Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes
Abstract
:1. Introduction
2. Results and Discussion
2.1. PCR Ribotyping
2.1.1. Capillary Gel Electrophoresis and Analysis in the Webribo Database
2.1.2. Toxinogenic Genes’ Presence among the Investigated Strains—Ribotype and Genotype Correlation Analysis
2.2. Discussion
3. Conclusions
- PCR ribotyping is an effective method for the differentiation of C. difficile isolates and can be recognized as a very useful tool in epidemiological studies.
- Due to automatic ribotype assignment in the Webribo database, the use of capillary gel electrophoresis significantly shortens the time for C. difficile strains ribotyping data analysis.
- The results obtained are highly reproducible, independent of the used reagents’ batches or brands, which make it possible to compare data from different laboratories.
- The most common C. difficile ribotype in the studied hospital-derived population is 027.
- Of the remaining strains detected with toxigenic potential, all contain cytotoxin A, enterotoxin B genes or the gene encoding a binary toxin.
- The Webribo database is a useful and an accessible database for a quick analysis of C. difficile ribotypes.
4. Materials and Methods
4.1. Bacterial Strains
4.2. Bacterial DNA Isolation
4.3. DNA Amplification and Amplicons’ Denaturation
- a.
- Denaturation 94 °C for 1 min;
- b.
- Primer annealing 60 °C for 1 min;
- c.
- Primer elongation at 72 °C for 1 min;
- d.
- Final elongation at 72 °C for 30 min.
- a.
- Reagent mix was prepared for fragment denaturation.
- b.
- Standard size (LZ 1200) in a volume of 5 μL was dissolved in Hi-Di formamide in a volume of 100 μL.
- c.
- The mix prepared in this way was applied to a 96-well plate in a volume of 10 μL.
- d.
- One microleter of PCR product was added to each mixed well.
- e.
- The whole volume was centrifuged briefly.
- f.
- Denaturation in a thermal cycler for 2 min at 95 °C.
- g.
- The well was placed on ice and held for about 10 min.
- h.
- The whole solution was centrifuged briefly.
4.4. Fragment Analysis by Capillary Gel Electrophoresis
- -
- Laser power: 15 mW;
- -
- A 36 cm capillary type;
- -
- working temperature: 60 °C;
- -
- POP7 polymer;
- -
- Standard-sized GeneScan™ 1200 LIZ;
- -
- A 1× EDTA buffer.
4.5. Assignment of Ribotypes Using the Webribo Database
4.6. Evaluation of the Toxinogenic Potential of the Strain
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nuchtavorn, N.; Suntornsuk, W.; Lunte, S.M.; Suntornsuk, L. Recent Applications of Microchip Electrophoresis to Biomedical Analysis. J. Pharm. Biomed. Anal. 2015, 113, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Subedi, S.; Kong, F.; Jelfs, P.; Gray, T.J.; Xiao, M.; Sintchenko, V.; Chen, S.C.-A. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis Has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria. PLoS ONE 2016, 11, e0164138. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xiao, M.; Chen, S.C.-A.; Wang, H.; Zhang, L.; Fan, X.; Xu, Z.-P.; Cheng, J.-W.; Kong, F.; Zhao, Y.-P.; et al. Sequencer-Based Capillary Gel Electrophoresis (SCGE) Targeting the RDNA Internal Transcribed Spacer (ITS) Regions for Accurate Identification of Clinically Important Yeast Species. PLoS ONE 2016, 11, e0154385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-M.; Jin, Y.; Gan, Y.; Zhu, Y.; Chen, T.-Y.; Wang, J.-B.; Sun, Y.; Cao, Z.-G.; Qian, G.-S.; Tu, H. Novel Approach to Identifying the Hepatitis B Virus Pre-S Deletions Associated with Hepatocellular Carcinoma. World J. Gastroenterol. 2014, 20, 13573–13581. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Boulmé, R.; Sayada, C. From Capillary Electrophoresis to Deep Sequencing: An Improved HIV-1 Drug Resistance Assessment Solution Using In Vitro Diagnostic (IVD) Assays and Software. Viruses 2023, 15, 571. [Google Scholar] [CrossRef] [PubMed]
