Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Optimization of NLC Dispersion
2.2. Preparation and Characterization of NLC-Loaded Hydrogels
2.3. Biocompatibility of NLC-Loaded Hydrogel
2.4. Functional Properties of NLC-Loaded Hydrogel
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Functional NLC
4.3. Characterization of Functional NLC
4.3.1. Particle Size, Polydispersity Index, Zeta Potential and Concentration of NLC
4.3.2. Solid State Characterization of NLC
4.3.3. Stability Testing of NLC Dispersions
4.4. The Antimicrobial Preservative Efficiency Test
4.5. Formulation of NLC-Loaded HaXa Hydrogels
4.6. Rheological Characterization
4.6.1. Viscosity Curve
4.6.2. 3-Interval Thixotropy Test
4.6.3. Amplitude Sweep Test
4.6.4. Frequency Sweep Test
4.7. Textural Analysis
4.8. pH Measurements
4.9. Cell Culture and Biocompatibility Test
4.9.1. Cell Culture Conditions
4.9.2. In Vitro Cell Biocompatibility Study
4.10. Functional Characterization of the Developed HaXa Hydrogels
4.10.1. In Vitro Occlusion Test
4.10.2. Ex Vivo Skin Hydration Test
4.11. Statistical Evaluation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, D.J.; Rawlings, A.V. The Chemistry, Function and (Patho)Physiology of Stratum Corneum Barrier Ceramides. Int. J. Cosmet. Sci. 2017, 39, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.; O’Boyle, N.M. Skin Lipids in Health and Disease: A Review. Chem. Phys. Lipids 2021, 236, 105055. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, J.; Chandan, N.; Lio, P.; Shi, V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin. Pharmacol. Physiol. 2023, 36, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Fluhr, J.W.; Moore, D.J.; Lane, M.E.; Lachmann, N.; Rawlings, A.V. Epidermal Barrier Function in Dry, Flaky and Sensitive Skin: A Narrative Review. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Čuříková-Kindlová, B.A.; Vovesná, A.; Nováčková, A.; Zbytovská, J. In Vitro Modeling of Skin Barrier Disruption and Its Recovery by Ceramide-Based Formulations. AAPS PharmSciTech 2021, 23, 21. [Google Scholar] [CrossRef] [PubMed]
- Syed Azhar, S.N.A.; Ashari, S.E.; Zainuddin, N.; Hassan, M. Nanostructured Lipid Carriers-Hydrogels System for Drug Delivery: Nanohybrid Technology Perspective. Molecules 2022, 27, 289. [Google Scholar] [CrossRef] [PubMed]
- Desfrançois, C.; Auzély, R.; Texier, I. Lipid Nanoparticles and Their Hydrogel Composites for Drug Delivery: A Review. Pharmaceuticals 2018, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Muñoz, N.; Leyva-Gómez, G.; Piñón-Segundo, E.; Zambrano-Zaragoza, M.L.; Quintanar-Guerrero, D.; Del Prado Audelo, M.L.; Urbán-Morlán, Z. Trends in Biopolymer Science Applied to Cosmetics. Int. J. Cosmet. Sci. 2023, 45, 699–724. [Google Scholar] [CrossRef] [PubMed]
- Pourtalebi Jahromi, L.; Rothammer, M.; Fuhrmann, G. Polysaccharide Hydrogel Platforms as Suitable Carriers of Liposomes and Extracellular Vesicles for Dermal Applications. Adv. Drug Deliv. Rev. 2023, 200, 115028. [Google Scholar] [CrossRef]
- Mahant, S.; Rao, R.; Souto, E.B.; Nanda, S. Analytical Tools and Evaluation Strategies for Nanostructured Lipid Carrier-Based Topical Delivery Systems. Expert. Opin. Drug Deliv. 2020, 17, 963–992. [Google Scholar] [CrossRef]
- Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical Safety of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Current Evidence from in Vitro and in Vivo Evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, B.; Siddik, Z.H.; Nagoor, N.H. Optimization of Nanostructured Lipid Carriers: Understanding the Types, Designs, and Parameters in the Process of Formulations. J. Nanopart Res. 2020, 22, 141. [Google Scholar] [CrossRef]
- Lavuri, R.; Chiappetta Jabbour, C.J.; Grebinevych, O.; Roubaud, D. Green Factors Stimulating the Purchase Intention of Innovative Luxury Organic Beauty Products: Implications for Sustainable Development. J. Environ. Manag. 2022, 301, 113899. [Google Scholar] [CrossRef] [PubMed]
- Goik, U.; Goik, T.; Załęska, I. The Properties and Application of Argan Oil in Cosmetology. Eur. J. Lipid Sci. Tech. 2019, 121, 1800313. [Google Scholar] [CrossRef]
- Nong, Y.; Maloh, J.; Natarelli, N.; Gunt, H.B.; Tristani, E.; Sivamani, R.K. A Review of the Use of Beeswax in Skincare. J. Cosmet. Dermatol. 2023, 22, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Park, K. Ceramides in Skin Health and Disease: An Update. Am. J. Clin. Dermatol. 2021, 22, 853–866. [Google Scholar] [CrossRef]
- Szuts, A.; Szabó-Révész, P. Sucrose Esters as Natural Surfactants in Drug Delivery Systems—A Mini-Review. Int. J. Pharm. 2012, 433, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, W.M.; Schwabe, K.; Müller, R.H.; Keck, C.M. Preservation of Nanostructured Lipid Carriers (NLC). Eur. J. Pharm. Biopharm. 2010, 76, 56–67. [Google Scholar] [CrossRef]
- Steiner, A.; Kugarajan, K.; Wullimann, M.; Ruty, B.; Kunze, G. Margin of Safety of Pentylene Glycol Derived Using Measurements of Cutaneous Absorption and Volatility. Regul. Toxicol. Pharm. 2017, 87, 106–111. [Google Scholar] [CrossRef]
- Moran-Valero, M.I.; Ruiz-Henestrosa, V.M.P.; Pilosof, A.M.R. Synergistic Performance of Lecithin and Glycerol Monostearate in Oil/Water Emulsions. Colloids Surf. B Biointerfaces 2017, 151, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; Pinho, S.C.; Souto, E.B.; Santana, M.H.A. Polymorphism, Crystallinity and Hydrophilic–Lipophilic Balance of Stearic Acid and Stearic Acid–Capric/Caprylic Triglyceride Matrices for Production of Stable Nanoparticles. Colloids Surf. B Biointerfaces 2011, 86, 125–130. [Google Scholar] [CrossRef]
- Bodratti, A.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. [Google Scholar] [CrossRef]
- Gaillard, Y.; Mija, A.; Burr, A.; Darque-Ceretti, E.; Felder, E.; Sbirrazzuoli, N. Green Material Composites from Renewable Resources: Polymorphic Transitions and Phase Diagram of Beeswax/Rosin Resin. Thermochim. Acta 2011, 521, 90–97. [Google Scholar] [CrossRef]
- Kameda, T.; Tamada, Y. Variable-Temperature 13C Solid-State NMR Study of the Molecular Structure of Honeybee Wax and Silk. Int. J. Biol. Macromol. 2009, 44, 64–69. [Google Scholar] [CrossRef]
- Jin, Y.; Wen, J.; Garg, S.; Liu, D.; Zhou, Y.; Teng, L.; Zhang, W. Development of a Novel Niosomal System for Oral Delivery of Ginkgo Biloba Extract. Int. J. Nanomed. 2013, 8, 421–430. [Google Scholar] [CrossRef]
