Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+
Abstract
:1. Introduction
2. Results and Discussion
2.1. Si-CD Structural Analysis
2.2. DCG Structural Analysis
2.3. Mechanical Properties and Thermal Stability Analysis of DCG
2.4. Analysis of the Fluorescence Properties of DCG
2.5. DCG Detection of Fe3+ Concentration
2.6. Analysis of Fe3+ Adsorption Properties of DCG
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Si-CDs and SiQDs
4.3. Preparation of the DCG and SiDCG
4.4. Structure Characterizations
4.5. Ion Screening and Fe3+ Detection Experiments
4.6. Adsorption Performance Experiment
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Z.H.; Fu, F.L.; Dionysiou, D.D.; Tang, B. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles. Water Res. 2016, 96, 22–31. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.; Aseer, K.R.; Perumal, S.; Karthik, N.; Lee, Y.R. Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink. Biosens. Bioelectron. 2018, 99, 303–311. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, B.; Zeng, X.; Wang, J.; Ren, B.; Yang, X.; Bai, X. Preparation of non-swelling hydrogels and investigation on the adsorption performance of iron ions. J. Appl. Polym. Sci. 2022, 139, e52411. [Google Scholar] [CrossRef]
- Sun, Y.C.; Yu, F.X.; Han, C.H.; Houda, C.; Hao, M.G.; Wang, Q.Y. Research progress on adsorption of arsenic from water by modified biochar and its mechanism: A review. Water 2022, 14, 1691. [Google Scholar] [CrossRef]
- Burratti, L.; Ciotta, E.; De Matteis, F.; Prosposito, P. Metal nanostructures for environmental pollutant detection based on fluorescence. Nanomaterials 2021, 11, 276. [Google Scholar] [CrossRef]
- Jamshaid, A.; Hamid, A.; Muhammad, N.; Naseer, A.; Ghauri, M.; Iqbal, J.; Rafiq, S.; Shah, N.S. Cellulose-based materials for the removal of heavy metals from wastewater—An overview. ChemBioEng Rev. 2017, 4, 240–256. [Google Scholar] [CrossRef]
- Singh, A.K.; Itkor, P.; Lee, Y.S. State-of-the-art insights and potential applications of cellulose-based hydrogels in food packaging: Advances towards sustainable trends. Gels 2023, 9, 433. [Google Scholar] [CrossRef]
- Yuan, Y.W.; Li, R.Y.; Peng, S.J. Research progress on chemical modification of waste biomass cellulose to prepare heavy metal adsorbents. Polym. Bull. 2023, 80, 11671–11700. [Google Scholar] [CrossRef]
- Nakayama, R.; Yano, T.; Namiki, N.; Imai, M. Highly size-selective water-insoluble cross-linked carboxymethyl cellulose membranes. J. Polym. Environ. 2019, 27, 2439–2444. [Google Scholar] [CrossRef]
- Gul, B.Y.; Pekgenc, E.; Vatanpour, V.; Koyuncu, I. A review of cellulose-based derivatives polymers in fabrication of gas separation membranes: Recent developments and challenges. Carbohydr. Polym. 2023, 321, 18. [Google Scholar] [CrossRef]
- Xiao, Z.H.; Liu, Y.; Yang, J.S.; Jiang, H.; Tang, L.Q.; Chen, H.; Sun, T.L. Rate-dependent fracture behavior of tough polyelectrolyte complex hydrogels from biopolymers. Mech. Mater. 2021, 156, 8. [Google Scholar] [CrossRef]
- Nath, P.C.; Debnath, S.; Sharma, M.; Sridhar, K.; Nayak, P.K.; Inbaraj, B.S. Recent advances in cellulose-based hydrogels: Food applications. Foods 2023, 12, 350. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, D.; Liu, S.; Luo, M.; Li, J.; Shen, S.; Li, S.; Zhu, L.; Chen, Z. Producing long afterglow by cellulose confinement effect: A wood-inspired design for sustainable phosphorescent materials. Carbon 2021, 171, 946–952. [Google Scholar] [CrossRef]
- Mokhtar, O.M.; Attia, Y.A.; Wassel, A.R.; Khattab, T.A. Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. Luminescence 2021, 36, 1933–1944. [Google Scholar] [CrossRef]
