Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product
Abstract
:1. Introduction
2. Results and the Discussion
2.1. Prebiotic Activity (PA) of Soluble Fibers Extracted from Berry Pomace
2.2. Bigels Loaded with L. reuteri and Soluble Dietary Fibers
2.2.1. At +4 °C Temperature
2.2.2. At −18 °C Temperature
2.3. Butter Spread Product with Loaded Bigel
2.3.1. Textural and Rheological Properties
2.3.2. Viability of Probiotic
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Extraction of Soluble Prebiotic Dietary Fiber
4.2.2. Prebiotic Activity (PA)
4.2.3. Probiotic Preparation
4.2.4. Bigel Preparation
4.2.5. Probiotic Butter Spread Preparation
4.2.6. Bigel Characterization
Physical Stability
Rheological Properties
Viability of Probiotic Cells
4.2.7. Characteristics of the Probiotic Butter Spread Product
Rheological Characteristics
Textural Analysis
The Viability of Probiotic Cells
4.2.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO/WHO. Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. 2002. Available online: http://www.fao.org/es/ESN/Probio/probio.htm (accessed on 12 January 2024).
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021, 120, 106882. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Crit. Rev. Food Sci. Nutr. 2021, 61, 1515–1536. [Google Scholar] [CrossRef] [PubMed]
- Shori, A.B. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. Biocatal. Agric. Biotechnol. 2015, 4, 423–431. [Google Scholar] [CrossRef]
- de Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Van Baarlen, P.; Troost, F.J.; Van Hemert, S.; Van Der Meer, C.; De Vos, W.M.; De Groot, P.J.; Hooiveld, G.J.E.J.; Brummer, R.-J.M.; Kleerebezem, M. Differential NF-κB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc. Natl. Acad. Sci. USA 2009, 106, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.J.; Cerqueira, M.A.; Fasolin, L.H.; Cunha, R.L.; Vicente, A.A. Beeswax organogels: Influence of gelator concentration and oil type in the gelation process. Food Res. Int. 2016, 84, 170–179. [Google Scholar] [CrossRef]
- Singh, V.K.; Qureshi, D.; Nayak, S.K.; Pal, K. Bigels. In Polymeric Gels; Woodhead Publishing: Sawston, UK, 2018; pp. 265–282. [Google Scholar]
- Leeuwendaal, N.K.; Hayes, J.J.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Protection of candidate probiotic lactobacilli by Cheddar cheese matrix during simulated gastrointestinal digestion. J. Funct. Foods 2022, 92, 105042. [Google Scholar] [CrossRef]
- Zhuang, X.; Clark, S.; Acevedo, N. Bigels—Oleocolloid matrices—As probiotic protective systems in yogurt. J. Food Sci. 2021, 86, 4892–4900. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.P.R.; da Graça, J.S.; Ferreira, B.M.; Balthazar, C.F.; Xavier-Santos, D.; Bezerril, F.F.; Magnani, M.; Sant’Ana, A.S. What are the main obstacles to turning foods healthier through probiotics incorporation? a review of functionalization of foods by probiotics and bioactive metabolites. Food Res. Int. 2024, 176, 113785. [Google Scholar] [CrossRef]
- Behera, B.; Sagiri, S.S.; Singh, V.K.; Pal, K.; Anis, A. Mechanical properties and delivery of drug/probiotics from starch and non-starch based novel bigels: A comparative study. Starch Stärke 2014, 66, 865–879. [Google Scholar] [CrossRef]
- Zhuang, X.; Gaudino, N.; Clark, S.; Acevedo, N.C. Novel lecithin-based oleogels and oleogel emulsions delay lipid oxidation and extend probiotic bacteria survival. LWT 2021, 136, 110353. [Google Scholar] [CrossRef]
- Bollom, M.A.; Clark, S.; Acevedo, N.C. Edible lecithin, stearic acid, and whey protein bigels enhance survival of probiotics during in vitro digestion. Food Biosci. 2021, 39, 100813. [Google Scholar] [CrossRef]
- da Silva, M.N.; Tagliapietra, B.L.; dos Santos Richards, N.S.P. Encapsulation, storage viability, and consumer acceptance of probiotic butter. LWT 2021, 139, 110536. [Google Scholar] [CrossRef]
- Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 2000, 62, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, W.; Zhang, W.; Lan, D.; Wang, Y. Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: Stability evaluation under adverse conditions. Int. J. Biol. Macromol. 2023, 242, 124913. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Zhang, Q.; Zhong, F. Construction of double network gel for co-encapsulation of probiotics and capsaicin: Enhanced the physicochemical stability and controlled release. Food Biosci. 2024, 58, 103715. [Google Scholar] [CrossRef]
- Özer, D.; Akin, S.; Özer, B. Effect of Inulin and Lactulose on Survival of Lactobacillus AcidophilusLA-5 and Bifidobacterium Bifidum BB-02 in Acidophilus-Bifidus Yoghurt. Food Sci. Technol. Int. 2005, 11, 19–24. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Massa, N.M.L.; de Oliveira, S.P.A.; Rodrigues, N.P.A.; Menezes, F.N.D.D.; Lima, M.d.S.; Magnani, M.; de Souza, E.L. In vitro colonic fermentation and potential prebiotic properties of pre-digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-products. Food Chem. 2022, 388, 133003. [Google Scholar] [CrossRef]
- Sathyabama, S.; Ranjith, M.; Bruntha, P.; Vijayabharathi, R.; Brindha, V. Co-encapsulation of probiotics with prebiotics on alginate matrix and its effect on viability in simulated gastric environment. LWT 2014, 57, 419–425. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem. 2018, 244, 232–237. [Google Scholar] [CrossRef]
- Cenkowski, S.; Yakimishen, R.; Przybylski, R.; Muir, W.E. Quality of extracted sea buckthorn seed and pulp oil. Can. Biosyst. Eng. 2006, 48, 309–316. [Google Scholar] [CrossRef]
- Yang, B.; Ahotupa, M.; Määttä, P.; Kallio, H. Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries. Food Res. Int. 2011, 44, 2009–2017. [Google Scholar] [CrossRef]
- Boger, M.C.L.; van Bueren, A.L.; Dijkhuizen, L. Cross-Feeding among Probiotic Bacterial Strains on Prebiotic Inulin Involves the Extracellular exo-Inulinase of Lactobacillus paracasei Strain W20. Appl. Environ. Microbiol. 2018, 84, e01539-18. [Google Scholar] [CrossRef]
- Duarte, F.N.D.; Rodrigues, J.B.; Lima, M.d.C.; Lima, M.d.S.; Pacheco, M.T.B.; Pintado, M.M.E.; Aquino, J.d.S.; de Souza, E.L. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J. Sci. Food Agric. 2017, 97, 3712–3719. [Google Scholar] [CrossRef]
- Massa, N.M.L.; Menezes, F.N.D.D.; de Albuquerque, T.M.R.; de Oliveira, S.P.A.; Lima, M.d.S.; Magnani, M.; de Souza, E.L. Effects of digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-product on growth and metabolism of Lactobacillus and Bifidobacterium indicate prebiotic properties. LWT 2020, 131, 109766. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Yuan, Q.; Wang, S.; Gan, R.; Hu, Y.; Zou, L. Effects of molecular weight and degree of branching on microbial fermentation characteristics of okra pectic-polysaccharide and its selective impact on gut microbial composition. Food Hydrocoll. 2022, 132, 107897. [Google Scholar] [CrossRef]
- Hayek, S.A.; Shahbazi, A.; Worku, M.; Ibrahim, S.A. Enzymatic activity of Lactobacillus reuteri grown in a sweet potato based medium with the addition of metal ions. SpringerPlus 2013, 2, 465. [Google Scholar] [CrossRef]
- Pan, L.; Wang, L.; Zhang, F.; Zhang, Y.; Zheng, B. Structural characterization and bifidogenic activity of polysaccharide from Dictyophora indusiata. Food Biosci. 2023, 51, 102297. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Ying, X.; Ma, A.; Li, Z.; Liu, H.; Guo, Q. Fermentation properties and prebiotic potential of different pectins and their corresponding enzymatic hydrolysates. Food Hydrocoll. 2023, 143, 108878. [Google Scholar] [CrossRef]