- Duodu, S.; Wan, X.; Tandstad, N.M.; Larsson, P.; Myrtennäs, K.; Sjödin, A.; Forsman, M.; Colquhoun, D.J. An Improved Multiple-Locus Variable-Number of Tandem Repeat Analysis (MLVA) for the Fish Pathogen Francisella noatunensis Using Capillary Electrophoresis. BMC Vet. Res. 2013, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Gulla, S.; Mohammad, S.N.; Colquhoun, D.J. Multi-Locus Variable-Number Tandem-Repeat Analysis of the Fish-Pathogenic Bacterium Yersinia ruckeri by Multiplex PCR and Capillary Electrophoresis. J. Vis. Exp. 2019, 148, e59455. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, M.R.; Dobreva, E.G.; Ivanova, K.I.; Asseva, G.D.; Ivanov, I.N.; Petrov, P.K.; Velev, V.R.; Tomova, I.I.; Tiholova, M.M.; Kantardjiev, T.V. Multiplex PCR Assay for Identifi Cation and Differentiation of Campylobacter jejuni and Campylobacter coli Isolates. Folia Med. 2016, 58, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-J.; Tung, C.-Y.; Yen, M.-Y.; Chan, Y.-J.; Lin, C.-H.; Hsueh, P.-R. A Novel Target Pathogen Identification and Tracking System Using Capillary Electrophoresis-Random Amplified Polymorphic DNA. Sci. Rep. 2018, 8, 15365. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, B.; Zhang, S.; Li, X.; Chang, J.; Tang, Y.; Wu, Y.; Lu, X. Rapid Detection of Respiratory Pathogens for Community-Acquired Pneumonia by Capillary Electrophoresis-Based Multiplex PCR. SLAS Technol. 2019, 24, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Monstein, H.-J.; Tärnberg, M.; Persis, S.; Johansson, A.G. Comparison of a Capillary Gel Electrophoresis-Based Multiplex PCR Assay and Ribosomal Intergenic Transcribed Spacer-2 Amplicon Sequencing for Identification of Clinically Important Candida Species. J. Microbiol. Methods 2014, 96, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, B.; García-Cañas, V.; Cifuentes, A.; González, R.; Aznar, R. Simultaneous and Sensitive Detection of Three Foodborne Pathogens by Multiplex PCR, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. J. Agric. Food Chem. 2004, 52, 7180–7186. [Google Scholar] [CrossRef] [PubMed]
- García-Cañas, V.; González, R.; Cifuentes, A. Sensitive and Simultaneous Analysis of Five Transgenic Maizes Using Multiplex Polymerase Chain Reaction, Capillary Gel Electrophoresis, and Laser-Induced Fluorescence. Electrophoresis 2004, 25, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Villamizar-Rodríguez, G.; Fernández, J.; Marín, L.; Muñiz, J.; González, I.; Lombó, F. Multiplex Detection of Nine Food-Borne Pathogens by MPCR and Capillary Electrophoresis after Using a Universal Pre-Enrichment Medium. Front. Microbiol. 2015, 6, 1194. [Google Scholar] [CrossRef] [PubMed]
- Ndraha, N.; Lin, H.-Y.; Tsai, S.-K.; Hsiao, H.-I.; Lin, H.-J. The Rapid Detection of Salmonella Enterica, Listeria Monocytogenes, and Staphylococcus aureus via Polymerase Chain Reaction Combined with Magnetic Beads and Capillary Electrophoresis. Foods 2023, 12, 3895. [Google Scholar] [CrossRef] [PubMed]
- Du, X.-F.; Xiao, M.; Liang, H.-Y.; Sun, Z.; Jiang, Y.-H.; Chen, G.-Y.; Meng, X.-Y.; Zou, G.-L.; Zhang, L.; Liu, Y.-L.; et al. An Improved MLVF Method and Its Comparison with Traditional MLVF, Spa Typing, MLST/SCCmec and PFGE for the Typing of Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2014, 15, 725–742. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.-J.; Perng, C.-L.; Sun, J.-R.; Cheng, Y.-H.; Chung, H.-Y.; Cheng, Y.-H.; Lee, S.-Y.; Kuo, S.-C.; Shang, H.-S. Multicentre MDR Elizabethkingia Anophelis Isolates: Novel Random Amplified Polymorphic DNA with Capillary Electrophoresis Systems to Rapid Molecular Typing Compared to Genomic Epidemiology Analysis. Sci. Rep. 2019, 9, 1806. [Google Scholar] [CrossRef] [PubMed]
- Tau, N.P.; Smith, A.M.; Wain, J.R.; Tarupiwa, A.; Coulibaly, K.J.; Keddy, K.H.; GERMS-SA. Development and Evaluation of a Multiple-Locus Variable-Number Tandem-Repeats Analysis Assay for Subtyping Salmonella typhi Strains from Sub-Saharan Africa. J. Med. Microbiol. 2017, 66, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, M.; Sun, C.; Zou, H.; Wu, X.; Zhang, L.; Tao, S.; Wang, B.; Li, Y. Identification of Vibrio cholerae Serotypes in High-Risk Marine Products with Non-Gel Sieving Capillary Electrophoresis. Anal. Biochem. 