Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Diet on Zophobas morio Survival Rate
2.2. Effects of Diet on Properties of Chitin Extracted from Zophobas morio
2.3. Effects of Diets on Chitin Hydrogel Properties from Zophobas morio
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Insect Breeding and Survival Rate (%)
4.3. Extraction of Chitins and Hydrogel Preparation
4.4. Characterization of Extracted Chitin
4.5. Characterization of Chitin Solutions
4.6. Characterization of Chitin Hydrogels
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, J.; Aydemir, B.E.; Dumanli, A.G. Understanding the structural diversity of chitins as a versatile biomaterial. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200331. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, N.; Jujjavarapu, S.E.; Ayothiraman, S. Marine shell industrial wastes–an abundant source of chitin and its derivatives: Constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. Int. J. Environ. Sci. Technol. 2019, 16, 3877–3898. [Google Scholar] [CrossRef]
- Joseph, B.; Sam, R.M.; Balakrishnan, P.; Maria, H.J.; Gopi, S.; Volova, T.; Fernandes, S.C.M.; Thomas, S. Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers 2020, 12, 1664. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research, Chitosan Market Size, Share & Trends Analysis Report by Application (Pharmaceutical, Water Treatment, Cosmetics, Biomedical, Food & Beverage), by Region, and Segment Forecasts, 2023–2030, Market Analysis Report. 2024. pp. 1–126. Available online: https://www.grandviewresearch.com/industry-analysis/global-chitosan-market (accessed on 18 May 2024).
- Errico, S.; Spagnoletta, A.; Verardi, A.; Moliterni, S.; Dimatteo, S.; Sangiorgio, P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 148–197. [Google Scholar] [CrossRef] [PubMed]
- Sajomsang, W.; Gonil, P. Preparation and characterization of α-chitin from cicada sloughs. Mater. Sci. Eng. C 2010, 30, 357–363. [Google Scholar] [CrossRef]
- Zarzosa, G.I.G.; Kobayashi, T. Regenerated chitin from insect sources and fabrication of their hydrogel films as an alternative from marine sources. Biomass Convers. Biorefinery 2024, 1–14. [Google Scholar] [CrossRef]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of organic wastes as substrates for rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete nutrient content of four species of commercially available feeder insects fed enhanced diets during growth. Zoo Biol. 2015, 34, 554–564. [Google Scholar] [CrossRef]
- FAO. Citrus Fruit Fresh and Processed Statistical Bulletin 2020, Statistical Bulletin 2020. 2021. pp. 1–48. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4760a5b5-f3b2-41c7-8713-ccdb1a5f8c08/content (accessed on 18 May 2024).
- Gahukar, R.T. Edible Insects Farming: Efficiency and Impact on Family Livelihood, Food Security, and Environment Compared with Livestock and Crops. In Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Nikkhah, A.; Van Haute, S.; Jovanovic, V.; Jung, H.; Dewulf, J.; Velickovic, T.C.; Ghnimi, S. Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Sci. Rep. 2021, 11, 14030. [Google Scholar] [CrossRef]
- Wu, W.M.; Criddle, C.S. Characterization of biodegradation of plastics in insect larvae. Methods Enzym. 2021, 648, 95–120. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Wang, L.; Xu, Z.; Zhang, S.; Zhang, Q. Progress in polystyrene biodegradation by insect gut microbiota. World J. Microbiol. Biotechnol. 2024, 40, 143. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, J.; Xia, M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci. Total Environ. 2020, 708, 135233. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, J.; Wu, W.-M.; Zhao, J.; Song, Y.; Gao, L.; Yang, R.; Jiang, L. Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environ. Sci. Technol. 2015, 49, 12080–12086. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.-Y.; Li, Y.; Fan, R.; Chen, Z.; Chen, J.; Brandon, A.M.; Criddle, C.S.; Zhang, Y.; Wu, W.-M. Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environ. Pollut. 2020, 266, 115206. [Google Scholar] [CrossRef] [PubMed]