- Antunes, L.L.; Back, A.L.; Kossar, M.L.B.C.; Spessato, A.G.; Colla, E.; Drunkler, D.A. Prebiotic potential of carbohydrates from defatted rice bran—Effect of physical extraction methods. Food Chem. 2023, 404, 134539. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Luan, H.J.; Qin, J.; Zong, A.; Liu, L.; Xu, Z.; Du, F.; Xu, T. Effect of soluble dietary fiber on soy protein isolate emulsion gel properties, stability and delivery of vitamin D3. Int. J. Biol. Macromol. 2024, 262, 129806. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.K.; Shah, N.P. Effect of Homogenization Techniques on Reducing the Size of Microcapsules and the Survival of Probiotic Bacteria Therein. J. Food Sci. 2009, 74, M231–M236. [Google Scholar] [CrossRef]
- Conley, S.M.; Stuck, M.W.; Naash, M.I. Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cell. Mol. Life Sci. 2012, 69, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Du, L.; Meng, Z. Comparative study of natural wax-based W/O emulsion gels: Microstructure and macroscopic properties. Food Res. Int. 2023, 165, 112509. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Chan, E.S.; Janarthanan, P.; Choo, W.S. Functional orange juice with Lactobacillus casei and tocotrienol-enriched flaxseed oil co-encapsulation: Physicochemical properties, probiotic viability, oxidative stability, and sensorial acceptability. LWT 2023, 188, 115388. [Google Scholar] [CrossRef]
- Tian, W.; Huang, Y.; Liu, L.; Yu, Y.; Cao, Y.; Xiao, J. Tailoring the oral sensation and digestive behavior of konjac glucomannan-gelatin binary hydrogel based bigel: Effects of composition and ratio. Int. J. Biol. Macromol. 2024, 256, 127963. [Google Scholar] [CrossRef]
- Ranadheera, R.; Baines, S.; Adams, M. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Bruno, F.; Shah, N. Viability of Two Freeze-dried Strains of Bifidobacterium and of Commercial Preparations at Various Temperatures During Prolonged Storage. J. Food Sci. 2006, 68, 2336–2339. [Google Scholar] [CrossRef]
- Fearon, A.M. Butter and butter products. In Dairy Ingredients for Food Processing; Chandan, R.C., Kilara, A., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 199–223. [Google Scholar]
- Sert, D.; Mercan, E. Characterisation of physicochemical, microbiological, thermal, oxidation properties and fatty acid composition of butter produced from thermosonicated cream. Int. Dairy J. 2020, 109, 104777. [Google Scholar] [CrossRef]
- Ewe, J.-A.; Loo, S.-Y. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter. Food Chem. 2016, 201, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.B.; Grimaldi, R.; Gioielli, L.A.; Gonçalves, L.A. Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications. Food Res. Int. 2009, 42, 401–410. [Google Scholar] [CrossRef]
- Queirós, M.S.; Grimaldi, R.; Gigante, M.L. Addition of olein from milk fat positively affects the firmness of butter. Food Res. Int. 2016, 84, 69–75. [Google Scholar] [CrossRef]
- da Silva, M.N.; Tagliapietra, B.L.; Pivetta, F.P.; Richards, N.S.P.d.S. Nutritional, functional and sensory profile of added butter from Lactobacillus acidophilus encapsulated and hyposodium salt. LWT 2022, 161, 113385. [Google Scholar] [CrossRef]
- Erkaya, T.; Ürkek, B.; Dogru, Ü.; Çetin, B.; Sengül, M. Probiotic butter: Stability, free fatty acid composition and some quality parameters during refrigerated storage. Int. Dairy J. 2015, 49, 102–110. [Google Scholar] [CrossRef]
- Hashim, A.F.; El-Sayed, S.M.; El-Sayed, H.S. Bigel formulations based on sesame oleogel with probiotics alginate hydrogel: A novel structure for nutritious spreadable butter. Int. J. Biol. Macromol. 2023, 242, 124782. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Rezazad-Bari, M.; Alizadeh, M.; Almasi, H.; Amiri, S. Use of whey protein isolate and gum Arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: Enhanced viability of probiotic in Iranian white cheese. Food Hydrocoll. 2021, 113, 106496. [Google Scholar] [CrossRef]
- Tyutkov, N.; Zhernyakova, A.; Birchenko, A.; Eminova, E.; Nadtochii, L.; Baranenko, D. Probiotics viability in frozen food products. Food Biosci. 2022, 50, 101996. [Google Scholar] [CrossRef]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C. International Organization for Standardization: Geneva, Switzerland, 1998.
