Bio-Based Aerogels in Energy Storage Systems
Abstract
:1. Introduction
- according to the main types of energy storage devices, i.e., main battery types and supercapacitors,
- according to the preparation and characterization ability for the case of different types of bio-based aerogels,
- according to the suitability of the derived bio-based aerogels for different segments of the energy storage devices.
2. Bio-Based Aerogel Preparation, Characterization, and Types
2.1. Bio-Based Aerogels Preparation
- Ambiental drying—will enable removing the solvent residuals but will not enable the preparation of aerogel bodies due to the inability to mitigate capillary forces. Ambiental drying is facile but unsuitable for advanced applications.
- Freeze drying—will be more efficient for removing the solvents but will face optimization limitations for achieving various morphologies and processing samples of various sizes. Freeze drying, i.e., lyophilization is a more powerful, but not particularly versatile, method (schematically shown in Figure 1(b)).
- Supercritical drying—will enable efficient solvent removal and a variety of optimization possibilities for achieving various morphologies. Supercritical fluid drying technologies are the ultimate aerogel processing tools (schematically shown in Figure 1(b)).
- When talking about preparation of the active materials for energy storage devices, i.e., electrodes, pyrolysis of the bio-based aerogels is the crucial step for making them adequate. High-temperature pyrolysis treatment under the protection of inert gases, such as nitrogen and argon, is crucial to make them pure carbonous materials, without oxide implementation. A few pyrolysis regions can be separated:
- Around 200 °C, where chemically bound water is removed from the material.
- Below 300 °C, where the cleavage of intra- and inter-molecular hydrogen bonds occurs, while intra-molecular dehydration is predominant.
- Above 300 °C, where inter-molecular dehydration takes place along with decarbonylation, ring-opening, and aromatization.
- At 430 °C, while dehydration is nearly complete, and small aromatic clusters undergo significant deoxygenation and condensation between 430 and 650 °C.
- Beyond 650 °C, where the dominant reaction shifts from deoxygenation to dehydrogenation, resulting in highly aromatic chair with large aromatic systems composed of over six fused ring structures.
- Typically, the pyrolysis temperature for bio-based aerogels exceeds 800 °C to achieve the desired properties after sintering occurs, influencing electrical properties and the specific surface area of the samples, depending on the used precursor and the pyrolysis conditions.
2.2. Bio-Based Aerogels Characterisation
- Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which are usually used for describing charge and discharge capacities, as well as for the determination of Coulombic efficiency by measuring the potential–intensity curves in a potential range. Different oxidation and reduction peaks could be observed. Rate capabilities at different current densities and charge/discharge profiles could be presented, from which one can obtain the endurance test, as well as the average Coulombic efficiency after a certain number of cycles.
- Solid-state impedance spectroscopy (SS-IS) and electrochemical impedance spectroscopy (EIS) are used for further investigation of the interlayer effect on single-cell performance. The measurement system for measuring solid-state impedance spectroscopy consists of an impedance analyser, a BDS cell in which the sample is placed between two electrodes, a cryostat system for temperature control, and a computer (equipped with appropriate software). The real and imaginary components of the complex impedance are measured using an impedance analyser over a wide frequency and temperature range. The experimental spectra of the complex impedance are analysed equivalently to results given by EIS, by modelling an equivalent circuit using the complex nonlinear least squares (CNLS) method. Generally, SS-IS is used for determination of the electrical characteristics of individual constituents of energy-storage system. Usually, results are presented as Nyquist plots where different contributions and mechanisms of electric conductivity can be seen. Different charge transfer processes can be visible at the mid-frequency range of the plot, representing the interface process between the electrolyte and electrode. Resistance values at the end of the measurement are in agreement with the corresponding cycling performances of the cell.
