Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications
Abstract
:1. Introduction
2. Bio-Based Polymeric Hydrogels for (Waste) Water Treatment
2.1. Bio-Based Hydrogels for Environmental Remediation
2.1.1. Nanomaterial-Doped Bio-Based Hydrogels for Pollutant Sorption
2.1.2. Clay-Doped Bio-Based Hydrogels for Pollutant Sorption
2.1.3. Lignocellulosic- and Cellulosic-Doped Hydrogels for Pollutant Sorption
3. Stimuli-Responsive Hydrogels for (Waste) Water Monitoring
3.1. Stimuli-Responsive Hydrogels: Design and Development
3.1.1. Stimuli-Responsive Hydrogels Synthetic Approaches
- Polymer selection:
- Responsive polymers, either select responsive polymers, such as thermoresponsive polymers like poly(N-isopropylacrylamide) (PNIPAAm) or pH-responsive polymers like poly(acrylic acid) (PAA), that have a natural capacity to respond to particular stimuli. Responses to external stimuli cause these polymers to undergo conformational changes, which alter the features of the hydrogel [119,120].
- Smart copolymers are opportunely developed copolymers that are both sensitive and inert in order to attain structural integrity and stimuli response. Block copolymers and graft copolymers, for instance, can combine responsive and non-responsive portions to produce tailored responsiveness. For example, copolymerizing N-isopropylacrylamide (NIPAAm) with hydrophilic monomers such as acrylic acid (AAc) or N,N-dimethylacrylamide (DMAAm) can yield thermoresponsive hydrogels with tunable swelling behavior [121,122].
- Responsive functional groups based on incorporated responsive functional groups, like pH-responsive or thermoresponsive moieties, into the side chains or backbone of the polymer. Responses to external stimuli cause these functional groups to undergo conformational modifications or protonation/deprotonation, leading to changes in hydrogel properties [123,124].
- Cross-linking methods:
- Chemical cross-linking, obtained by techniques such as free radical polymerization or Michael addition, can be used to form covalent connections between polymeric chains. These cross-linking events keep the hydrogel network stable while also allowing it to respond to stimuli. For instance, introducing temperature-sensitive cross-linkers such as N,N’-methylenebis(acrylamide) (MBAAm) into the polymerization mixture can produce thermoresponsive hydrogels [125,126].
- Physical cross-linking is related to reversible bonds between polymer chains obtained by using physical cross-linking techniques such as hydrogen bonding, hydrophobic interactions, or host-guest interactions. Physical cross-linking enables stimulus-responsive behavior while preserving reversibility and dynamic features [127]. For example, incorporating host-guest complexes, such as cyclodextrin-encapsulated guest molecules, into hydrogel matrices can yield pH-responsive hydrogels capable of reversible swelling and deswelling behavior [128,129].
- Stimuli-responsive hydrogels can also be tailor-made for a variety of uses in drug administration, tissue engineering, sensing, and smart materials by carefully choosing the synthetic approach and the hydrogel starting reactants.
3.1.2. Stimuli-Responsive Mechanisms
Thermoresponsive Mechanism
pH-Responsive Mechanism
Light-Responsive Mechanism
Redox-Responsive Mechanism
Molecular Recognition-Responsive Mechanism
- Receptor molecules act like sophisticated locks within the hydrogel network. The receptor molecules are often attached to or integrated within the polymer chains. The receptor molecules within the hydrogel are tailored to recognize and bind only to the target molecules, which ensures a highly selective response.
- Target molecules are the external players that trigger the response. They are the specific molecules the receptor molecules are designed to recognize and bind with.
- The binding of target molecules can act as additional cross-linking points within the network, causing the hydrogel to become denser and potentially expel water, leading to shrinkage.
- The receptor molecules might undergo a conformational change upon binding to the target, altering their interactions with the surrounding polymer network or water molecules. This can influence the hydrogel’s swelling or stiffness.
- In some cases, the binding event might trigger the enzymatic degradation of the hydrogel network, leading to its breakdown.
