The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment and Verification of TEB HPLC Methodology
2.2. Solubility of TEB in Different Media
2.3. Preparation and Optimization of TEB Hydrogel Patches
2.4. The Effect of Different Factors Influencing the Iontophoresis-Assisted Transdermal Permeation of TEB In Vitro
2.5. Percutaneous Pharmacokinetics with Microdialysis in Rat Skin
2.6. Effect of Iontophoresis on Skin Microstructure
3. Conclusions
4. Materials and Methods
4.1. Rats and Reagents
4.2. Establishment and Verification of TEB HPLC Analysis Method
4.3. Solubility Measurement of TEB in Different Media
4.4. Preparation of Hydrogel Patch
4.5. Optimization of TEB Hydrogel Patch
4.6. Iontophoresis-Assisted Transdermal Permeation In Vitro
4.7. Microdialysis and Subcutaneous Tissue Pharmacokinetics In Vivo
4.8. Effects on Skin Microstructure
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Burstein, V.L.; Beccacece, I.; Guasconi, L.; Mena, C.J.; Cervi, L.; Chiapello, L.S. Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease. Front. Immunol. 2020, 11, 605644. [Google Scholar] [CrossRef]
- Pereira, F.O. A review of recent research on antifungal agents against dermatophyte biofilms. Med. Mycol. 2021, 59, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, J.E. Pharmacology of the allylamines. J. Am. Acad. Dermatol. 1990, 23, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Shear, N.H.; Villars, V.V.; Marsolais, C. Terbinafine: An oral and topical antifungal agent. Clin. Dermatol. 1991, 9, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, X.; Guan, S. Terbinafine: Novel formulations that potentiate antifungal activities. Drugs Today 2015, 51, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Davies-Strickleton, H.; Cook, J.; Hannam, S.; Bennett, R.; Gibbs, A.; Edwards, D.; Ridden, C.; Ridden, J.; Cook, D. Assessment of the nail penetration of antifungal agents, with different physico-chemical properties. PLoS ONE 2020, 15, e0229414. [Google Scholar] [CrossRef] [PubMed]
- Appelt, L.; Nenoff, P.; Uhrlaß, S.; Krüger, C.; Kühn, P.; Eichhorn, K.; Buder, S.; Beissert, S.; Abraham, S.; Aschoff, R.; et al. Terbinafine-resistant dermatophytoses and onychomycosis due to Trichophyton rubrum. Hautarzt 2021, 72, 868–877. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Lam, J.M.; Leong, K.F.; Hon, K.L.; Barankin, B.; Leung, A.A.M.; Wong, A.H.C. Onychomycosis: An Updated Review. Recent. Pat. Inflamm. Allergy Drug Discov. 2020, 14, 32–45. [Google Scholar]
- Ricardo, J.W.; Lipner, S.R. Safety of current therapies for onychomycosis. Expert. Opin. Drug Saf. 2020, 19, 1395–1408. [Google Scholar] [CrossRef]
- Le, T.K.; Cohen, B.A. Tinea capitis: Advances and a needed paradigm shift. Curr. Opin. Pediatr. 2021, 33, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Gou, S.; Monod, M.; Salomon, D.; Kalia, Y.N. Simultaneous Delivery of Econazole, Terbinafine and Amorolfine with Improved Cutaneous Bioavailability: A Novel Micelle-Based Antifungal “Tri-Therapy”. Pharmaceutics 2022, 14, 271. [Google Scholar] [CrossRef] [PubMed]