- Liu, J.M.; Huang, X.M.; Zhang, L.H.; Zheng, Z.Y.; Lin, X.; Zhang, X.Y.; Jiao, L.; Cui, M.L.; Jiang, S.L.; Lin, S.Q. A specific tween-80-rhodamine S-MWNTs phosphorescent reagent for the detection of trace calcitonin. Anal. Chim. Acta 2012, 744, 60–67. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, G.; Dufresne, A.; Lin, N. Fluorescent aerogels based on chemical crosslinking between nanocellulose and carbon dots for optical sensor. ACS Appl. Mater. Interfaces 2019, 11, 16048–16058. [Google Scholar] [CrossRef]
- Chen, X.; Song, Z.; Li, S.; Thang, N.T.; Gao, X.; Gong, X.; Guo, M. Facile one-pot synthesis of self-assembled nitrogen-doped carbon dots/cellulose nanofibril hydrogel with enhanced fluorescence and mechanical properties. Green Chem. 2020, 22, 3296–3308. [Google Scholar] [CrossRef]
- Lv, H.; Wang, S.; Wang, Z.; Meng, W.; Han, X.; Pu, J. Fluorescent cellulose-based hydrogel with carboxymethyl cellulose and carbon quantum dots for information storage and fluorescent anti-counterfeiting. Cellulose 2022, 29, 6193–6204. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lv, T.J.; Yin, K.Y.; Feng, N.; Sun, X.F.; Zhou, J.; Li, H.G. Carbon dot-based hydrogels: Preparations, properties, and applications. Small 2023, 19, 28. [Google Scholar] [CrossRef]
- Desai, M.L.; Basu, H.; Saha, S.; Singhal, R.K.; Kailasa, S.K. Investigation of silicon doping into carbon dots for improved fluorescence properties for selective detection of Fe3+ ion. Opt. Mater. 2019, 96, 109374. [Google Scholar] [CrossRef]
- Borsagli, F.G.; Borsagli, A. Chemically modified chitosan bio-sorbents for the competitive complexation of heavy metals ions: A potential model for the treatment of wastewaters and industrial spills. J. Polym. Environ. 2019, 27, 1542–1556. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Fu, Z.; Wang, D.; Wang, C.; Li, J. Fluorescence response mechanism of green synthetic carboxymethyl chitosan-Eu3+ aerogel to acidic gases. Int. J. Biol. Macromol. 2021, 192, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, L.; Cao, X.; Zhang, Y.; Jiang, X.; Sun, Z.; Zhan, Y. Bright and multicolor emissive carbon dots/organosilicon composite for highly efficient tandem luminescent solar concentrators. Carbon 2023, 207, 77–85. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Yang, H.; Zhou, D.; Xia, Q. Luminescent, protein-binding and imaging properties of hyper-stable water-soluble silicon quantum dots. J. Mol. Liq. 2021, 331, 115769. [Google Scholar] [CrossRef]
- Ye, H.L.; Shang, Y.; Wang, H.Y.; Ma, Y.L.; He, X.W.; Li, W.Y.; Li, Y.H.; Zhang, Y.K. Determination of Fe(Ⅲ) ion and cellular bioimaging based on a novel photoluminescent silicon nanoparticles. Talanta 2021, 230, 122294. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Jiang, Y.-W.; Jia, H.-R.; Yang, J.; Wu, F.-G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 2018, 134, 232–243. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, R.; Liu, S.; Feng, L.; Li, W.; He, F.; Gai, S.; Yang, P. Europium doped silicon quantum dot as a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, e2100812. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huo, D.; Ji, Z.; Ma, Y.; Yang, M.; Luo, H.; Luo, X.; Hou, C.; Lv, J. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate. Microchim. Acta 2020, 187, 341. [Google Scholar] [CrossRef]
- Cao, D.; Luo, Y.X.; Liu, W.P.; Li, Y.S.; Gao, X.F. Enzyme-free fluorescence determination of uric acid and trace Hg(II) in serum using Si/N doped carbon dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 263, 120182. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Wang, Q.; Bu, T.; Sun, X.; Jia, P.; Wang, L. Nitrogen, silicon co-doped carbon dots as the fluorescence nanoprobe for trace p-nitrophenol detection based on inner filter effect. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 244, 118876. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Tu, H.; Zhang, H.; Silvester, D.S.; Banks, C.E.; Zou, G.; Hou, H.; Ji, X. The development of carbon dots: From the perspective of materials chemistry. Mater. Today 2021, 51, 188–207. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Y.; Zhang, S.; Ding, H.; Zhou, Z.; Wei, J.; Li, X.; Xiong, H. Rational synthesis of silane-functionalized carbon dots with high-efficiency full-color solid-state fluorescence for light emitting diodes. Carbon 2023, 203, 1–10. [Google Scholar] [CrossRef]