2016, 494, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sambono, J.L.; Morgan, J.A.T.; Venus, B.; Rolls, P.; Lew-Tabor, A.E. An Evaluation of Quantitative PCR Assays (TaqMan® and SYBR Green) for the Detection of Babesia bigemina and Babesia bovis, and a Novel Fluorescent-ITS1-PCR Capillary Electrophoresis Method for Genotyping B. Bovis Isolates. Vet. Sci. 2016, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, S.; Sanson, G.; Monticelli, J.; Zerbato, V.; Principe, L.; Giuffrè, M.; Pipitone, G.; Luzzati, R. Clostridioides difficile Infection: History, Epidemiology, Risk Factors, Prevention, Clinical Manifestations, Treatment, and Future Options. Clin. Microbiol. Rev. 2024, e00135-23. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Sabbatucci, M.; Zovi, A.; Salzano, A.; Ponzo, A.; Boccellino, M. Advances in Therapeutic Strategies for the Management of Clostridioides difficile Infection. J. Clin. Med. 2024, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
- Markantonis, J.E.; Fallon, J.T.; Madan, R.; Alam, M.Z. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Czepiel, J.; Dróżdż, M.; Pituch, H.; Kuijper, E.J.; Perucki, W.; Mielimonka, A.; Goldman, S.; Wultańska, D.; Garlicki, A.; Biesiada, G. Clostridium difficile Infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E. What Do We Know about the Diagnostics, Treatment and Epidemiology of Clostridioides (Clostridium) difficile Infection in Europe? J. Infect. Chemother. 2018, 24, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Gourevitch, D.; Hawkey, P. Clostridium difficile Infection and Surgery. Br. J. Surg. 2009, 96, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Shirley, D.-A.; Tornel, W.; Warren, C.A.; Moonah, S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics 2023, 152, e2023062307. [Google Scholar] [CrossRef] [PubMed]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile Infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef] [PubMed]
- Orrell, K.E.; Melnyk, R.A. Large Clostridial Toxins: Mechanisms and Roles in Disease. Microbiol. Mol. Biol. Rev. 2021, 85, e0006421. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, P.; Minton, N.P.; Aktories, K.; Barth, H. An Updated View on the Cellular Uptake and Mode-of-Action of Clostridioides difficile Toxins. In Updates on Clostridioides difficile in Europe: Advances in Microbiology, Infectious Diseases and Public Health Volume 18; Mastrantonio, P., Rupnik, M., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 219–247. ISBN 978-3-031-42108-2. [Google Scholar]
- Buddle, J.E.; Fagan, R.P. Pathogenicity and Virulence of Clostridioides difficile. Virulence 2023, 14, 2150452. [Google Scholar] [CrossRef] [PubMed]
- Heils, L.; Schneemann, M.; Gerhard, R.; Schulzke, J.-D.; Bücker, R. CDT of Clostridioides difficile Induces MLC-Dependent Intestinal Barrier Dysfunction in HT-29/B6 Epithelial Cell Monolayers. Toxins 2023, 15, 54. [Google Scholar] [CrossRef]
- Kuenzli, A.B.; Burri, S.; Casanova, C.; Sommerstein, R.; Buetti, N.; Seth-Smith, H.M.B.; Bodmer, T.; Egli, A.; Marschall, J. Successful Management of a Clostridioides difficile Ribotype 027 Outbreak with a Lean Intervention Bundle. J. Hosp. Infect. 2020, 106, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Man, Y.; Bai, Y.; Shao, C.; Liu, C.; Wang, C.; Lei, Y.; Wang, Y.; Jin, Y. Molecular Characterization of Clostridioides difficile Ribotype 027 in a Major Chinese Hospital. J. Microbiol. Immunol. Infect. 2021, 54, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Marujo, V.; Arvand, M. W Dużej Mierze Niezauważone Rozprzestrzenianie Się Rybotypu 027 Clostridioides difficile PCR w Niemczech Po 2010 r. Infect. Prev. Pract. 2020, 2, 100102. [Google Scholar] [CrossRef] [PubMed]
- Guery, B.; Galperine, T.; Barbut, F. Clostridioides difficile: Diagnosis and Treatments. BMJ 2019, 366, l4609. [Google Scholar] [CrossRef]
- Liu, C.; Monaghan, T.; Yadegar, A.; Louie, T.; Kao, D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics 2023, 12, 1141. [Google Scholar] [CrossRef] [PubMed]