3.2. Applications of Bio-Based and Stimuli-Responsive Hydrogels in (Waste) Water Monitoring
3.2.1. Heavy Metal Detection
- (i)
- Colorimetric change: a change in color of the hydrogel or incorporated indicator molecules can signal the presence of heavy metals. This allows for easy visual detection, even in field tests [191].
- (ii)
- Swelling response: the binding process can cause the hydrogel to swell or shrink. This change in volume can be measured and correlated with the concentration of the captured metal ions, providing a quantitative assessment of the contamination level [192].
- (iii)
- Conductometric response: The presence of charged metal ions can alter the electrical conductivity of the hydrogel. This change can be measured electronically to quantify the amount of metal ions adsorbed [193].
3.2.2. Organic Pollutant Sensing
3.2.3. Nutrient Monitoring
- (i)
- pH-responsive hydrogels can incorporate polymers that change their properties depending on the surrounding pH [207]. Since most natural water bodies have a relatively neutral pH, a shift towards acidity or alkalinity can indicate changes in nutrient levels. For example, an increased nitrate concentration can lead to a decrease in pH. The hydrogel might swell, shrink, or exhibit a change in electrical conductivity, depending on the chosen design [208,209]. These changes can be measured and correlated with the overall pH of the water, indirectly indicating potential nutrient imbalances.
- (ii)
- Ion-selective hydrogels can contain specific molecules called ionophores that can selectively bind with targeted nutrient ions, like phosphates or nitrates. When the target ions come into contact with the hydrogel, the ionophores bind them [210]. The binding process can alter the hydrogel electrical properties, such as conductivity [211]. This change can be measured electronically and directly quantified to determine the concentration of the target nutrient ion.
- (iii)
- Colorimetric hydrogels can include chromophores for the detection of nutrients by color variations [212].
3.2.4. pH and Chemical Monitoring
4. Final Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, D.; Arya, S.; Kumar, S. Industrial Wastewater Treatment: Current Trends, Bottlenecks, and Best Practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef]
- Chen, H.; Hou, D.; Li, Z.; Zhan, L.; Jin, L.; Zheng, S.; Wang, Y.; Wu, H.; Zhao, N.; Lin, L.; et al. Ammonia Release Characteristics during Desulfurization Wastewater Evaporation: Mechanisms and Implications. J. Water Process Eng. 2024, 57, 104673. [Google Scholar] [CrossRef]
- Hansima, M.A.C.K.; Makehelwala, M.; Jinadasa, K.B.S.N.; Wei, Y.; Nanayakkara, K.G.N.; Herath, A.C.; Weerasooriya, R. Fouling of Ion Exchange Membranes Used in the Electrodialysis Reversal Advanced Water Treatment: A Review. Chemosphere 2021, 263, 127951. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Shah, A.I.; Din Dar, M.U.; Bhat, R.A.; Singh, J.P.; Singh, K.; Bhat, S.A. Prospectives and Challenges of Wastewater Treatment Technologies to Combat Contaminants of Emerging Concerns. Ecol. Eng. 2020, 152, 105882. [Google Scholar] [CrossRef]
- Younas, F.; Mustafa, A.; Farooqi, Z.U.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Ashir Hameed, M.; Mohsin Abrar, M.; Maitlo, A.A.; Noreen, S.; et al. Current and Emerging Adsorbent Technologies for Wastewater Treatment: Trends, Limitations, and Environmental Implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