2.3. Polysaccharide-Based Aerogels
2.3.1. Lignin
2.3.2. Cellulose
2.3.3. Chitosan
2.3.4. Synthetic Counterparts
3. Applications in Energy Storage—Batteries
3.1. Aerogels in LIBs
3.2. Bio-Based Aerogels as Electrodes in LIBs
3.3. Bio-Based Aerogels as Separators in LIBs
3.4. Bio-Based Aerogels in Other Batteries
3.4.1. Bio-Based Aerogels in Lithium–Sulphur Batteries
3.4.2. Bio-Based Aerogels in Zinc Batteries
4. Applications in Energy Storage—Supercapacitors
5. Applications in Fuel Cells
6. Conclusions Regarding Future and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, C.; Fung, B.M.; Newman, J.K.; Vu, C. Organic aerogels with very high impact strength. Adv. Mater. 2001, 13, 644–646. [Google Scholar] [CrossRef]
- Druel, L.; Budtova, T. Aerogel-like (low density and high surface area) cellulose monoliths and beads obtained without supercritical-or freeze-drying. Cellulose 2023, 30, 8339–8353. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Y.; Wang, W.; Fang, Y.; Riffat, S.B.; Jiang, F. The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr. Polym. 2019, 226, 115242. [Google Scholar] [CrossRef] [PubMed]
- Chartier, C.; Buwalda, S.; Ilochonwu, B.C.; Van Den Berghe, H.; Bethry, A.; Vermonden, T.; Budtova, T. Release Kinetics of Dexamethasone Phosphate from Porous Chitosan: Comparison of Aerogels and Cryogels. Biomacromolecules 2023, 24, 4494–4501. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Budtova, T. Polysaccharide-based aerogels for thermal insulation and superinsulation: An overview. Carbohydr. Polym. 2021, 266, 118130. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, J. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Braun, A. Electrochemical Energy Systems: Foundations, Energy Storage and Conversion; De Gruyter: Berlin, Germany, 2018; pp. 150–225. [Google Scholar]
- Muddasar, M.; Liaquat, R.; Abdullah, A.; Khoja, A.H.; Shahzad, N.; Iqbal, N.; Ali, M.I.; Uddin, A.; Ullah, S. Evaluating the use of unassimilated bio-anode with different exposed surface areas for bioenergy production using solar-powered microbial electrolysis cell. Int. J. Energy Res. 2021, 45, 20143–20155. [Google Scholar] [CrossRef]
- Badwal, P.S.; Giddey, S.S.; Munning, C.; Bhatt, A.I.; Hollenkamp, A.F. Emerging electrochemical energy conversion and storage technologies. Front. Chem. 2014, 2, 79. [Google Scholar] [CrossRef] [PubMed]
- Al Shaqsi, A.Z.; Sopian, K.; Al-Hinai, A. Review of energy storage services, applications, limitations, and benefits. Energy Rep. 2020, 6, 288–306. [Google Scholar] [CrossRef]
- Jiao, D.; Xie, Z.; Wan, Q.; Qu, M. Reduced irreversible capacities of graphene oxide-based anodes used for lithium ion batteries via alkali treatment. J. Energy Chem. 2019, 37, 73–81. [Google Scholar] [CrossRef]
- Yan, C.; Xu, R.; Xiao, Y.; Ding, J.F.; Xu, L.; Li, B.Q.; Huang, J.Q. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887. [Google Scholar] [CrossRef]
- Yan, C.; Yuan, H.; Park, H.S.; Huang, J.-Q. Perspective on the critical role of interface for advanced batteries. J. Energy Chem. 2020, 47, 217–220. [Google Scholar] [CrossRef]
- Nainville, I.; Lemarchand, A.; Badiali, J.P. Passivation of a lithium anode: A simulation model. Electrochim. Acta 1996, 41, 2855–2863. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. Schnet–a deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722. [Google Scholar] [CrossRef]
- Ceder, G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. MRS Bull. 2010, 35, 693–701. [Google Scholar] [CrossRef]
- Qi, W.; Shapter, J.G.; Wu, Q.; Yin, T.; Gao, G.; Cui, D. Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives. J. Mater. Chem. A 2017, 5, 19521–19540. [Google Scholar] [CrossRef]
- Chen, G.; Yan, L.; Luo, H.; Guo, S. Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage. Adv. Mater. 2016, 28, 7580–7602. [Google Scholar] [CrossRef]