- van Rossen, T.M.; van Prehn, J.; Koek, A.; Jonges, M.; van Houdt, R.; van Mansfeld, R.; Kuijper, E.J.; Vandenbroucke-Grauls, C.M.J.E.; Budding, A.E. Simultaneous Detection and Ribotyping of Clostridioides difficile, and Toxin Gene Detection Directly on Fecal Samples. Antimicrob. Resist. Infect. Control 2021, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Huang, C.; Cai, J.; Ye, J.; She, J.; Zheng, Y.; Wang, L.; Wei, Y.; Fang, W.; Wang, X.; et al. Simultaneous Detection and Characterization of Toxigenic Clostridium difficile Directly from Clinical Stool Specimens. Front. Med. 2018, 12, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Surawicz, C.M.; Brandt, L.J.; Binion, D.G.; Ananthakrishnan, A.N.; Curry, S.R.; Gilligan, P.H.; McFarland, L.V.; Mellow, M.; Zuckerbraun, B.S. Guidelines for Diagnosis, Treatment, and Prevention of Clostridium difficile Infections. Am. J. Gastroenterol. 2013, 108, 478–498. [Google Scholar] [CrossRef] [PubMed]
- Mateu, L.; Fernández-Rivas, G.; Sopena, N. Diagnosis and Treatment of Clostridioides difficile Infection. Med. Clin. 2020, 155, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Somily, A.M.; Khan, M.A.; Morshed, M. The Laboratory Diagnosis of Clostridioides difficile Infection: An Update of Current Laboratory Practice. J. Infect. Dev. Ctries. 2021, 15, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Maestri, A.C.; Nogueira, K.S.; Mialski, R.; dos Santos, E.M.; Kraft, L.; Raboni, S.M. Laboratory Diagnosis of Clostridioides difficile Infection in Symptomatic Patients: What Can We Do Better? Braz. J. Microbiol. 2023, 54, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Plechot, K.; Gohil, S.; Le, J. Clostridium difficile: Diagnosis and the Consequence of Over Diagnosis. Infect. Dis. Ther. 2021, 10, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Alcalá, L.; Reigadas, E. Optimizing the Diagnostic Testing of Clostridium difficile Infection. Expert Rev. Anti-Infect. Ther. 2016, 14, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Meléndez, A.; Morfin-Otero, R.; Villarreal-Treviño, L.; Baines, S.D.; Camacho-Ortíz, A.; Garza-González, E. Molecular Epidemiology of Predominant and Emerging Clostridioides difficile Ribotypes. J. Microbiol. Methods 2020, 175, 105974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.Z.; Li, W.W.; Zhao, H.Q.; Wu, Y.H.; Li, H.; Liu, Z.J.; Wu, Y.; Lu, J.X. Standardization and application on ribotyping library of Clostridioides difficile in China. Zhonghua Liu Xing Bing Xue Za Zhi 2019, 40, 1624–1628. [Google Scholar] [PubMed]
- Xiao, M.; Kong, F.; Jin, P.; Wang, Q.; Xiao, K.; Jeoffreys, N.; James, G.; Gilbert, G.L. Comparison of Two Capillary Gel Electrophoresis Systems for Clostridium difficile Ribotyping, Using a Panel of Ribotype 027 Isolates and Whole-Genome Sequences as a Reference Standard. J. Clin. Microbiol. 2012, 50, 2755–2760. [Google Scholar] [CrossRef] [PubMed]
- Krutova, M.; Matejkova, J.; Nyc, O.C. Difficile Ribotype 027 or 176? Folia Microbiol. 2014, 59, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Baktash, A.; Corver, J.; Harmanus, C.; Smits, W.; Fawley, W.; Wilcox, M.; Kumar, N.; Eyre, D.; Indra, A.; Mellmann, A.; et al. Comparison of Whole-Genome Sequence-Based Methods and PCR Ribotyping for Subtyping of Clostridioides difficile. J. Clin. Microbiol. 2022, 60, e01737-21. [Google Scholar] [CrossRef] [PubMed]
- Rizzardi, K.; Åkerlund, T.; Norén, T.; Matussek, A. Impact of Ribotype on Clostridioides difficile Diagnostics. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, C.D.; Shah-Gandhi, B.; Parsons, B.D.; Morin, S.B.N.; Du, T.; Golding, G.R.; Chui, L. Direct Clostridioides difficile Ribotyping from Stool Using Capillary Electrophoresis. Diagn. Microbiol. Infect. Dis. 2021, 99, 115259. [Google Scholar] [CrossRef] [PubMed]
- Novakova, E.; Stofkova, Z.; Sadlonova, V.; Hleba, L. Diagnostic Methods of Clostridioides difficile Infection and Clostridioides difficile Ribotypes in Studied Sample. Antibiotics 2021, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- McDermott, L.A.; Thorpe, C.M.; Goldstein, E.; Schuetz, A.; Johnson, S.; Gerding, D.N.; Carroll, K.C.; Garey, K.W.; Lancaster, C.; Walk, S.; et al. 1669. A US Based National Surveillance Study for the Susceptibility and Epidemiology of Clostridioides difficile Associated Diarrheal Isolates with Special Reference to Ridinilazole: 2020–2021. Open Forum Infect. Dis. 2022, 9, ofac492-1299. [Google Scholar] [CrossRef]