- Mu, R.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Hydrogel Adsorbent in Industrial Wastewater Treatment and Ecological Environment Protection. Environ. Technol. Innov. 2020, 20, 101107. [Google Scholar] [CrossRef]
- Rezai, B.; Allahkarami, E. Chapter 2—Wastewater Treatment Processes—Techniques, Technologies, Challenges Faced, and Alternative Solutions. In Soft Computing Techniques in Solid Waste and Wastewater Management; Karri, R.R., Ravindran, G., Dehghani, M.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 35–53. ISBN 978-0-12-824463-0. [Google Scholar]
- Chadha, U.; Selvaraj, S.K.; Vishak Thanu, S.; Cholapadath, V.; Abraham, A.M.; Zaiyan, M.M.; Manoharan, M.; Paramsivam, V. A Review of the Function of Using Carbon Nanomaterials in Membrane Filtration for Contaminant Removal from Wastewater. Mater. Res. Express 2022, 9, 12003. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Rando, G.; Sfameni, S.; Plutino, M.R. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2023, 9, 9. [Google Scholar] [CrossRef]
- Yan, L.; Yang, X.; Zeng, H.; Zhao, Y.; Li, Y.; He, X.; Ma, J.; Shao, L. Nanocomposite Hydrogel Engineered Hierarchical Membranes for Efficient Oil/Water Separation and Heavy Metal Removal. J. Memb. Sci. 2023, 668, 121243. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Shi, X.; Nawar, S.; Werner, J.G.; Huang, G.; Ye, M.; Weitz, D.A.; Solovev, A.A.; Mei, Y. Hydrogel Microcapsules with Photocatalytic Nanoparticles for Removal of Organic Pollutants. Environ. Sci. Nano 2020, 7, 656–664. [Google Scholar] [CrossRef]
- Godiya, C.B.; Martins Ruotolo, L.A.; Cai, W. Functional Biobased Hydrogels for the Removal of Aqueous Hazardous Pollutants: Current Status, Challenges, and Future Perspectives. J. Mater. Chem. A 2020, 8, 21585–21612. [Google Scholar] [CrossRef]
- Lim, J.Y.C.; Goh, S.S.; Liow, S.S.; Xue, K.; Loh, X.J. Molecular Gel Sorbent Materials for Environmental Remediation and Wastewater Treatment. J. Mater. Chem. A 2019, 7, 18759–18791. [Google Scholar] [CrossRef]
- Adjuik, T.A.; Nokes, S.E.; Montross, M.D.; Wendroth, O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers 2022, 14, 4721. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 79, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Duquette, D.; Dumont, M.-J. Comparative Studies of Chemical Crosslinking Reactions and Applications of Bio-Based Hydrogels. Polym. Bull. 2019, 76, 2683–2710. [Google Scholar] [CrossRef]
- Gyles, D.A.; Castro, L.D.; Silva, J.O.C.; Ribeiro-Costa, R.M. A Review of the Designs and Prominent Biomedical Advances of Natural and Synthetic Hydrogel Formulations. Eur. Polym. J. 2017, 88, 373–392. [Google Scholar] [CrossRef]
- Sethi, S.; Singh, A.; Medha; Thakur, S.; Kaith, B.S.; Khullar, S. Natural Polymer-Based Nanocomposite Hydrogels as Environmental Remediation Devices. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications; Shanker, U., Hussain, C.M., Rani, M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 407–441. ISBN 978-3-031-16101-8. [Google Scholar]
- Pita-López, M.L.; Fletes-Vargas, G.; Espinosa-Andrews, H.; Rodríguez-Rodríguez, R. Physically Cross-Linked Chitosan-Based Hydrogels for Tissue Engineering Applications: A State-of-the-Art Review. Eur. Polym. J. 2021, 145, 110176. [Google Scholar] [CrossRef]
- Liu, G.; Lv, Z.; Batool, S.; Li, M.-Z.; Zhao, P.; Guo, L.; Wang, Y.; Zhou, Y.; Han, S.-T. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small 2023, 19, 2207879. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Duan, J.; Xia, Y.; Nie, Z.; Sui, K. Construction of 3D Shape-Changing Hydrogels via Light-Modulated Internal Stress Fields. ENERGY Environ. Mater. 2023, 6, e12375. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef]