- Villalba-Rodríguez, A.M.; González-González, R.B.; Martínez-Ruiz, M.; Flores-Contreras, E.A.; Cárdenas-Alcaide, M.F.; Iqbal, H.M.N.; Parra-Saldívar, R. Chitosan-based carbon dots with applied aspects: New frontiers of international interest in a material of marine origin. Mar. Drugs 2022, 20, 782. [Google Scholar] [CrossRef]
- Salehi, B.; Zhang, B.; Nowlin, K.; Wang, L.; Shahbazi, A. A multifunctional cellulose- and starch-based composite hydrogel with iron-modified biochar particles for enhancing microalgae growth. Carbohydr. Polym. 2024, 327, 121657. [Google Scholar] [CrossRef]
- Zengin Kurt, B.; Uckaya, F.; Durmus, Z. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int. J. Biol. Macromol. 2017, 96, 149–160. [Google Scholar] [CrossRef]
- Wu, L.; Lin, X.; Zhou, X.; Luo, X. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum. Appl. Surf. Sci. 2016, 384, 466–479. [Google Scholar] [CrossRef]
- Sun, X.; Liu, C.; Omer, A.M.; Lu, W.; Zhang, S.; Jiang, X.; Wu, H.; Yu, D.; Ouyang, X.K. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Biol. Macromol. 2019, 128, 468–479. [Google Scholar] [CrossRef]
- Zeng, M.; Li, T.; Liu, Y.; Lin, X.; Zu, X.; Mu, Y.; Chen, L.; Huo, Y.; Qin, Y. Cellulose-based photo-enhanced persistent room-temperature phosphorescent materials by space stacking effects. Chem. Eng. J. 2022, 446, 136935. [Google Scholar] [CrossRef]
- Wang, J.; Du, P.; Hsu, Y.-I.; Uyama, H. Cellulose luminescent hydrogels loaded with stable carbon dots for duplicable information encryption and anti-counterfeiting. ACS Sustain. Chem. Eng. 2023, 11, 10061–10073. [Google Scholar] [CrossRef]
- Xiao, S.J.; Wieland, M.; Brunner, S. Surface reactions of 4-aminothiophenol with heterobifunctional crosslinkers bearing both succinimidyl ester and maleimide for biomolecular immobilization. J. Colloid Interface Sci. 2005, 290, 172–183. [Google Scholar] [CrossRef]
- Mogharbel, A.T.; Hameed, A.; Sayqal, A.A.; Katouah, H.A.; Al-Qahtani, S.D.; Saad, F.A.; El-Metwaly, N.M. Preparation of carbon dots-embedded fluorescent carboxymethyl cellulose hydrogel for anticounterfeiting applications. Int. J. Biol. Macromol. 2023, 238, 124028. [Google Scholar] [CrossRef] [PubMed]
- Ball, V. Crosslinking of bovine gelatin gels by genipin revisited using ferrule-top micro-indentation. Gels 2023, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Pettignano, A.; Charlot, A.; Fleury, E. Solvent-free synthesis of amidated carboxymethyl cellulose derivatives: Effect on the thermal properties. Polymers 2019, 11, 1227. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yu, F.; Ba, Z.; Qian, H.; Zhao, S.; Liu, J.; Jiang, W.; Li, J.; Liang, D. In-depth sulfhydryl-modified cellulose fibers for efficient and rapid adsorption of Cr(VI). Polymers 2022, 14, 1482. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ni, J.; Han, Y.; Ge, M.; Zhang, C.; Jiang, G.; Peng, Z.; Cao, J.; Li, S. Biomass-based polymer nanoparticles with aggregation-induced fluorescence emission for cell imaging and detection of Fe3+ ions. Front. Chem. 2020, 8, 563. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ge, M.; Han, Y.; Ni, J.; Huang, X.; Han, S.; Peng, Z.; Li, Y.; Li, S. Preparation of biomass-based carbon dots with aggregation luminescence enhancement from hydrogenated rosin for biological imaging and detection of Fe3+. ACS Omega 2020, 5, 11842–11848. [Google Scholar] [CrossRef]
- Liu, M.-L.; Chen, B.-B.; Li, C.-M.; Huang, C.-Z. Carbon dots prepared for fluorescence and chemiluminescence sensing. Sci. China Chem. 2019, 62, 968–981. [Google Scholar] [CrossRef]
- Chanmungkalakul, S.; Ervithayasuporn, V.; Hanprasit, S.; Masik, M.; Prigyai, N.; Kiatkamjornwong, S. Silsesquioxane cages as fluoride sensors. Chem. Commun. 2017, 53, 12108–12111. [Google Scholar] [CrossRef] [PubMed]