- Gul, U.; Khan, M.I.; Madni, A.; Sohail, M.F.; Rehman, M.; Rasul, A.; Peltonen, L. Olive oil and clove oil-based nanoemulsion for topical delivery of terbinafine hydrochloride: In vitro and ex vivo evaluation. Drug Deliv. 2022, 29, 600–612. [Google Scholar] [CrossRef]
- Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Gorain, B.; Jacob, S.; Attimarad, M.; Sreeharsha, N.; Venugopala, K.N.; Morsy, M.A. Constant Voltage Iontophoresis Technique to Deliver Terbinafine via Transungual Delivery System: Formulation Optimization Using Box-Behnken Design and In Vitro Evaluation. Pharmaceutics 2021, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Hossain, A.; Sil, B.C.; Iliopoulos, F.; Lever, R.; Hadgraft, J.; Lane, M.E. Preparation, Characterisation, and Topical Delivery of Terbinafine. Pharmaceutics 2019, 11, 548. [Google Scholar] [CrossRef]
- Brown, M.B.; Khengar, R.H.; Turner, R.B.; Forbes, B.; Traynor, M.J.; Evans, C.R.; Jones, S.A. Overcoming the nail barrier: A systematic investigation of ungual chemical penetration enhancement. Int. J. Pharm. 2009, 370, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ou, R.; Guan, S.; Ye, X.; Hu, B.; Zhang, Y.; Lu, S.; Zhou, Y.; Yuan, Z.; Zhang, J.; et al. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use. Drug Deliv. 2015, 22, 1086–1093. [Google Scholar] [CrossRef]
- AbdelSamie, S.M.; Kamel, A.O.; Sammour, O.A.; Ibrahim, S.M. Terbinafine hydrochloride nanovesicular gel: In vitro characterization, ex vivo permeation and clinical investigation. Eur. J. Pharm. Sci. 2016, 88, 91–100. [Google Scholar] [CrossRef]
- Wiedersberg, S.; Guy, R.H. Transdermal drug delivery: 30+ years of war and still fighting! J. Control Release 2014, 190, 150–156. [Google Scholar] [CrossRef]
- Panchagnula, R.; Pillai, O.; Nair, V.B.; Ramarao, P. Transdermal iontophoresis revisited. Curr. Opin. Chem. Biol. 2000, 4, 468–473. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, K.; Kim, M.; Min, J.; Hwang, N.S.; Kim, W.S. Transdermal iontophoresis patch with reverse electrodialysis. Drug Deliv. 2017, 24, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Gratieri, T.; Santer, V.; Kalia, Y.N. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert. Opin. Drug Deliv. 2017, 14, 1091–1102. [Google Scholar] [CrossRef]
- Bakshi, P.; Vora, D.; Hemmady, K.; Banga, A.K. Iontophoretic skin delivery systems: Success and failures. Int. J. Pharm. 2020, 586, 119584. [Google Scholar] [CrossRef] [PubMed]
- Lvovich, V.F.; Matthews, E.; Riga, A.T.; Kaza, L. AC electrokinetic platform for iontophoretic transdermal drug delivery. J. Control Release 2010, 145, 134–140. [Google Scholar] [CrossRef]
- Sachdeva, V.; Siddoju, S.; Yu, Y.Y.; Kim, H.D.; Friden, P.M.; Banga, A.K. Transdermal iontophoretic delivery of terbinafine hydrochloride: Quantitation of drug levels in stratum corneum and underlying skin. Int. J. Pharm. 2010, 388, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Mrštná, K.; Matoušová, K.; Matouš, P.; Matysová, L.; Švec, F.; Šnejdrová, E.; Krčmová, L.K. Analysis of terbinafine in PLGA-based drug delivery systems by a fast and sensitive UHPLC-DAD method. Anal. Methods 2023, 15, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Preuss, C.V.; Kalava, A.; King, K.C. Prescription of Controlled Substances: Benefits and Risks; StatPearls Publishing LLC.: St. Petersburg, FA, USA, 2023. [Google Scholar]