- Deli, G.; Hatziantoniou, S.; Nikas, Y.; Demetzos, C. Solid Lipid Nanoparticles and Nanoemulsions Containing Ceramides: Preparation and Physicochemical Characterization. J. Liposome Res. 2009, 19, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Takada, K.; Obata, Y.; Shimizu, N.; Ishida, K. Structure and Phase Behavior of Synthetic Ceramide 2 ((2S,3R)-2-Octadecanoylamino-Octadecane-1,3-Diol) Ant Its Interaction with Limonene. Trans. Mater. Res. Soc. Jpn. 2015, 40, 73–76. [Google Scholar] [CrossRef]
- Yajima, T.; Itai, S.; Takeuchi, H.; Kawashima, Y. Determination of Optimum Processing Temperature for Transformation of Glyceryl Monostearate. Chem. Pharm. Bull. 2002, 50, 1430–1433. [Google Scholar] [CrossRef]
- Houacine, C.; Adams, D.; Singh, K. Impact of Liquid Lipid on Development and Stability of Trimyristin Nanostructured Lipid Carriers for Oral Delivery of Resveratrol. J. Mol. Liq. 2020, 316, 113734. [Google Scholar] [CrossRef]
- Shu, X.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Composite Hydrogels Filled with Rhamnolipid-Based Nanoemulsion, Nanostructured Lipid Carrier, or Solid Lipid Nanoparticle: A Comparative Study on Gel Properties and the Delivery of Lutein. Food Hydrocoll. 2024, 146, 109264. [Google Scholar] [CrossRef]
- Windbergs, M.; Strachan, C.J.; Kleinebudde, P. Investigating the Principles of Recrystallization from Glyceride Melts. AAPS PharmSciTech 2009, 10, 1224. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023, 15, 1593. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Ramalho, M.J.; Silva, R.; Silva, V.; Marques-Oliveira, R.; Silva, A.C.; Pereira, M.C.; Loureiro, J.A. Lipid Nanoparticles Containing Mixtures of Antioxidants to Improve Skin Care and Cancer Prevention. Pharmaceutics 2021, 13, 2042. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Hydrodynamic Diameter and Zeta Potential of Nanostructured Lipid Carriers: Emphasizing Some Parameters for Correct Measurements. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126610. [Google Scholar] [CrossRef]
- Krambeck, K.; Silva, V.; Silva, R.; Fernandes, C.; Cagide, F.; Borges, F.; Santos, D.; Otero-Espinar, F.; Lobo, J.M.S.; Amaral, M.H. Design and Characterization of Nanostructured Lipid Carriers (NLC) and Nanostructured Lipid Carrier-Based Hydrogels Containing Passiflora Edulis Seeds Oil. Int. J. Pharm. 2021, 600, 120444. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Sobczak, M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020, 12, 396. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Guo, L.; Geng, X.; Wang, H.; Dong, A.; Zhang, R. Long Duration Sodium Hyaluronate Hydrogel with Dual Functions of Both Growth Prompting and Acid-Triggered Antibacterial Activity for Bacteria-Infected Wound Healing. Int. J. Biol. Macromol. 2024, 274, 133423. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, R.; Miura, S.; Yabu, K.; Ando, M.; Hachikubo, Y.; Yokoyama, Y.; Yasuda, K.; Takei, S. Fabrication Technology of Self-Dissolving Sodium Hyaluronate Gels Ultrafine Microneedles for Medical Applications with UV-Curing Gas-Permeable Mold. Gels 2024, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Giordani, B.; Abruzzo, A.; Musazzi, U.M.; Cilurzo, F.; Nicoletta, F.P.; Dalena, F.; Parolin, C.; Vitali, B.; Cerchiara, T.; Luppi, B.; et al. Freeze-Dried Matrices Based on Polyanion Polymers for Chlorhexidine Local Release in the Buccal and Vaginal Cavities. J. Pharm. Sci. 2019, 108, 2447–2457. [Google Scholar] [CrossRef]