- He, J.J.; Wan, Y.; Zhou, W.J. ZIF-8 derived Fe-N coordination moieties anchored carbon nanocubes for efficient peroxymonosulfate activation via non-radical pathways: Role of FeNx sites. J. Hazard. Mater. 2021, 405, 15. [Google Scholar] [CrossRef]
- Li, J.; Zuo, K.M.; Wu, W.B.; Xu, Z.Y.; Yi, Y.G.; Jing, Y.; Dai, H.Q.; Fang, G.G. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(II) and Pb(II). Carbohydr. Polym. 2018, 196, 376–384. [Google Scholar] [CrossRef]
- Murad, G.A.; Dakroury, G.A.; Elgoud, E.M.A. Exploiting carboxymethyl cellulose-starch/alumina nano gel to eliminate Fe(III) from ore leachates of rare earth elements. Cellulose 2024, 31, 969–992. [Google Scholar] [CrossRef]
- Panchan, N.; Niamnuy, C.; Dittanet, P.; Devahastin, S. Optimization of synthesis condition for carboxymethyl cellulose-based hydrogel from rice straw by microwave-assisted method and its application in heavy metal ions removal. J. Chem. Technol. Biotechnol. 2018, 93, 413–425. [Google Scholar] [CrossRef]
- Yang, J.C.; Luo, Z.X.; Wang, M. Novel fluorescent nanocellulose hydrogel based on nanocellulose and carbon dots for detection and removal of heavy metal ions in water. Foods 2022, 11, 1619. [Google Scholar] [CrossRef] [PubMed]
- Georgouvelas, D.; Abdelhamid, H.N.; Li, J.; Edlund, U.; Mathew, A.P. All-cellulose functional membranes for water treatment: Adsorption of metal ions and catalytic decolorization of dyes. Carbohydr. Polym. 2021, 264, 118044. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Q.; Cheng, X.J. Readily soluble cellulose-based fluorescent probes for the detection and removal of Fe3+ ion. Int. J. Biol. Macromol. 2023, 253, 13. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.Y.; Tobe, N. A spectrophotometric study of the complex formation between Iron(III) and sulfosalicylic acid. Bull. Chem. Soc. Jpn. 2006, 39, 223–227. [Google Scholar] [CrossRef]
- Ye, J.; Wang, B.; Xiong, J.; Sun, R. Enhanced fluorescence and structural characteristics of carboxymethyl cellulose/Eu(III) nano-complex: Influence of reaction time. Carbohydr. Polym. 2016, 135, 57–63. [Google Scholar] [CrossRef]
- Röding, M.; Bradley, S.J.; Nydén, M.; Nann, T. Fluorescence lifetime analysis of graphene quantum dots. J. Phys. Chem. C 2014, 118, 30282–30290. [Google Scholar] [CrossRef]
Samples | 1DCG | 2DCG | 3DCG | 4DCG | 5DCG |
---|---|---|---|---|---|
Young’s modulus (kPa) | 35.3233 | 36.7557 | 93.6412 | 156 | 294 |
Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|
Parameters Values | qe, cal (mg/g) | k1 (h−1) | R2 | qe, cal (mg/g) | k2 (g·mg−1·h−1) | R2 |
25.4363 | 0.48252 | 0.979 | 30.2633 | 0.01790 | 0.999 |
Langmuir Isotherm | Freundlich Isotherm | |||||
---|---|---|---|---|---|---|
Parameters Values | qm, cal (mg/g) | kL (L/mg) | R2 | kF (L/mg) | n | R2 |
125.3011 | 0.00356 | 0.991 | 4.7004 | 2.2353 | 0.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Jing, Y.; Shen, Y.; Liu, Y.; Wang, J.; Ma, M.; Pan, J.; Wang, D.; Wang, C.; Li, J. Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+. Gels 2024, 10, 285. https://doi.org/10.3390/gels10050285
Zhao Z, Jing Y, Shen Y, Liu Y, Wang J, Ma M, Pan J, Wang D, Wang C, Li J. Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+. Gels. 2024; 10(5):285. https://doi.org/10.3390/gels10050285
Chicago/Turabian StyleZhao, Zhengdong, Yichang Jing, Yuan Shen, Yang Liu, Jiaqi Wang, Mingjian Ma, Jiangbo Pan, Di Wang, Chengyu Wang, and Jian Li. 2024. "Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+" Gels 10, no. 5: 285. https://doi.org/10.3390/gels10050285
APA StyleZhao, Z., Jing, Y., Shen, Y., Liu, Y., Wang, J., Ma, M., Pan, J., Wang, D., Wang, C., & Li, J. (2024). Silicon-Doped Carbon Dots Crosslinked Carboxymethyl Cellulose Gel: Detection and Adsorption of Fe3+. Gels, 10(5), 285. https://doi.org/10.3390/gels10050285