- Mahmood, N.; Tang, T.; Hou, Y. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective. Adv. Energy Mater. 2016, 6, 1600374. [Google Scholar] [CrossRef]
- Pham, T.N.; Park, D.; Lee, Y.; Kim, I.T.; Hur, J.; Oh, Y.K.; Lee, Y.C. Combination-based nanomaterial designs in single and double dimensions for improved electrodes in lithium ion-batteries and faradaic supercapacitors. J. Energy Chem. 2019, 38, 119–146. [Google Scholar] [CrossRef]
- Liu, H.; Yu, H. Ionic liquids for electrochemical energy storage devices applications. J. Mater. Sci. Technol. 2019, 35, 674–686. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Rai, A.A.; Stojanovska, E.; Akgul, Y.; Khan, M.M.; Kilic, A.; Yilmaz, S. Fabrication of co- PVDF/modacrylic/SiO2 nanofibrous membrane: Composite separator for safe and high performance lithium-ion batteries. J. Appl. Polym. Sci. 2021, 138, 49835. [Google Scholar] [CrossRef]
- Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Park, B.-H.; Kim, Y.-J.; Park, J.-S.; Choi, J. Capacitive deionization using a carbon electrode prepared with water-soluble poly(vinyl alcohol) binder. J. Ind. Eng. Chem. 2011, 17, 717–722. [Google Scholar] [CrossRef]
- Lewandowski, A.; Zajder, M.; Frackowiak, E.; Beguin, F. Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochim. Acta 2001, 46, 2777–2780. [Google Scholar] [CrossRef]
- Son, I.-S.; Oh, Y.; Yi, S.-H.; Im, W.B.; Chun, S.E. Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors. Carbon 2020, 159, 283–291. [Google Scholar] [CrossRef]
- Stojanovska, E.; Kilic, A. Carbon nanofibers as thick electrodes for aqueous supercapacitors. J. Energy Storage 2019, 26, 100981. [Google Scholar] [CrossRef]
- Faruk, O.; Adak, B. Recent advances in PEDOT: PSS integrated graphene and MXene-based composites for electrochemical supercapacitor applications. Synth. Met. 2023, 297, 117384. [Google Scholar] [CrossRef]
- Chen, H.; Wang, G.; Chen, L.; Dai, B.; Yu, F. Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode. Nanomaterials 2017, 8, 412. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Kruk, M. Ordered arrays of hollow carbon nanospheres and nanotubules from polyacrylonitrile grafted on ordered mesoporous silicas using atom transfer radical polymerization. Polymer 2015, 72, 356–360. [Google Scholar] [CrossRef]
- Bafti, A.; Mandić, V.; Panžić, I.; Pavić, L.; Špada, V. CdSe QDs modified cellulose microfibrils for enhanced humidity sensing properties. Appl. Surf. Sci. 2023, 612, 155894. [Google Scholar] [CrossRef]
- Zhong, M.; Tang, C.; Kim, E.K.; Kruk, M.; Celer, E.B.; Jaroniec, M.; Matyjaszewski, K.; Kowalewski, T. Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. Mater. Horiz. 2014, 1, 121–124. [Google Scholar] [CrossRef]
- Kopeć, M.; Lamson, M.; Yuan, R.; Tang, C.; Kruk, M.; Zhong, M.; Matyjaszewski, K.; Kowalewski, T. Polyacrylonitrilederived nanostructured carbon materials. Prog. Polym. Sci. 2019, 92, 89–134. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, W.; Jia, D.; Cui, L.; Liu, J. Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chem. Eng. J. 2019, 364, 70–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Peng, L.; Yang, J.; Jia, H.; Zhang, Z.; Shan, B.; Xie, J. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all solid- state lithium-sulfur battery. Energy Storage Mater. 2019, 21, 287–296. [Google Scholar] [CrossRef]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- Al Rai, A.; Yanilmaz, M. High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose 2021, 28, 5169–5218. [Google Scholar] [CrossRef]
- Husain, F.M.; Khan, A.; Khan, R.A.; Siddique, J.A.; Oves, M.; Khan, A.A.P.; Ansari, M.O.; Cancar, H.D. Bio-based aerogels and their environment applications: An overview. In Advances in Aerogel Composites for Environmental Remediation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–356. [Google Scholar]