- Indra, A.; Huhulescu, S.; Schneeweis, M.; Hasenberger, P.; Kernbichler, S.; Fiedler, A.; Wewalka, G.; Allerberger, F.; Kuijper, E.J. Characterization of Clostridium difficile Isolates Using Capillary Gel Electrophoresis-Based PCR Ribotyping. J. Med. Microbiol. 2008, 57, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Fawley, W.N.; Knetsch, C.W.; MacCannell, D.R.; Harmanus, C.; Du, T.; Mulvey, M.R.; Paulick, A.; Anderson, L.; Kuijper, E.J.; Wilcox, M.H. Development and Validation of an Internationally-Standardized, High-Resolution Capillary Gel-Based Electrophoresis PCR-Ribotyping Protocol for Clostridium difficile. PLoS ONE 2015, 10, e0118150. [Google Scholar] [CrossRef] [PubMed]
- Tóth, J.; Urbán, E.; Osztie, H.; Benczik, M.; Indra, A.; Nagy, E.; Allerberger, F. Distribution of PCR Ribotypes among Recent Clostridium difficile Isolates Collected in Two Districts of Hungary Using Capillary Gel Electrophoresis and Review of Changes in the Circulating Ribotypes over Time. J. Med. Microbiol. 2016, 65, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Shen, C.; Xia, J.; Zhong, L.L.; Wu, Z.; Ahmed, M.A.E.G.E.S.; Long, N.; Ma, F.; Zhang, G.; Wu, W.; et al. Whole-Genome Sequencing Reveals the High Nosocomial Transmission and Antimicrobial Resistance of Clostridioides difficile in a Single Center in China, a Four-Year Retrospective Study. Microbiol. Spectr. 2022, 10, e01322-21. [Google Scholar] [CrossRef] [PubMed]
- Curova, K.; Novotny, M.; Ambro, L.; Kamlarova, A.; Lovayova, V.; Hrabovsky, V.; Siegfried, L.; Jarcuska, P.; Jarcuska, P.; Toporova, A. High Prevalence of Clostridioides difficile Ribotype 176 in the University Hospital in Kosice. Pathogens 2023, 12, 430. [Google Scholar] [CrossRef] [PubMed]
- Nyc, O.; Tejkalova, R.; Kriz, Z.; Ruzicka, F.; Kubicek, L.; Matejkova, J.; Kuijper, E.; Krutova, M. Two Clusters of Fluoroquinolone and Clindamycin-Resistant Clostridium difficile PCR Ribotype 001 Strain Recognized by Capillary Electrophoresis Ribotyping and Multilocus Variable Tandem Repeat Analysis. Microb. Drug Resist. 2017, 23, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Wren, C.M.; Cowper, J.; Greer, N.; Goldin, L.; Perry, A. Effect of Reduced Fluoroquinolone Use on Cephalosporin Use, Susceptibilities and Clostridioides difficile Infections. Antibiotics 2022, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Redmond, S.N.; Silva, S.Y.; Wilson, B.M.; Cadnum, J.L.; Donskey, C.J. Impact of Reduced Fluoroquinolone Use on Clostridioides difficile Infections Resulting From the Fluoroquinolone-Resistant Ribotype 027 Strain in a Veterans Affairs Medical Center. Pathog. Immun. 2019, 4, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, K.; Kracík, M.; Ryšková, L.; Paterová, P.; Kukla, R.; Hobzová, L.; Špánek, R.; Žemličková, H. Effect of Restriction of Fluoroquinolone Antibiotics on Clostridioides difficile Infections in the University Hospital Hradec Králové. Antibiotics 2021, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.J.; Barone, J.B.; Nylund, C.M. Community-Associated Clostridioides difficile Infection in Children: A Review of Recent Literature. J. Pediatr. Infect. Dis. Soc. 2021, 10, S22–S26. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Whyte, P.; Burgess, C.; Ekhlas, D.; Bolton, D. Detection and Genomic Characterisation of Clostridioides difficile from Spinach Fields. Pathogens 2022, 11, 1310. [Google Scholar] [CrossRef] [PubMed]
- Bjöersdorff, O.G.; Lindberg, S.; Kiil, K.; Persson, S.; Guardabassi, L.; Damborg, P. Dogs Are Carriers of Clostridioides difficile Lineages Associated with Human Community-Acquired Infections. Anaerobe 2021, 67, 102317. [Google Scholar] [CrossRef]