- Przemieniecki, S.W.; Kosewska, A.; Kosewska, O.; Purwin, C.; Lipiński, K.; Ciesielski, S. Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Sci. Total Environ. 2022, 832, 154758. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-S.; Ding, M.-Q.; He, L.; Zhang, C.-H.; Li, Q.-X.; Xing, D.-F.; Cao, G.-L.; Zhao, L.; Ding, J.; Ren, N.-Q.; et al. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Sci. Total Environ. 2020, 756, 144087. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.-Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.-M.; Zhang, Y. Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int. 2020, 145, 106106. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.; Berggreen, I.; Vidal, N.P.; Roman, L.; Gika, H.; Corredig, M. Cellular lipids and protein alteration during biodegradation of expanded polystyrene by mealworm larvae under different feeding conditions. Chemosphere 2022, 300, 134420. [Google Scholar] [CrossRef] [PubMed]
- Ilijin, L.; Nikolić, M.V.; Vasiljević, Z.Z.; Todorović, D.; Mrdaković, M.; Vlahović, M.; Matić, D.; Tadić, N.B.; Perić-Mataruga, V. Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. Int. J. Biol. Macromol. 2024, 268, 131731. [Google Scholar] [CrossRef]
- Jang, M.; Kong, B.; Jeong, Y.; Lee, C.H.; Nah, J. Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3423–3432. [Google Scholar] [CrossRef]
- Zarzosa, G.I.G.; Kobayashi, T. Insect Chitins and Hydrogels Sourced from Zophobas Morio in Different Lifes Stage and Their Properties. Chem. Lett. 2023, 52, 674–677. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, L.; Hu, L.; Zhang, L. Application of Chitin Hydrogels for Seed Germination, Seedling Growth of Rapeseed. J. Plant Growth Regul. 2014, 33, 195–201. [Google Scholar] [CrossRef]
- Ramos, M.L.P.; González, J.A.; Albornoz, S.G.; Pérez, C.J.; Villanueva, M.E.; Giorgieri, S.A.; Copello, G.J. Chitin hydrogel reinforced with TiO2 nanoparticles as an arsenic sorbent. Chem. Eng. J. 2016, 285, 581–587. [Google Scholar] [CrossRef]
- Jiang, H.; Kobayashi, T. Ultrasound stimulated release of gallic acid from chitin hydrogel matrix. Mater. Sci. Eng. C 2017, 75, 478–486. [Google Scholar] [CrossRef]
- YYang, T.-L. Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ. Int. J. Mol. Sci. 2011, 12, 1936–1963. [Google Scholar] [CrossRef]
- Lv, J.; Lv, X.; Ma, M.; Oh, D.-H.; Jiang, Z.; Fu, X. Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr. Polym. 2023, 299, 120142. [Google Scholar] [CrossRef] [PubMed]
- Dodda, J.M.; Deshmukh, K.; Bezuidenhout, D.; Yeh, Y.-C. Hydrogels: Definition, History, Classifications, Formation, Constitutive Characteristics, and Applications. In Multicomponent Hydrogels; The Royal Society of Chemistry: London, UK, 2023. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- Musembi, J.P.; Owino, E.A.; Oyieke, F.A.; Tanga, C.M.; Beesigamukama, D.; Subramanian, S.; Cheseto, X.; Egonyu, J.P. Efficient agri-food waste valorization using mealworm (Coleoptera: Tenebrionidae) into nutrient-rich biomass for food and feed. J. Econ. Èntomol. 2024, toae035. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.-S.; Kim, D.-Y.; Shin, W.-S. Characterization of chitosan extracted from Mealworm Beetle (Tenebrio molitor, Zophobas morio) and Rhinoceros Beetle (Allomyrina dichotoma) and their antibacterial activities. Int. J. Biol. Macromol. 2019, 125, 72–77. [Google Scholar] [CrossRef]
- Soon, C.Y.; Tee, Y.B.; Tan, C.H.; Rosnita, A.T.; Khalina, A. Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration. Int. J. Biol. Macromol. 2018, 108, 135–142. [Google Scholar] [CrossRef]