- Bao, Y.; Gong, Y. Li-ion battery charge transfer stability studies with direct current impedance spectroscopy. Energy Rep. 2023, 9, 34–41. [Google Scholar] [CrossRef]
- Liu, L.; Solin, N.; Inganäs, O. Bio based batteries. Adv. Energy Mater. 2021, 11, 2003713. [Google Scholar] [CrossRef]
- Kun, D.; Pukánszky, B. Polymer/lignin blends: Interactions, properties, applications. Eur. Polym. J. 2017, 93, 618–641. [Google Scholar] [CrossRef]
- Tribot, A.; Amer, G.; Alio, M.A.; des Baynast, H.; Delattre, C.; Pons, A.; Callois, J.M.; Vial, C.; Michaud, P.; Dussap, C.G. Wood-lignin: Supply, extraction processes and use as bio-based material. Eur. Polym. J. 2019, 112, 228–240. [Google Scholar] [CrossRef]
- Yang, B.S.; Kang, K.Y.; Jeong, M.J. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor. J. Korean Phys. Soc. 2017, 71, 478–482. [Google Scholar] [CrossRef]
- Geng, S.; Wei, J.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage. ACS Appl. Mater. Interfaces 2020, 12, 7432–7441. [Google Scholar] [CrossRef]
- Baker, D.A.; Rials, T.G. Recent Advances in Low-Cost Carbon Fiber Manufacture from Lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. [Google Scholar] [CrossRef]
- Wang, S.-X.; Yang, L.; Stubbs, L.P.; Li, X.; He, C. Lignin-Derived Fused Electrospun Carbon Fibrous Mats as High Performance Anode Materials for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 12275–12282. [Google Scholar] [CrossRef]
- Lai, C.; Zhou, Z.; Zhang, L.; Wang, X.; Zhou, Q.; Zhao, Y.; Wang, Y.; Wu, X.-F.; Zhu, Z.; Fong, H. Free-Standing and Mechanically Flexible Mats Consisting of Electrospun Carbon Nanofibers Made from a Natural Product of Alkali Lignin as Binder-Free Electrodes for High-Performance Supercapacitors. J. Power Sources 2014, 247, 134–141. [Google Scholar] [CrossRef]
- Wei, J.; Geng, S.; Kumar, M.; Pitkänen, O.; Hietala, M.; Oksman, K. Investigation of Structure and Chemical Composition of Carbon Nanofibers Developed from Renewable Precursor. Front. Mater. 2019, 6, 334. [Google Scholar] [CrossRef]
- Carrott, P.; Carrott, M.R. Lignin-from Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007, 98, 2301–2312. [Google Scholar] [CrossRef]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, Z.; Li, Y.; Chen, Y.; Liu, K.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Liu, M. Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel. Environ. Res. 2021, 194, 110652. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, J.; Yu, J.; Zhang, J. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 24591–24599. [Google Scholar] [CrossRef]
- Hwang, S.W.; Hyun, S.H. Capacitance control of carbon aerogel electrodes. J. Non-Cryst. Solids 2004, 347, 238–245. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, S.W.; Hyun, S.H. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 2005, 40, 725–731. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Huang, Q.; Gamboa, S.; Sebastian, P.J. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158, 784–788. [Google Scholar] [CrossRef]
- Li, W.; Linze, H.; Pei, Z. Preparation of high cycle performance carbon-based anode materials based on cellulose aerogels for lithium-ion batteries. Int. J. Electrochem. Sci. 2022, 17, 220625. [Google Scholar] [CrossRef]
- Yuan, H.; Meng, L.Y.; Park, S.J. A review: Synthesis and applications of graphene/chitosan nanocomposites. Carbon Lett. 2016, 17, 11–17. [Google Scholar] [CrossRef]
- Bokhari, S.W.; Hao, Y.; Siddique, A.H.; Ma, Y.; Imtiaz, M.; Butt, R.; Hui, P.; Li, Y.; Zhu, S. Assembly of hybrid electrode rGO–CNC–MnO2 for a high performance supercapacitor. Results Mater. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Hu, Y.; Guan, C.; Ke, Q.; Yow, Z.F.; Cheng, C.; Wang, J. Hybrid Fe2O3 nanoparticle clusters/rGO paper as an effective negative electrode for flexible supercapacitors. Chem. Mater. 2016, 28, 7296–7303. [Google Scholar] [CrossRef]