- Finsterwalder, S.K.; Loncaric, I.; Cabal, A.; Szostak, M.P.; Barf, L.M.; Marz, M.; Allerberger, F.; Burgener, I.A.; Tichy, A.; Feßler, A.T.; et al. Dogs as Carriers of Virulent and Resistant Genotypes of Clostridioides difficile. Zoonoses Public Health 2022, 69, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Whyte, P.; Burgess, C.; Bolton, D. A Small Study on Clostridioides difficile in Spinach Field Soil and the Chemical and Microbial Factors That May Influence Prevalence. Curr. Microbiol. 2023, 80, 236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-Z.; Li, W.-G.; Liu, Y.-Q.; Gu, W.-P.; Zhang, Q.; Li, H.; Liu, Z.-J.; Zhang, X.; Wu, Y.; Lu, J.-X. The Molecular Characters and Antibiotic Resistance of Clostridioides difficile from Economic Animals in China. BMC Microbiol. 2020, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Blau, K.; Berger, F.K.; Mellmann, A.; Gallert, C. Clostridioides difficile from Fecally Contaminated Environmental Sources: Resistance and Genetic Relatedness from a Molecular Epidemiological Perspective. Microorganisms 2023, 11, 2497. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Diaz, C.; Seyboldt, C.; Rupnik, M. Non-Human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. Adv. Exp. Med. Biol. 2024, 1435, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Webribo. Available online: https://webribo.ages.at/ (accessed on 8 May 2024).
- Couturier, J.; Davies, K.; Barbut, F. Ribotypes and New Virulent Strains Across Europe. Adv. Exp. Med. Biol. 2024, 1435, 151–168. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; McDermott, L.A.; Jenkins, S.G.; Goldstein, E.J.C.; Patel, R.; Forbes, B.A.; Johnson, S.; Gerding, D.N.; Thorpe, C.M.; Walk, S.T. Epidemiologic Trends in Clostridioides difficile Isolate Ribotypes in United States from 2011 to 2016. Anaerobe 2020, 63, 102185. [Google Scholar] [CrossRef] [PubMed]
- Mengoli, M.; Barone, M.; Fabbrini, M.; D’Amico, F.; Brigidi, P.; Turroni, S. Make It Less Difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes 2022, 13, 2200. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.R.; Lyras, D.; Farrow, K.A.; Adams, V.; Powell, D.R.; Hinds, J.; Cheung, J.K.; Rood, J.I. Construction and Analysis of Chromosomal Clostridium difficile Mutants. Mol. Microbiol. 2006, 61, 1335–1351. [Google Scholar] [CrossRef]
- Schneeberg, A.; Ehricht, R.; Slickers, P.; Baier, V.; Neubauer, H.; Zimmermann, S.; Rabold, D.; Lübke-Becker, A.; Seyboldt, C. DNA Microarray-Based PCR Ribotyping of Clostridium difficile. J. Clin. Microbiol. 2015, 53, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Arvand, M.; Hauri, A.M.; Zaiss, N.H.; Witte, W.; Bettge-Weller, G. Clostridium difficile Ribotypes 001, 017, and 027 Are Associated with Lethal C. Difficile Infection in Hesse, Germany. Euro Surveill. 2009, 14, 19403. [Google Scholar] [CrossRef] [PubMed]
- Barbut, F.; Mastrantonio, P.; Delmée, M.; Brazier, J.; Kuijper, E.; Poxton, I. Prospective Study of Clostridium difficile Infections in Europe with Phenotypic and Genotypic Characterisation of the Isolates. Clin. Microbiol. Infect. 2007, 13, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Lyytikäinen, O.; Mentula, S.; Kononen, E.; Kotila, S.; Tarkka, E.; Anttila, V.J.; Mattila, E.; Kanerva, M.; Vaara, M.; Valtonen, V. First Isolation of Clostridium difficile PCR Ribotype 027 in Finland. Wkly. Releases (1997–2007) 2007, 12, 3303. [Google Scholar] [CrossRef]
- Pituch, H.; Van Belkum, A.; Obuch-Woszczatynski, P.; Meisel-Mikolajczyk, F.; Luczak, M. Porownanie metodami AP-PCR, rybotypowania [PCR-ribotyping] oraz elektroforezy pulsacyjnej [PFGE] szczepow Clostridium difficile wytwarzajacych toksyne B i nie wytwarzajacych toksyny A. Med. Doświadczalna I Mikrobiol. 2003, 55, 53–60. [Google Scholar]
- Perić, A.; Rančić, N.; Dragojević-Simić, V.; Milenković, B.; Ljubenović, N.; Rakonjac, B.; Begović-Kuprešanin, V.; Šuljagić, V. Association between Antibiotic Use and Hospital-Onset Clostridioides difficile Infection in University Tertiary Hospital in Serbia, 2011–2021: An Ecological Analysis. Antibiotics 2022, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Laboratory Procedures for Diagnosis and Typing of Human Clostridium difficile Infection. Available online: https://www.ecdc.europa.eu/en/publications-data/laboratory-procedures-diagnosis-and-typing-human-clostridium-difficile-infection (accessed on 10 May 2024).