- Liang, Y.; Duan, M.; Yi, W.; Zhang, T.; Wang, Y.; Wu, Z.; Tang, H. Ion-pair compounds of diacerein for enhancing skin permeability in vitro: The compatibility-permeability relationship of counter ion and diacerein. Drug Deliv. 2022, 29, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Ma, R.; Jiang, X.; Fang, R.; Ye, J. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: Formulation, in vitro, ex vivo and in vivo studies. J. Liposome Res. 2023, 33, 258–267. [Google Scholar] [CrossRef]
- Naser, Y.A.; Tekko, I.A.; Vora, L.K.; Peng, K.; Anjani, Q.K.; Greer, B.; Elliott, C.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug. J. Control. Release 2023, 356, 416–433. [Google Scholar] [CrossRef]
- Baveja, S.; Vashisht, D.; Kothari, R.; Venugopal, R.; Kumar Joshi, R. Comparative evaluation of the efficacy of itraconazole with terbinafine cream versus itraconazole with sertaconazole cream in dermatophytosis: A within person pilot study. Med. J. Armed Forces India 2023, 79, 526–530. [Google Scholar] [CrossRef]
- Fink, S.; Burmester, A.; Hipler, U.C.; Neumeister, C.; Götz, M.R.; Wiegand, C. Efficacy of antifungal agents against fungal spores: An in vitro study using microplate laser nephelometry and an artificially infected 3D skin model. Microbiologyopen 2022, 11, e1257. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Jiang, W.; Verweij, P.E.; Li, L.; Zhu, J.; Han, J.; Zhu, M.; Deng, S. The in vitro Activity of Echinocandins Against Clinical Trichophyton rubrum Isolates and Review of the Susceptibility of T. rubrum to Echinocandins Worldwide. Infect. Drug Resist. 2023, 16, 5395–5403. [Google Scholar] [CrossRef] [PubMed]
- Hermans, E.; Devreese, M.; Zeitlinger, M.; Dhont, E.; Verougstraete, N.; Colman, R.; Walle, J.V.; De Paepe, P.; De Cock, P.A. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int. J. Antimicrob. Agents 2023, 62, 106970. [Google Scholar] [CrossRef] [PubMed]
- Joukhadar, C.; Müller, M. Microdialysis: Current applications in clinical pharmacokinetic studies and its potential role in the future. Clin. Pharmacokinet. 2005, 44, 895–913. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Zheng, Y.; Ye, R.; Liu, B.; Huang, Y.; Zhou, W.; Jiang, L. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery. Acta Biomater. 2021, 121, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ye, R.; Gong, X.; Yang, J.; Liu, B.; Xu, Y.; Nie, G.; Xie, X.; Jiang, L. Iontophoresis-driven microneedle patch for the active transdermal delivery of vaccine macromolecules. Microsyst. Nanoeng. 2023, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Riviere, J.E.; Papich, M.G. Potential and problems of developing transdermal patches for veterinary applications. Adv. Drug Deliv. Rev. 2001, 50, 175–203. [Google Scholar] [CrossRef]
- Jiang, C.; Jiang, X.; Wang, X.; Shen, J.; Zhang, M.; Jiang, L.; Ma, R.; Gan, T.; Gong, Y.; Ye, J.; et al. Transdermal iontophoresis delivery system for terazosin hydrochloride: An in vitro and in vivo study. Drug Deliv. 2021, 28, 454–462. [Google Scholar] [CrossRef]
Concentration Spiked (μg/mL) | Concentration Measured (μg/mL) | Accuracy/% | RSD/% |