- Chadha, N.; Bhat, M.Y.; Hashmi, S.A.; Saini, P. Fe3O4/graphene-oxide/chitosan hybrid aerogel based high performance supercapacitor: Effect of aqueous electrolytes on storage capacity & cell stability. J. Energy Storage 2022, 46, 103789. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Z.; Li, P.; Wei, H.; Wei, K.; Chen, X. Lignin-derived carbon aerogels with high surface area for supercapacitor applications. J. Chem. Eng. 2023, 466, 143118. [Google Scholar] [CrossRef]
- Biswas, S.; Chowdhury, A. Organic supercapacitors as the next generation energy storage device: Emergence, opportunity, and challenges. ChemPhysChem 2023, 24, e202200567. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.Y.; Park, S.J. Highly porous carbon aerogels for high-performance supercapacitor electrodes. Nanomaterials 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Lingappan, N.; Lee, W.; Passerini, S.; Pecht, M. A comprehensive review of separator membranes in lithium-ion batteries. Renew. Sustain. Energy Rev. 2023, 187, 113726. [Google Scholar] [CrossRef]
- Muddasar, M.; Beaucamp, A.; Culebras, M.; Collins, M.N. Cellulose: Characteristics and applications for rechargeable batteries. Int. J. Biol. Macromol. 2022, 219, 788–803. [Google Scholar] [CrossRef]
- Ling, H.Y.; Chen, H.; Wu, Z.; Hencz, L.; Qian, S.; Liu, X.; Liu, T.; Zhang, S. Sustainable bio-derived materials for addressing critical problems of next-generation high-capacity lithium-ion batteries. Mater. Chem. Front. 2021, 5, 5932–5953. [Google Scholar] [CrossRef]
- Fey, G.T.K.; Chen, C.L. High-capacity carbons for lithium-ion batteries prepared from rice husk. J. Power Sources 2001, 97, 47–51. [Google Scholar] [CrossRef]
- Wang, L.; Schnepp, Z.; Titirici, M.M. Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 2013, 1, 5269–5273. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Wang, X.; Liu, W.; Liang, J.; Liang, C. Preparation of porous carbon anode materials for lithium-ion battery from rice husk. Mater. Lett. 2019, 253, 405–408. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Mu, G.; Ma, C.; Mu, D.; Wu, F. Recent progress and perspectives on silicon anode: Synthesis and prelithiation for LIBs energy storage. J. Energy Chem. 2022, 64, 615–650. [Google Scholar] [CrossRef]
- Balogun, M.S.; Luo, Y.; Qiu, W.; Liu, P.; Tong, Y. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 2016, 98, 162–178. [Google Scholar] [CrossRef]
- Huang, S.; Yang, D.; Zhang, W.; Qiu, X.; Li, Q.; Li, C. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery. Micropor. Mesopor. Mater. 2021, 317, 111004. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, F.; Kuang, T.; Chang, L.; Yang, J.; Fan, P.; Zhao, Z.; Zhong, M. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties. Electrochim. Acta 2018, 274, 288–297. [Google Scholar] [CrossRef]
- Nie, S.; Li, R.; Xin, Y.; Tan, Y.; Miao, C.; Xiang, Y.; Xiao, W. Enhanced cycling performance of Sn nanoparticles embedded into the pyrolytic biochar from tea-seed shells as composite anode materials for lithium ions batteries. Solid State Ion. 2021, 368, 115703. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Sun, Y.; Lu, Y.; Chen, S.; Wang, B.; Zhang, H.; Xia, Y.; Yang, D. Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon 2018, 137, 31–40. [Google Scholar] [CrossRef]
- Sun, S.; Yan, Q.; Wu, M.; Zhao, X. Carbon aerogel based materials for secondary batteries. Sustain. Mater. Technol. 2021, 30, 342. [Google Scholar] [CrossRef]
- Yang, X.; Huang, H.; Zhang, G.; Li, X.; Wu, D.; Fu, R. Carbon aerogel with 3-D continuous skeleton and mesopore structure for lithium-ion batteries application. Mater. Chem. Phys. 2015, 149, 657–662. [Google Scholar] [CrossRef]