- Meena, P.; Singh, P.; Warkar, S.G. Fabrication and Evaluation of Stimuli-Sensitive Xanthan Gum-Based Hydrogel as a Potential Carrier for a Hydrophobic Drug Ibuprofen. Colloid. Polym. Sci. 2024, 302, 377–391. [Google Scholar] [CrossRef]
- Biscari, G.; Malkoch, M.; Fiorica, C.; Fan, Y.; Palumbo, F.S.; Indelicato, S.; Bongiorno, D.; Pitarresi, G. Gellan Gum-Dopamine Mediated in Situ Synthesis of Silver Nanoparticles and Development of Nano/Micro-Composite Injectable Hydrogel with Antimicrobial Activity. Int. J. Biol. Macromol. 2024, 258, 128766. [Google Scholar] [CrossRef] [PubMed]
- Suhail, M.; Chiu, I.-H.; Lai, Y.-R.; Khan, A.; Al-Sowayan, N.S.; Ullah, H.; Wu, P.-C. Xanthan-Gum/Pluronic-F-127-Based-Drug-Loaded Polymeric Hydrogels Synthesized by Free Radical Polymerization Technique for Management of Attention-Deficit/Hyperactivity Disorder. Gels 2023, 9, 640. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Klaassen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final Report of the Safety Assessment of Hyaluronic Acid, Potassium Hyaluronate, and Sodium Hyaluronate. Int. J. Toxicol. 2009, 28, 5–67. [Google Scholar] [CrossRef] [PubMed]
- Herbig, M.E.; Evers, D.-H.; Gorissen, S.; Köllmer, M. Rational Design of Topical Semi-Solid Dosage Forms-How Far Are We? Pharmaceutics 2023, 15, 1822. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz Usta, D.; Teksin, Z.S.; Tugcu-Demiroz, F. Evaluation of Emulgel and Nanostructured Lipid Carrier-Based Gel Formulations for Transdermal Administration of Ibuprofen: Characterization, Mechanical Properties, and Ex-Vivo Skin Permeation. AAPS PharmSciTech 2024, 25, 124. [Google Scholar] [CrossRef]
- Abrantes, D.C.; Rogerio, C.B.; de Oliveira, J.L.; Campos, E.V.R.; de Araújo, D.R.; Pampana, L.C.; Duarte, M.J.; Valadares, G.F.; Fraceto, L.F. Development of a Mosquito Repellent Formulation Based on Nanostructured Lipid Carriers. Front. Pharmacol. 2021, 12, 760682. [Google Scholar] [CrossRef]
- Miastkowska, M.; Kulawik-Pióro, A.; Szczurek, M. Nanoemulsion Gel Formulation Optimization for Burn Wounds: Analysis of Rheological and Sensory Properties. Processes 2020, 8, 1416. [Google Scholar] [CrossRef]
- Lippacher, A.; Müller, R.H.; Mäder, K. Liquid and Semisolid SLNTM Dispersions for Topical Application: Rheological Characterization. Eur. J. Pharm. Biopharm. 2004, 58, 561–567. [Google Scholar] [CrossRef]
- Amaral, C.N.R.; Oliveira, P.F.; Pedroni, L.G.; Mansur, C.R.E. Viscoelastic Behavior of Hydrogel-based Xanthan Gum/Aluminum Lactate with Potential Applicability for Conformance Control. J. Appl. Polym. Sci. 2021, 138, 50640. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, S.; Zhong, F.; Yokoyama, W.; Huang, D.; Li, Y. Modulating Storage Stability of Binary Gel by Adjusting the Ratios of Starch and Kappa-Carrageenan. Carbohydr. Polym. 2021, 268, 118264. [Google Scholar] [CrossRef] [PubMed]