---|---|---|---|
Intra-day (n = 6) | |||
6.25 | 6.150 ± 0.020 | 100.582 ± 0.773 | 0.773 |
12.50 | 12.894 ± 0.200 | 103.150 ± 1.548 | 1.548 |
25.00 | 25.149 ± 0.020 | 98.397 ± 1.002 | 1.002 |
Inter-assay (n = 6) | |||
6.25 | 6.204 ± 0.119 | 99.270 ± 1.896 | 1.910 |
12.50 | 3.067 ± 0.067 | 103.873 ± 1.380 | 1.328 |
25.00 | 78.910 ± 0.415 | 100.848 ± 0.735 | 0.728 |
Solvent | Solubility (mg/mL) | Solvent | Solubility (mg/mL) |
---|---|---|---|
H2O | 6.32 | NS | 1.56 |
1,2-PG | 29.82 | Glycerol | 5.05 |
PBS (pH 4.07) | 6.13 | 20%PEG400-PBS (pH 4.07) | 21.72 |
PBS (pH 7.11) | 4.32 | 20%PEG400-PBS (pH 7.11) | 10.96 |
Prescription | Initial Adhesion | Moisture Retention | Somatosensory Evaluation | Comprehensive Score | ||||
---|---|---|---|---|---|---|---|---|
Appearance | Consistency | Suppleness | Skin Follows Character | Skin Retention | ||||
① | 10 | 10 | 9 | 8 | 9 | 9 | 10 | 65 |
② | 15 | 30 | 9 | 9 | 7 | 6 | 8 | 84 |
③ | 15 | 20 | 5 | 4 | 7 | 7 | 8 | 66 |
④ | 15 | 10 | 2 | 4 | 8 | 4 | 8 | 51 |
⑤ | 15 | 20 | 9 | 9 | 7 | 8 | 8 | 76 |
⑥ | 10 | 20 | 2 | 0 | 7 | 4 | 8 | 51 |
⑦ | 10 | 10 | 5 | 7 | 7 | 6 | 8 | 53 |
⑧ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Groups | Levels | Permeation Curves | Jss (μg/cm2/h) | R2 |
---|---|---|---|---|
Current density | 0.1 mA/cm2 | Q = 1.2860 ln(t) + 1.5432 | 1.2860 | 0.9636 |
0.2 mA/cm2 | Q = 2.7456 ln(t) + 2.6592 | 2.7456 | 0.9925 | |
0.3 mA/cm2 | Q = 3.9801 ln(t) + 4.6427 | 3.9801 | 0.9912 | |
0.4 mA/cm2 | Q = 4.6512 ln(t) + 4.8027 | 4.6512 | 0.9826 | |
pH | 4.0 | Q = 3.9801 ln(t) + 4.6427 | 3.9801 | 0.9912 |
5.4 | Q = 3.3482 ln(t) + 2.7962 | 3.3482 | 0.9665 | |
6.8 | Q = 1.7321 ln(t) + 2.333 | 1.7321 | 0.9969 | |
7.4 | Q = 0.1073 ln(t) + 1.3944 | 0.1073 | 0.0939 | |
Drug concentration | 2 mg/10 cm2 | Q = 2.7969 ln(t) + 2.9826 | 2.7969 | 0.9967 |
4 mg/10 cm2 | Q = 3.9801 ln(t) + 4.6427 | 3.9801 | 0.9912 | |
8 mg/10 cm2 | Q = 4.3620 ln(t) + 5.3298 | 4.362l | 0.9962 | |
Drug formulations | TEB hydrogel patch with iontophoresis | Q = 3.9801 ln(t) + 4.6427 | 3.9801 | 0.9912 |
TEB hydrogel patch without iontophoresis | Q = 1.4766 ln(t) + 1.6178 | 1.4766 | 0.9832 | |
TEB cream | Q = 0.4523 ln(t) + 0.7597 | 0.4523 | 0.9965 |
Parameters | TEB Hydrogel Patch with Iontophoresis | TEB Hydrogel Patch without Iontophoresis | TEB Cream |
---|---|---|---|
AUC(0–8 h) (mg/L·h) | 60.99 ± 7.18 **## | 17.71 ± 2.35 | 11.26 ± 1.71 |
MRT(0–8 h) (h) | 6.37 ± 0.23 | 5.84 ± 0.30 | 5.55 ± 0.36 |
Tmax (h) | 7.5 ± 0.89 | 7.00 ± 1.23 | 6.33 ± 2.32 |
Cmax (mg/L) | 18.07 ± 1.81 **## | 4.33 ± 0.80 | 2.46 ± 0.39 |
Prescription | A: PVP K90 | B: Sodium Polyacrylate/ Aluminum Glycerol | C: Gelatin |
---|---|---|---|
① | 0.625 g | 2.0 g/0.1 g | 0.5 g |
② | 0.625 g | 2.0 g/0.1 g | 1.0 g |
③ | 0.625 g | 3.0 g/0.15 g | 0.5 g |
④ | 0.625 g | 3.0 g/0.15 g | 1.0 g |
⑤ | 1.0 g | 2.0 g/0.1 g | 0.5 g |
⑥ | 1.0 g | 3.0 g/0.15 g | 0.5 g |
⑦ | 1.0 g | 2.0 g/0.1 g | 1.0 g |
⑧ | 1.0 g | 3.0 g/0.15 g | 1.0 g |
Index Weight Score | Evaluation Criteria | Score | |
---|---|---|---|
Initial adhesion (20 points) | Ball number ≤6 | 0 points | |
Ball number 7–8 | 10 points | ||
Ball number 9–11 | 15 points | ||
Ball number ≥12 | 20 points | ||