- Alex, A.S.; Ananda Lekshmi, M.S.; Sekkar, V.; John, B.; Gouri, C.; Ilangovan, S.A. Microporous carbon aerogel prepared through ambient pressure drying route as anode material for lithium ion cells. Polym. Adv. Technol. 2017, 28, 1945–1950. [Google Scholar] [CrossRef]
- Ramirez, N.; Zámbó, D.; Sardella, F.; Kißling, P.A.; Schlosser, A.; Graf, R.T.; Pluta, D.; Deiana, C.; Bigall, N.C. Pd-Doped Cellulose Carbon Aerogels for Energy Storage Applications. Adv. Mater. Interfaces 2021, 8, 2100310. [Google Scholar] [CrossRef]
- Liu, L.; Qin, Y.; Wang, K.; Mao, H.; Wu, H.; Yu, W.; Zhang, D.; Zhao, H.; Wang, H.; Wang, J.; et al. Rational Design of Nanostructured Metal/C Interface in 3D Self-Supporting Cellulose Carbon Aerogel Facilitating High-Performance Li-CO2 Batteries. Adv. Energy Mater. 2022, 12, 2103681. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Nagaraju, D.H.; Jiang, L.; Marinov, V.R.; Lubineau, G.; Oh, M. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 2015, 25, 3193–3202. [Google Scholar] [CrossRef]
- Cao, Q.; Lou, R.; Dong, L.; Niu, T.; Wei, G.; Lyu, G. Evaluation of Gelation Time Affecting the Self-Assembled Framework of Lignin Nanoparticle-Based Carbon Aerogels and Their Electrochemical Performances. ACS Appl. Energy Mater. 2023, 6, 10874–10882. [Google Scholar] [CrossRef]
- Bakierska, M.; Kubicka, M.; Bielewski, J.; Chudzik, K.; Rutkowska, M.; Gajewska, M.; Molenda, M. Functionalized, bio-derived carbon-aerogel/Li4Ti5O12 composites as anode materials for Li-ion batteries. J. Alloys Compd. 2024, 976, 173008. [Google Scholar] [CrossRef]
- Liu, Y.E.; Zhang, M.G.; Gao, Y.N.; Guo, J. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating. J. Alloys Compd. 2022, 898, 162821. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M.; Shi, S.; Cao, Y. Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Micropor. Mesopor. Mater. 2018, 265, 258–265. [Google Scholar] [CrossRef]
- Thomas, B.; Geng, S.; Wei, J.; Lycksam, H.; Sain, M.; Oksman, K. Ice-templating of lignin and cellulose nanofiber-based carbon aerogels: Implications for energy storage applications. ACS Appl. Nano Mater. 2022, 5, 7954–7966. [Google Scholar] [CrossRef]
- Dong, Z.; Zhong, L.; Zhang, Y.; Liu, F.; Huang, H.; Xu, Z. Construction of multifunctional cellulose nanofibers/reduced graphene oxide carbon aerogels by bidirectional freezing for supercapacitor electrodes and strain sensors. Diam. Relat. Mater. 2023, 140, 110555. [Google Scholar] [CrossRef]
- Huang, X. Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 2011, 15, 649–662. [Google Scholar] [CrossRef]
- Yoneda, H.; Nishimura, Y.; Doi, Y.; Fukuda, M.; Kohno, M. Development of microporous PE films to improve lithium ion batteries. Polym. J. 2010, 42, 425–437. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Liu, B.; Jia, Y.; Yuan, C.; Wang, L.; Gao, X.; Yin, S.; Xu, J. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: A review. Energy Storage Mater. 2020, 24, 85–112. [Google Scholar] [CrossRef]
- Xu, B.; Lee, J.; Kwon, D.; Kong, L.; Pecht, M. Mitigation strategies for Li-ion battery thermal runaway: A review. Renew. Sustain. Energy Rev. 2021, 150, 111437. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, X.; Ai, X.; Yang, H.; Cao, Y. A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 24119–24126. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, X.; Ai, X.; Yang, H.; Cao, Y. Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 25970–25975. [Google Scholar] [CrossRef]
- Gou, J.; Liu, W.; Tang, A. A novel method to prepare a highly porous separator based on nanocellulose with multi-scale pore structures and its application for rechargeable lithium ion batteries. J. Membr. Sci. 2021, 639, 119750. [Google Scholar] [CrossRef]