Test | Methodology | Advantages | Disadvantages |
---|---|---|---|
Stool culture | detection of bacteria | high sensitivity | necessity of a culture under anaerobic conditions, time length for the result, moderate specificity (lack of differentiation of toxigenic strains) |
PCR test | detection of bacterial DNA (e.g., GDH, toxin genes) | high sensitivity and specificity | lack of specificity against toxin-producing strains if only GDH is detected |
Cytotoxicity neutralization test in the cell culture | toxin detection | “gold standard” in the diagnosis of C. difficile intoxication; high sensitivity and specificity | labor-intensive, time-consuming, the need for constant cell culture |
Immunoenzymatic tests for toxin antigens | toxin detection | speed and simplicity of testing; low-cost method | low sensitivity |
PCR test (detection of toxin genes directly from stool sample or cultured strain) | toxin detection | high sensitivity and specificity, can be used as a single diagnostic method | requires appropriate equipment |
GDH and toxin A/B detection test | detection of bacteria and toxin detection | fast method (2–6 h); easy to perform | low sensitivity compared to PCR and cytotoxicity tests |
Strain Number | Ribotype Detected | Commentary/Interpretation |
---|---|---|
10 | 241 | Existing ribotype |
101 | 027 | Existing ribotype |
102 | 003 | Existing ribotype |
103 | 027 | Existing ribotype |
106 | PR09247 | New ribotype |
111 | 027 | Existing ribotype |
115 | 027 | Existing ribotype |
12 | 029 | Existing ribotype |
13 | 027 | Existing ribotype |
14 | PR24695 | Most probable: 014/0 ribotype |
15 | 027 | Existing ribotype |
16 | PR24696 | New ribotype |
17 | 009 | Existing ribotype |
18 | 027 | Existing ribotype |
19 | 018 | Existing ribotype |
21 | 027 | Existing ribotype |
22 | PR2468 | Most probable: 076 ribotype |
23 | PR24697 | New ribotype |
24 | 027 | Existing ribotype |
25 | 027 | Existing ribotype |
26 | AI-84 | Existing ribotype |
27 | PR24698 | Most probable: AI-61 ribotype |
3 | 081 | Existing ribotype |
30 | 241 | Existing ribotype |
32 | 005 | Existing ribotype |
33 | PR24695 | Most probable: 014/0 ribotype |
34 | 014/0 | Existing ribotype |
36 | PR24694 | Most probable: 006/1 ribotype |
37 | 005 | Existing ribotype |
38 | 241 | Existing ribotype |
39 | 023 | Existing ribotype |
4 | 002/2 | Existing ribotype |
40 | 020 | Existing ribotype |
41 | 416 | Existing ribotype |
42 | 027 | Existing ribotype |
43 | 029 | Existing ribotype |
44 | 403 | Existing ribotype |
45 | 081 | Existing ribotype |
46 | 027 | Existing ribotype |
47 | PR24683 | New ribotype |
48 | PR24699 | New ribotype |
49 | PR24700 | Most probable: 095 ribotype |
5 | 005 | Existing ribotype |
50 | 046 | Existing ribotype |
51 | PR24701 | New ribotype |
52 | PR24702 | New ribotype |
53 | 014/0 | Existing ribotype |
54 | PR01729 | New ribotype |
55 | PR01744 | Most probable: 031 ribotype |
56 | 027 | Existing ribotype |
57 | 001 | Existing ribotype |
58 | PR24684 | New ribotype |
59 | 012 | Existing ribotype |
6 | 018 | Existing ribotype |
60 | AI-78 | Existing ribotype |
7 | PR24685 | New ribotype |