- Nižić Nodilo, L.; Perkušić, M.; Ugrina, I.; Špoljarić, D.; Jakobušić Brala, C.; Amidžić Klarić, D.; Lovrić, J.; Saršon, V.; Safundžić Kučuk, M.; Zadravec, D.; et al. In Situ Gelling Nanosuspension as an Advanced Platform for Fluticasone Propionate Nasal Delivery. Eur. J. Pharm. Biopharm. 2022, 175, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Hurler, J.; Engesland, A.; Poorahmary Kermany, B.; Škalko-Basnet, N. Improved Texture Analysis for Hydrogel Characterization: Gel Cohesiveness, Adhesiveness, and Hardness. J. Appl. Polym. Sci. 2012, 125, 180–188. [Google Scholar] [CrossRef]
- Dejeu, I.L.; Vicaș, L.G.; Vlaia, L.L.; Jurca, T.; Mureșan, M.E.; Pallag, A.; Coneac, G.H.; Olariu, I.V.; Muț, A.M.; Bodea, A.S.; et al. Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals 2022, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Rocha, A.I.; Leal, P.; Estanqueiro, M.; Lobo, J.M.S. Development and Characterization of Mucoadhesive Buccal Gels Containing Lipid Nanoparticles of Ibuprofen. Int. J. Pharm. 2017, 533, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.K.; Sharma, G.; Singh, B.; Nirbhavane, P.; Tyagi, R.K.; Shukla, R.; Katare, O.P. Quality by Design (QbD)-Enabled Development of Aceclofenac Loaded-Nano Structured Lipid Carriers (NLCs): An Improved Dermatokinetic Profile for Inflammatory Disorder(s). Int. J. Pharm. 2017, 517, 413–431. [Google Scholar] [CrossRef]
- Tomić, I.; Miočić, S.; Pepić, I.; Šimić, D.; Filipović-Grčić, J. Efficacy and Safety of Azelaic Acid Nanocrystal-Loaded In Situ Hydrogel in the Treatment of Acne Vulgaris. Pharmaceutics 2021, 13, 567. [Google Scholar] [CrossRef]
- Chang, R.-K.; Raw, A.; Lionberger, R.; Yu, L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. AAPS J. 2013, 15, 41–52. [Google Scholar] [CrossRef]
- Wairkar, S.; Patel, D.; Singh, A. Nanostructured Lipid Carrier Based Dermal Gel of Cyclosporine for Atopic Dermatitis-in Vitro and in Vivo Evaluation. J. Drug Deliv. Sci. Technol. 2022, 72, 103365. [Google Scholar] [CrossRef]
- Kyadarkunte, A.; Patole, M.; Pokharkar, V. In Vitro Cytotoxicity and Phototoxicity Assessment of Acylglutamate Surfactants Using a Human Keratinocyte Cell Line. Cosmetics 2014, 1, 159–170. [Google Scholar] [CrossRef]
- Eiras, F.; Amaral, M.H.; Silva, R.; Martins, E.; Lobo, J.M.S.; Silva, A.C. Characterization and Biocompatibility Evaluation of Cutaneous Formulations Containing Lipid Nanoparticles. Int. J. Pharm. 2017, 519, 373–380. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Vaz, S.; Silva, R.; Amaral, M.H.; Martins, E.; Sousa Lobo, J.M.; Silva, A.C. Evaluation of the Biocompatibility and Skin Hydration Potential of Vitamin E-Loaded Lipid Nanosystems Formulations: In Vitro and Human in Vivo Studies. Colloids Surf. B Biointerfaces 2019, 179, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, P.; Hedrick, J.; Marks, J.G.; Zaenglein, A.L. Petroleum Jelly: A Comprehensive Review of Its History, Uses, and Safety. J. Am. Acad. Dermatol. 2024, 90, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Assali, M.; Zaid, A.-N. Features, Applications, and Sustainability of Lipid Nanoparticles in Cosmeceuticals. Saudi Pharm. J. 2022, 30, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.A.; Müller, R.H. The Influence of the Crystallinity of Lipid Nanoparticles on Their Occlusive Properties. Int. J. Pharm. 2002, 242, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Keck, C.M.; Abdelkader, A.; Pelikh, O.; Wiemann, S.; Kaushik, V.; Specht, D.; Eckert, R.W.; Alnemari, R.M.; Dietrich, H.; Brüßler, J. Assessing the Dermal Penetration Efficacy of Chemical Compounds with the Ex-Vivo Porcine Ear Model. Pharmaceutics 2022, 14, 678. [Google Scholar] [CrossRef] [PubMed]