Moisture retention (30 points) | 0~40% | 0 points | |
41~60% | 10 points | ||
61~80% | 20 points | ||
81~90% | 30 points | ||
Somatosensory evaluation | Appearance (10 points) | The color of the hydrogel patch is uniform, and the patch is evenly distributed throughout. The surface of the patch is flat, and the thickness is consistent, with no clumps or noticeable bubbles present. | 10 points |
The color of the hydrogel patch is uniform, and the distribution of the patch is more even compared to before. The surface of the patch shows minimal fluctuations, but there are a few small bubbles present. | 5–9 points | ||
The color of the hydrogel patch appears uneven, and the distribution of the patch is not uniform. There is a significant difference in thickness across the patch, and the surface of the patch may appear raised or depressed in certain areas. Additionally, there are noticeable bubbles present on the surface of the patch. | 1–4 points | ||
Poor color, a large number of clumps, more bubbles, and so dense that the patch connot even be formed. | 0 points | ||
Depth (10 points) | The glycerin phase and water phase are easy to mix, and the final patch can be stirred for 10 min; the final patch was difficult to stir, and then could not even be stirred. The score was divided into three grades (0~4, 4~8, and 9~10) according to the consistency. | ||
Flexibility (10 points) | It is easy to coat evenly. After pressing the patch surface by hand, the patch will recover and be flat, and there will be no creases when folding the patch repeatedly. The scoring grade is divided into three levels (0~4, 4~8, and 9~10) according to the above. | ||
Skin followability (10 points) | Apply the patch to the skin of the arm and wave the arm one to three times. | 0–3 points | |
Apply the patch to the skin of the arm and wave the arm four to nine times. | 4–9 points | ||
Apply the patch to the skin of your arm and wave your arm 10 times. | 10 points | ||
Skin residue (10 points) | The patch cannot be removed from the skin intact. | 0 points | |
The patch can be removed from the skin, leaving a large amount of residue on the surface of the skin. | 1–3 points | ||
The patch can be completely removed from the skin, and the skin surface is slightly sticky with no visible residue, or the surface is sticky with some residue. | 5–9 points | ||
The patch can be completely removed from the skin, and the skin surface is not sticky and residual. | 10 points |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Chen, X.; Su, X.; Gao, W. The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery. Gels 2024, 10, 456. https://doi.org/10.3390/gels10070456
Li M, Chen X, Su X, Gao W. The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery. Gels. 2024; 10(7):456. https://doi.org/10.3390/gels10070456
Chicago/Turabian StyleLi, Mengfei, Xinghao Chen, Xiangxiang Su, and Wenyan Gao. 2024. "The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery" Gels 10, no. 7: 456. https://doi.org/10.3390/gels10070456
APA StyleLi, M., Chen, X., Su, X., & Gao, W. (2024). The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery. Gels, 10(7), 456. https://doi.org/10.3390/gels10070456