70 | PR01729 | New ribotype |
71 | PR24686 | New ribotype |
72 | 014/0 | Existing ribotype |
73 | PR24687 | New ribotype |
74 | 001 | Existing ribotype |
77 | 027 | Existing ribotype |
78 | 027 | Existing ribotype |
79 | PR24690 | Most probable: 578 ribotype |
8 | 002/0 | Existing ribotype |
9 | 026 | Existing ribotype |
91 | 023 | Existing ribotype |
92 | 081 | Existing ribotype |
93 | 023 | Existing ribotype |
Ribotype Detected | Strain Number | tcdA | tcdB | cdtA/cdtB | Ribotype Detected | Strain Number | tcdA | tcdB | cdtA/cdtB |
---|---|---|---|---|---|---|---|---|---|
027 | 56 | pos. | pos. | pos. | 020 | 40 | pos. | pos. | neg. |
46 | pos. | pos. | pos. | 241 | 10 | pos. | pos. | neg. | |
103 | pos. | pos. | pos. | 38 | pos. | pos. | neg. | ||
115 | pos. | pos. | pos. | 30 | pos. | pos. | neg. | ||
111 | pos. | pos. | pos. | 0/12 | 59 | pos. | pos. | neg. | |
13 | pos. | pos. | pos. | 002/2 | 4 | pos. | pos. | neg. | |
18 | pos. | pos. | pos. | 0/18 | 19 | pos. | pos. | neg. | |
21 | pos. | pos. | pos. | 6 | pos. | pos. | neg. | ||
15 | pos. | pos. | pos. | 005 | 5 | pos. | pos. | neg. | |
24 | pos. | pos. | pos. | 32 | pos. | pos. | neg. | ||
25 | pos. | pos. | pos. | 37 | pos. | pos. | neg. | ||
42 | pos. | pos. | pos. | 023 | 93 | pos. | pos. | pos. | |
101 | pos. | pos. | pos. | 91 | pos. | pos. | pos. | ||
77 | pos. | pos. | pos. | 39 | pos. | pos. | pos. | ||
78 | pos. | pos. | pos. | 081 | 3 | pos. | pos. | neg. | |
014/0 | 34 | pos. | pos. | neg. | 45 | pos. | pos. | neg. | |
53 | pos. | pos. | neg. | 92 | pos. | pos. | neg. | ||
72 | pos. | pos. | neg. | 029 | 43 | pos. | pos. | neg. | |
001 | 74 | pos. | pos. | pos. | 12 | pos. | pos. | neg. | |
57 | pos. | pos. | pos. | 003 | 102 | pos. | pos. | neg. | |
009 | 17 | pos. | pos. | neg. |
Ribotype Detected | The Most Probable Ribotype | Strain Number | tcdA | tcdB | cdtA/cdtB |
---|---|---|---|---|---|
PR24695 | 014/0 | 14 | pos. | pos. | pos. |
PR24689 | 076 | 22 | pos. | pos. | pos. |
PR24698 | AI-61 | 27 | neg. | neg. | neg. |
PR24694 | 006/1 | 36 | pos. | pos. | neg. |
PR24700 | 095 | 49 | pos. | pos. | neg. |
PR01744 | 031 | 55 | pos. | pos. | neg. |
PR24690 | 578 | 79 | pos. | pos. | pos. |
PR24695 | 014/0 | 33 | pos. | pos. | neg. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogiel, T.; Dura, A.; Woźniak, M.; Mikucka, A.; Kanarek, P. Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes. Gels 2024, 10, 343. https://doi.org/10.3390/gels10050343
Bogiel T, Dura A, Woźniak M, Mikucka A, Kanarek P. Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes. Gels. 2024; 10(5):343. https://doi.org/10.3390/gels10050343
Chicago/Turabian StyleBogiel, Tomasz, Alicja Dura, Marcin Woźniak, Agnieszka Mikucka, and Piotr Kanarek. 2024. "Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes" Gels 10, no. 5: 343. https://doi.org/10.3390/gels10050343
APA StyleBogiel, T., Dura, A., Woźniak, M., Mikucka, A., & Kanarek, P. (2024). Usefulness of Capillary Gel Electrophoresis-Based PCR for Detection of Clostridioides difficile Strains with Hypervirulent Ribotypes. Gels, 10(5), 343. https://doi.org/10.3390/gels10050343