- Klang, V.; Schwarz, J.C.; Haberfeld, S.; Xiao, P.; Wirth, M.; Valenta, C. Skin Integrity Testing and Monitoring of in Vitro Tape Stripping by Capacitance-based Sensor Imaging. Skin. Res. Technol. 2013, 19, e259–e272. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.R.; Monteiro e Silva, S.A.; Leonardi, G.R. Effects of 1,3-propanediol Associated, or Not, with Butylene Glycol and/or Glycerol on Skin Hydration and Skin Barrier Function. Int. J. Cosmet. Sci. 2024, 46, 85–95. [Google Scholar] [CrossRef]
- Na, Y.-G.; Huh, H.W.; Kim, M.-K.; Byeon, J.-J.; Han, M.-G.; Lee, H.-K.; Cho, C.-W. Development and Evaluation of a Film-Forming System Hybridized with Econazole-Loaded Nanostructured Lipid Carriers for Enhanced Antifungal Activity against Dermatophytes. Acta Biomater. 2020, 101, 507–518. [Google Scholar] [CrossRef]
- Keck, C.M.; Chaiprateep, E.; Dietrich, H.; Sengupta, S. Influence of Mechanical Skin Treatments on Dermal Penetration Efficacy of Active Ingredients. Pharmaceutics 2022, 14, 1788. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, J.; Stefaniak, A.; Eloff, F.; John, S.; Agner, T.; Chou, T.; Nixon, R.; Steiner, M.; Franken, A.; Kudla, I.; et al. International Guidelines for the in Vivo Assessment of Skin Properties in Non-clinical Settings: Part 2. Transepidermal Water Loss and Skin Hydration. Skin. Res. Technol. 2013, 19, 265–278. [Google Scholar] [CrossRef] [PubMed]
Test Microorganisms | Initial Concentration log10 cfu/mL | Log10 Reduction | |||
---|---|---|---|---|---|
2 Days | 7 Days | 14 Days | 28 Days | ||
Staphilococcus aureus ATTC 6538 | 5.66 | 4.66 | 4.66 | 4.66 | Ø |
(2) * | (3) * | (3) * | (NI) * | ||
Escherichia coli ATCC 8739 | 5.89 | 4.89 | 4.89 | 4.89 | Ø |
(2) * | (3) * | (3) * | (NI) * | ||
Pseudomonas aeruginosa ATCC 9027 | 5.95 | 4.95 | 4.95 | 4.95 | Ø |
(2) * | (3) * | (3) * | (NI) * | ||
Candida albicans ATCC 10231 | 5.91 | 4.91 | 4.91 | 4.91 | Ø |
(2) * | (3) * | (3) * | (NI) * | ||
Aspergillus brasiliensis | 5.58 | 4.58 | 4.58 | 4.58 | Ø |
ATTC 16404 | (-) * | (-) * | (2) * | (NI) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joukhadar, R.; Nižić Nodilo, L.; Lovrić, J.; Hafner, A.; Pepić, I.; Jug, M. Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels 2024, 10, 466. https://doi.org/10.3390/gels10070466
Joukhadar R, Nižić Nodilo L, Lovrić J, Hafner A, Pepić I, Jug M. Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels. 2024; 10(7):466. https://doi.org/10.3390/gels10070466
Chicago/Turabian StyleJoukhadar, Radwan, Laura Nižić Nodilo, Jasmina Lovrić, Anita Hafner, Ivan Pepić, and Mario Jug. 2024. "Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier" Gels 10, no. 7: 466. https://doi.org/10.3390/gels10070466
APA StyleJoukhadar, R., Nižić Nodilo, L., Lovrić, J., Hafner, A., Pepić, I., & Jug, M. (2024). Functional Nanostructured Lipid Carrier-Enriched Hydrogels Tailored to Repair Damaged Epidermal Barrier. Gels, 10(7), 466. https://doi.org/10.3390/gels10070466