- Machado, S.S.N.; da Silva, J.B.A.; Nascimento, R.Q.; Lemos, P.V.F.; Assis, D.D.J.; Marcelino, H.R.; Ferreira, E.D.S.; Cardoso, L.G.; Pereira, J.D.; Santana, J.S.; et al. Insect residues as an alternative and promising source for the extraction of chitin and chitosan. Int. J. Biol. Macromol. 2024, 254, 127773. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Bakuła, T. The Use of Exoskeletons and Molts of Farmed Mealworm (Tenebrio molitor) for the Removal of Reactive Dyes from Aqueous Solutions. Appl. Sci. 2023, 13, 7379. [Google Scholar] [CrossRef]
- Pasquier, E.; Beaumont, M.; Mattos, B.D.; Otoni, C.G.; Winter, A.; Rosenau, T.; Belgacem, M.N.; Rojas, O.J.; Bras, J. Upcycling Byproducts from Insect (Fly Larvae and Mealworm) Farming into Chitin Nanofibers and Films. ACS Sustain. Chem. Eng. 2021, 9, 13618–13629. [Google Scholar] [CrossRef]
- Triunfo, M.; Tafi, E.; Guarnieri, A.; Salvia, R.; Scieuzo, C.; Hahn, T.; Zibek, S.; Gagliardini, A.; Panariello, L.; Coltelli, M.B.; et al. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 2022, 12, 6613. [Google Scholar] [CrossRef]
- Kaya, M.; Lelešius, E.; Nagrockaitė, R.; Sargin, I.; Arslan, G.; Mol, A.; Baran, T.; Can, E.; Bitim, B. Differentiations of chitin content and surface morphologies of chitins extracted from male and female grasshopper species. PLoS ONE 2015, 10, e0115531. [Google Scholar] [CrossRef]
- Kabalak, M.; Aracagök, D.; Torun, M. Extraction, characterization and comparison of chitins from large bodied four Coleoptera and Orthoptera species. Int. J. Biol. Macromol. 2020, 145, 402–409. [Google Scholar] [CrossRef]
- Draczynski, Z. Honeybee corpses as an available source of chitin. J. Appl. Polym. Sci. 2008, 109, 1974–1981. [Google Scholar] [CrossRef]
- Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol. 2003, 206, 4393–4412. [Google Scholar] [CrossRef]
- Noh, M.Y.; Muthukrishnan, S.; Kramer, K.J.; Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 2016, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sugumaran, M. Complexities of cuticular pigmentation in insects. Pigment Cell Melanoma Res. 2009, 22, 523–525. [Google Scholar] [CrossRef] [PubMed]
Feeding Group | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|
Control | 89.6 ± 2.5 | 85.6 ± 5.0 | 80.6 ± 3.0 | 74.6 ± 4.5 |
OP | 99.5 ± 0.7 | 97.5 ± 0.7 | 90 ± 2.8 | 82.5 ± 0.9 |
XPS | 84.6 ± 6.1 | 74.3 ± 11.8 | 59.3 ± 3.3 | 48.6 ± 8.5 |
Feeding Group | Yield (%) | DA (%) | CrI (%) | Mw (106 g/mol) | Mn (106 g/mol) | Viscosity * (Pa·s) | Solubility + |
---|---|---|---|---|---|---|---|
Control | 8.4 ± 0.6 | 69.6 ± 0.7 | 62.9 ± 1.5 | 2.5 ± 0.02 | 2.0 ± 0.01 | 2.5 ± 0.7 | 96.4 ± 1.5 |
OP | 8.5 ± 0.8 | 69.2 ± 1.6 | 62.5 ± 0.7 | 2.6 ± 0.04 | 2.1 ± 0.07 | 2.6 ± 1.2 | 96.2 ± 1.1 |
XPS | 8.4 ± 0.7 | 69.5 ± 1.9 | 61.9 ± 1.2 | 2.5 ± 0.03 | 2.0 ± 0.04 | 2.4 ± 1.7 | 95.8 ± 1.7 |
Sample | Elements | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Mn | Fe | Zn | |
Control | 44.3 | 8.07 | 45.5 | 0.0325 | 0.0943 | - | 0.0456 | 0.003 | - | 1.92 | 0.005 | 0.066 | - | 0.0118 | - |
OP | 44.5 | 8.01 | 45.6 | 0.0401 | 0.0890 | - | 0.0459 | 0.007 | - | 1.42 | 0.005 | 0.068 | - | 0.0152 | - |
XPS | 43.8 | 8.09 | 46.6 | 0.0311 | 0.0903 | - | 0.0545 | 0.007 | - | 1.63 | 0.008 | 0.036 | - | 0.0120 | - |
Chitin Hydrogel | Water Content (%) | Contact Angle (°) | Swelling Rate (%) |
---|---|---|---|
Control | 97.7 ± 0.7 | 15 ± 1 | 271.3 ± 0.5 |
OP | 97.6 ± 0.2 | 14 ± 1 | 271.5 ± 0.4 |
XPS | 97.8 ± 0.5 | 15 ± 1 | 271.3 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guangorena Zarzosa, G.I.; Kobayashi, T. Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels 2024, 10, 433. https://doi.org/10.3390/gels10070433
Guangorena Zarzosa GI, Kobayashi T. Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels. 2024; 10(7):433. https://doi.org/10.3390/gels10070433
Chicago/Turabian StyleGuangorena Zarzosa, Guillermo Ignacio, and Takaomi Kobayashi. 2024. "Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene" Gels 10, no. 7: 433. https://doi.org/10.3390/gels10070433
APA StyleGuangorena Zarzosa, G. I., & Kobayashi, T. (2024). Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels, 10(7), 433. https://doi.org/10.3390/gels10070433