- Yu, H.; Shi, Y.; Yuan, B.; He, Y.; Qiao, L.; Wang, J.; Lin, Q.; Chen, Z.; Han, E. Recent developments of polyimide materials for lithium-ion battery separators. Ionics 2021, 27, 907–923. [Google Scholar] [CrossRef]
- Chen, T.; Kong, W.; Zhang, Z.; Wang, L.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Yan, W.; Liu, J.; et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17–25. [Google Scholar] [CrossRef]
- Liu, J.; Mo, Y.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Sun, L.; Meng, Y. Ultrastrong and heat-resistant poly (ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 3886–3895. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Chong, C.; Yu, X.; Wang, L.; Shi, Z. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Adv. 2015, 5, 101115–101120. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Xiao, S.Y.; Li, M.X.; Chang, Z.; Wang, F.X.; Gao, J.; Wu, Y.P. Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 2015, 288, 368–375. [Google Scholar] [CrossRef]
- Gou, J.; Liu, W.; Tang, A.; Wu, L. Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators. J. Membr. Sci. 2022, 659, 120807. [Google Scholar] [CrossRef]
- Deng, J.; Cao, D.; Yang, X.; Zhang, G. Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application. J. Chem. Eng. 2022, 433, 133934. [Google Scholar] [CrossRef]
- Raafat, L.; Wicklein, B.; Majer, G.; Jahnke, T.; Diem, A.M.; Bill, J.; Burghard, Z. Shape-conformable, eco-friendly cellulose aerogels as high-performance battery separators. ACS Appl. Energy Mater. 2020, 4, 763–774. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Li, D.; Zhou, Y.; Ren, X.; Zhang, Q.; Jiang, T.; Shi, D.; You, J. Nanofibrillar aerogels produced via one-pot chitin nanofibrils liquid exfoliation and self-crosslinking in the DMSO/KOH pseudosolvent system for high-performance lithium-ion batteries. J. Power Sources 2023, 580, 233398. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, H.; Hong, H.; Li, Z.; Qin, G.; Zhu, H.; Lin, Y. Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries. J. Membr. Sci. 2016, 514, 332–339. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Xu, J.; Yin, X.; Wu, J.; Chen, S.; Zhu, Z.; Wang, L.; Wang, H. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr. Polym. 2020, 248, 116753. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Luo, W.; Cheng, Y.; Wang, H. Cellulose-based mesoporous membrane co-engineered with MOF for high-safety lithium-ion batteries. Mater. Lett. 2024, 360, 136000. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, M.; Lin, Z.; Zhao, B.; Zhang, S.; Yang, J.; Zhu, C.; Zhang, H.; Sun, D.; Shi, Y. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 10910–10918. [Google Scholar] [CrossRef]
- Zhu, L.; You, L.; Zhu, P.; Shen, X.; Yang, L.; Xiao, K. High performance lithium–sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator. ACS Sustain. Chem. Eng. 2018, 6, 248–257. [Google Scholar] [CrossRef]
- Fu, J.; Wang, H.; Xiao, P.; Zeng, C.; Sun, Q.; Li, H. A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 2022, 48, 191. [Google Scholar] [CrossRef]
- Yao, B.; Peng, H.; Zhang, H.; Kang, J.; Zhu, C.; Delgado, G.; Byrne, D.; Faulkner, S.; Freyman, M.; Xihong, L.; et al. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 2021, 21, 3731–3737. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, S.; Fu, H.; Ma, J.; Xu, X.; Guan, L.; Wu, H.; Wu, Z.S. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 2020, 168, 701–709. [Google Scholar] [CrossRef]
- Karaaslan, M.A.; Lin, L.T.; Ko, F.; Renneckar, S. Carbon aerogels from softwood kraft lignin for high performance supercapacitor electrodes. Front. Mater. 2022, 9, 894061. [Google Scholar] [CrossRef]