Storage Duration, Days | Butter (Control) | Butter Spread Product with Loaded Bigel | ||
---|---|---|---|---|
Storage Modulus G′, Pa·105, at 1 Hz, | Firmness, N | Storage Modulus G′, Pa·105, at 1 Hz, | Firmness, N | |
At 4 °C Temperature | ||||
0 | 1.64 ± 0.04 bB | 18.8 ± 1.4 bD | 1.49 ± 0.08 aAB | 14.2 ± 3.2 aD |
30 | 1.28 ± 0.12 aA | 20.2 ± 1.4 bE | 1.55 ± 0.30 bAB | 14.2 ± 3.2 aCD |
60 | 1.81 ± 0.03 bBCD | 20.2 ± 1.5 bE | 1.48 ± 0.07 aAB | 13.8 ± 1.7 aCD |
90 | 1.78 ± 0.05 bBCD | 14.6 ± 1.6 bA | 1.55 ± 0.07 aAB | 10.3 ± 1.1 aB |
120 | 1.85 ± 0.17 bCD | 16.6 ± 1.6 bC | 1.57 ± 0.04 aB | 8.9 ± 1.3 aAB |
150 | 1.85 ± 0.03 bD | 15.6 ± 1.7 bB | 1.52 ± 0.01 aAB | 8.1 ± 0.9 aAB |
180 | 1.81 ± 0.08 bBCD | 14.2 ± 2.2 bA | 1.49 ± 0.02 aAB | 7.6 ± 0.6 aA |
At −18 °C Temperature | ||||
0 | 1.64 ± 0.04 bBC | 18.8 ± 1.4 bD | 1.49 ± 0.08 aAB | 14.2 ± 2.8 aE |
30 | 1.39 ± 0.07 aA | 16.2 ± 0.9 bC | 1.55 ± 0.17 bB | 10.0 ± 0.8 aD |
60 | 1.75 ± 0.08 bC | 18.4 ± 2.1 bD | 1.48 ± 0.09 aAB | 14.7 ± 2.5 aE |
90 | 1.70 ± 0.16 bBC | 9.7 ± 1.5 bA | 1.35 ± 0.02 aAB | 7.8 ± 0.4 aCD |
120 | 1.70 ± 0.00 bBC | 11.5 ± 1.0 bB | 1.36 ± 0.09 aAB | 6.9 ± 0.3 aBC |
150 | 1.74 ± 0.09 bBC | 10.5 ± 0.8 bAB | 1.32 ± 0.10 aA | 5.3 ± 0.8 aAB |
180 | 1.72 ± 0.13 bBC | 9.2 ± 0.6 bA | 1.32 ± 0.12 aA | 4.2 ± 0.9 aA |
Visual image of the butter spread samples |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamašauskaitė, L.; Minelgaitė, V.; Šipailienė, A.; Vinauskienė, R.; Eisinaitė, V.; Leskauskaitė, D. Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product. Gels 2024, 10, 349. https://doi.org/10.3390/gels10050349
Tamašauskaitė L, Minelgaitė V, Šipailienė A, Vinauskienė R, Eisinaitė V, Leskauskaitė D. Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product. Gels. 2024; 10(5):349. https://doi.org/10.3390/gels10050349
Chicago/Turabian StyleTamašauskaitė, Laura, Vidmantė Minelgaitė, Aušra Šipailienė, Rimantė Vinauskienė, Viktorija Eisinaitė, and Daiva Leskauskaitė. 2024. "Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product" Gels 10, no. 5: 349. https://doi.org/10.3390/gels10050349
APA StyleTamašauskaitė, L., Minelgaitė, V., Šipailienė, A., Vinauskienė, R., Eisinaitė, V., & Leskauskaitė, D. (2024). Bigel Matrix Loaded with Probiotic Bacteria and Prebiotic Dietary Fibers from Berry Pomace Suitable for the Development of Probiotic Butter Spread Product. Gels, 10(5), 349. https://doi.org/10.3390/gels10050349