.; Arsenault, J.E.; Smith, M.R.; Hijmans, R.J. Global Trends in Dietary Micronutrient Supplies and Estimated Prevalence of Inadequate Intakes. PLoS ONE 2017, 12, e0175554. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- García-González, C.A.; Budtova, T.; Dures, L.; Erkey, C.; Del Gaudio, P.; Gurikov, P.; Koebel, M.; Liebner, F.; Neagu, M.; Smirnova, I. An Opinion Paper on Aerogels for Biomedical and Environmental Applications. Molecules 2019, 24, 591–641. [Google Scholar] [CrossRef]
- Andlinger, D.J.; Bornkeßel, A.C.; Jung, I.; Schröter, B.; Smirnova, I.; Kulozik, U. Microstructures of Potato Protein Hydrogels and Aerogels Produced by Thermal Crosslinking and Supercritical Drying. Food Hydrocoll. 2021, 112, 106305. [Google Scholar] [CrossRef]
- Plazzotta, S.; Alongi, M.; De Berardinis, L.; Melchior, S.; Calligaris, S.; Manzocco, L. Steering Protein and Lipid Digestibility by Oleogelation with Protein Aerogels. Food Funct. 2022, 13, 10601–10609. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.T.; Do, N.H.N.; Goh, X.Y.; Goh, C.J.; Ong, R.H.; Le, P.K.; Phan-Thien, N.; Duong, H.M. Recent Progresses in Eco-Friendly Fabrication and Applications of Sustainable Aerogels from Various Waste Materials. Waste Biomass Valorization 2022, 13, 1825–1847. [Google Scholar] [CrossRef] [PubMed]
- Laroche, M.; Perreault, V.; Marciniak, A.; Mikhaylin, S.; Doyen, A. Eco-Efficiency of Mealworm (Tenebrio molitor) Protein Extracts. ACS Food Sci. Technol. 2022, 2, 1077–1085. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio molitor larva) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliam. Off. J. Eur. Union 2022, 2016, 48–119. [Google Scholar]
- Precup, G.; Ververis, E.; Azzollini, D.; Rivero-Pino, F.; Zakidou, P.; Germini, A. The Safety Assessment of Insects and Products There of As Novel Foods in the European Union. In Novel Foods and Edible Insects in the European Union; Scaffardi, L., Formici, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; p. C1. ISBN 9783031134944. [Google Scholar]
- Klost, M.; Ramirez-Huerta, M.I.; Drusch, S. Heat-Induced Gelation of Protein from Mealworm (Tenebrio molitor): Influence of PH and Zinc Concentration. Food Hydrocoll. Health 2022, 2, 100105. [Google Scholar] [CrossRef]
- Matheus, S.; Friess, W.; Mahler, H.C. FTIR and NDSC as Analytical Tools for High-Concentration Protein Formulations. Pharm. Res. 2006, 23, 1350–1363. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef]
- Kochańczyk, T.; Drozd, A.; Kre¸zel, A. Relationship between the Architecture of Zinc Coordination and Zinc Binding Affinity in Proteins—Insights into Zinc Regulation. Metallomics 2015, 7, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Krężel, A.; Maret, W. The Biological Inorganic Chemistry of Zinc Ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Nara, M.; Morii, H.; Tanokura, M. Coordination to Divalent Cations by Calcium-Binding Proteins Studied by FTIR Spectroscopy. Biochim. Biophys. Acta-Biomembr. 2013, 1828, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A. FTIR Spectroscopy Structural Analysis of the Interaction between Lactobacillus Kefir S-Layers and Metal Ions. J. Mol. Struct. 2011, 987, 186–192. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships Bteween the Carbon-Oxygen Stretching Frequencies of Carboxylato Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Schroeter, B.; Jung, I.; Bauer, K.; Gurikov, P.; Smirnova, I. Hydrophobic Modification of Biopolymer Aerogels by Cold Plasma Coating. Polymers 2021, 13, 3000. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.P.; Keil, C.; Dieringer, P.; Hübner, C.; Bueno, A.; Gurikov, P.; Nissen, J.; Holtkamp, M.; Karst, U.; Haase, H.; et al. Alginate Aerogels Carrying Calcium, Zinc and Silver Cations for Wound Care: Fabrication and Metal Detection. J. Supercrit. Fluids 2019, 153, 104545. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Zinc through the Three Domains of Life. J. Proteome Res. 2006, 5, 3173–3178. [Google Scholar] [CrossRef]
- Kocyła, A.; Tran, J.B.; Krężel, A. Galvanization of Protein–Protein Interactions in a Dynamic Zinc Interactome. Trends Biochem. Sci. 2021, 46, 64–79. [Google Scholar] [CrossRef]
- Maret, W. Chemistry Meets Biology in the Coordination Dynamics of Metalloproteins. J. Inorg. Biochem. 2023, 251, 112431. [Google Scholar] [CrossRef]
- Arfat, Y.A.; Benjakul, S. Effect of Zinc Sulphate on Gelling Properties of Phosphorylated Protein Isolate from Yellow Stripe Trevally. Food Chem. 2013, 141, 2848–2857. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Singhal, R.S. The Potential of Supercritical Drying as a “Green” Method for the Production of Food-Grade Bioaerogels: A Comprehensive Critical Review. Food Hydrocoll. 2023, 141, 108738. [Google Scholar] [CrossRef]
- Guastaferro, M.; Baldino, L.; Reverchon, E.; Cardea, S. Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying. Gels 2021, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Baudron, V.; Gurikov, P.; Smirnova, I.; Whitehouse, S. Porous Starch Materials via Supercritical-and Freeze-Drying. Gels 2019, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, Drying Process and Medical Application of Polysaccharide-Based Aerogels. Int. J. Biol. Macromol. 2020, 145, 1115–1128. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio Molitor, Alphitobius Diaperinus, and Hermetia Illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klost, M.; Keil, C.; Gurikov, P. Dried Porous Biomaterials from Mealworm Protein Gels: Proof of Concept and Impact of Drying Method on Structural Properties and Zinc Retention. Gels 2024, 10, 275. https://doi.org/10.3390/gels10040275
Klost M, Keil C, Gurikov P. Dried Porous Biomaterials from Mealworm Protein Gels: Proof of Concept and Impact of Drying Method on Structural Properties and Zinc Retention. Gels. 2024; 10(4):275. https://doi.org/10.3390/gels10040275
Chicago/Turabian StyleKlost, Martina, Claudia Keil, and Pavel Gurikov. 2024. "Dried Porous Biomaterials from Mealworm Protein Gels: Proof of Concept and Impact of Drying Method on Structural Properties and Zinc Retention" Gels 10, no. 4: 275. https://doi.org/10.3390/gels10040275
APA StyleKlost, M., Keil, C., & Gurikov, P. (2024). Dried Porous Biomaterials from Mealworm Protein Gels: Proof of Concept and Impact of Drying Method on Structural Properties and Zinc Retention. Gels, 10(4), 275. https://doi.org/10.3390/gels10040275