- Niu, J.; Shao, R.; Liu, M.; Liang, J.; Zhang, Z.; Dou, M.; Huang, Y.; Wang, F. Porous Carbon Electrodes with Battery-Capacitive Storage Features for High Performance Li- Ion Capacitors. Energy Storage Mater 2018, 12, 145–152. [Google Scholar] [CrossRef]
- Al Haj, Y.; Soliman, A.B.; Vapaavuori, J.; Elbahri, M. Carbon Aerogels Derived from Anion-Modified Nanocellulose for Adaptive Supercapacitor Performance. Adv. Funct. Mater. 2024, 2313117. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Song, Y.; Yang, Q.; Xiong, C.; Shi, Z. Porous and three-dimensional carbon aerogels from nanocellulose/pristine graphene for high-performance supercapacitor electrodes. Diam. Relat. Mater. 2023, 132, 109626. [Google Scholar] [CrossRef]
- Xiao, J.; Yuan, X.; Li, W.; Zhang, T.C.; He, G.; Yuan, S. Cellulose-based aerogel derived N, B-co-doped porous biochar for high-performance CO2 capture and supercapacitor. Int. J. Biol. Macromol. 2024, 269, 132078. [Google Scholar] [CrossRef]
- Yan, C.; Jia, S.; Wei, J.; Shao, Z. Construction of hierarchical porous derived from the cellulose nanofiber/graphene/Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors. J. Alloys Compd. 2022, 920, 165868. [Google Scholar] [CrossRef]
- Ye, S.; Wang, Y.; Du, B.; Cheng, L.; Sun, L.; Yan, P. Recoverable sepiolite coated B-CoP/cellulose hybrid aerogel as monolithic catalysts for hydrogen generation via NaBH4 hydrolysis. J. Chem. Eng. 2023, 474, 145772. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. J. Chem. Eng. 2020, 380, 122522. [Google Scholar] [CrossRef]
- Lan, W.; Dong, D.; Zhang, M.; Xiao, Y.; Zhao, Z.; Yang, Z.; Cao, Y.; Fan, M. Fabrication of dense anion exchange membranes by filling polymer matrix into quaternized branched polyethyleneimine@ cellulose aerogel through in-situ polymerization. J. Macromol. Sci. A 2023, 60, 764–777. [Google Scholar] [CrossRef]
Material | Specific Capacity/mAh g−1 | Coulombic Efficiency/% | Number of Cycles | Device | Ref. |
---|---|---|---|---|---|
lignin | 1109 | 99 | 100 | LIB | [75] |
lignin | 863 | 92 | 100 | LIB | [76] |
cellulose | 570 | 99.97 | 100 | LIB | [77] |
cellulose | 572 | / | 600 | LIB | [78] |
resorcinol-formaldehyde | 288 | 97 | 100 | LIB | [81] |
Pd/cellulose | 200 * | 93 | 1000 | LIB | [82] |
Lignin–resorcinol–formaldehyde | 193 * | 97 | 5000 | LIB | [85] |
TEMPO-cellulose | 869 | 99.7 | 200 | LSB | [87] |
lignin | 112.5 * | 96 | 2000 | supercapacitor | [88] |
lignin/CNF | 410 * | 94 | 4500 | supercapacitor | [89] |
cellulose | 140 * | 93 | 5000 | supercapacitor | [90] |
Material | Porosity/% | Pore Size/nm | Charge/Discharge Capacity/mAh g−1 | Number of Cycles | Ref. |
---|---|---|---|---|---|
PP | 42 | / | 137.5 | - | [103] |
Celgard 2400 | 41 | / | 138.2 | 100 | [55] |
Celgard 2730 | / | / | 126.30 | 1000 | [104] |
lignin | 74 | / | 131.8 | 50 | [103] |
cellulose | 62.5 | 50–200 | 140.0 | 40 | [104] |
cellulose | 61.5 | 100 | 143.6 | 400 | [105] |
cellulose/polyimide | 78 | / | 166.2 | 200 | [106] |
cellulose | 95 | 10–30 | 138.1 | 100 | [55] |
chitosan | 98.4 | 40–60 | 92.2 | 5000 | [108] |
cellulose/PP | 73 | / | 150.0 | 100 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić, V.; Bafti, A.; Panžić, I.; Radovanović-Perić, F. Bio-Based Aerogels in Energy Storage Systems. Gels 2024, 10, 438. https://doi.org/10.3390/gels10070438
Mandić V, Bafti A, Panžić I, Radovanović-Perić F. Bio-Based Aerogels in Energy Storage Systems. Gels. 2024; 10(7):438. https://doi.org/10.3390/gels10070438
Chicago/Turabian StyleMandić, Vilko, Arijeta Bafti, Ivana Panžić, and Floren Radovanović-Perić. 2024. "Bio-Based Aerogels in Energy Storage Systems" Gels 10, no. 7: 438. https://doi.org/10.3390/gels10070438
APA StyleMandić, V., Bafti, A., Panžić, I., & Radovanović-Perić, F. (2024). Bio-Based Aerogels in Energy Storage Systems. Gels, 10(7), 438. https://doi.org/10.3390/gels10070438