- Hao, L.; Liu, N.; Bai, H.; He, P.; Niu, R.; Gong, J. High-Performance Solar-Driven Interfacial Evaporation through Molecular Design of Antibacterial, Biomass-Derived Hydrogels. J. Colloid Interface Sci. 2022, 608, 840–852. [Google Scholar] [CrossRef]
- Parsa, S.M.; Norozpour, F.; Momeni, S.; Shoeibi, S.; Zeng, X.; Said, Z.; Guo, W.; Ngo, H.H.; Ni, B.-J. Advanced Nanostructured Materials in Solar Interfacial Steam Generation and Desalination against Pathogens: Combatting Microbial-Contaminants in Water—A Critical Review. J. Mater. Chem. A 2023, 11, 18046–18080. [Google Scholar] [CrossRef]
- Hasan, S.; Kouzani, A.Z.; Adams, S.; Long, J.; Mahmud, M.A.P. Recent Progress in Hydrogel-Based Sensors and Energy Harvesters. Sensors Actuators A Phys. 2022, 335, 113382. [Google Scholar] [CrossRef]
- Siwal, S.S.; Mishra, K.; Saini, A.K.; Alsanie, W.F.; Kovalcik, A.; Thakur, V.K. Additive Manufacturing of Bio-Based Hydrogel Composites: Recent Advances. J. Polym. Environ. 2022, 30, 4501–4516. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Plutino, M.R. Sustainable Secondary-Raw Materials, Natural Substances and Eco-Friendly Nanomaterial-Based Approaches for Improved Surface Performances: An Overview of What They Are and How They Work. Int. J. Mol. Sci. 2023, 24, 5472. [Google Scholar] [CrossRef]
- Gokmen, F.O.; Yaman, E.; Temel, S. Eco-Friendly Polyacrylic Acid Based Porous Hydrogel for Heavy Metal Ions Adsorption: Characterization, Adsorption Behavior, Thermodynamic and Reusability Studies. Microchem. J. 2021, 168, 106357. [Google Scholar] [CrossRef]
- El-saied, H.A.; El-Fawal, E.M. Green Superabsorbent Nanocomposite Hydrogels for High-Efficiency Adsorption and Photo-Degradation/Reduction of Toxic Pollutants from Waste Water. Polym. Test. 2021, 97, 107134. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Marchetta, A.; Scolaro, C.; Cappello, S.; Urzì, C.; Visco, A.; Plutino, M.R. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022, 8, 528. [Google Scholar] [CrossRef]
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 1415. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Liu, K.; Sheng, N.; Zhang, M.; Liu, W.; Liu, H.; Dai, L.; Zhang, X.; Si, C.; Du, H.; et al. Biopolymer-Based Hydrogel Electrolytes for Advanced Energy Storage/Conversion Devices: Properties, Applications, and Perspectives. Energy Storage Mater. 2022, 48, 244–262. [Google Scholar] [CrossRef]
- Karoyo, A.H.; Wilson, L.D. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials 2021, 14, 1095. [Google Scholar] [CrossRef] [PubMed]
- Giuri, D.; D’Agostino, S.; Ravarino, P.; Faccio, D.; Falini, G.; Tomasini, C. Water Remediation from Pollutant Agents by the Use of an Environmentally Friendly Supramolecular Hydrogel. ChemNanoMat 2022, 8, e202200093. [Google Scholar] [CrossRef]
- Pandey, S.; Son, N.; Kang, M. Synergistic Sorption Performance of Karaya Gum Crosslink Poly(Acrylamide-Co-Acrylonitrile) @ Metal Nanoparticle for Organic Pollutants. Int. J. Biol. Macromol. 2022, 210, 300–314. [Google Scholar] [CrossRef]
- Duan, C.; Liu, C.; Meng, X.; Gao, K.; Lu, W.; Zhang, Y.; Dai, L.; Zhao, W.; Xiong, C.; Wang, W.; et al. Facile Synthesis of Ag NPs@ MIL-100(Fe)/ Guar Gum Hybrid Hydrogel as a Versatile Photocatalyst for Wastewater Remediation: Photocatalytic Degradation, Water/Oil Separation and Bacterial Inactivation. Carbohydr. Polym. 2020, 230, 115642. [Google Scholar] [CrossRef]
- Qing, Z.; Wang, L.; Qin, Q.; Jiang, C.; Yang, Z.; Liu, Y.; Zhang, S.; Chen, J. A Stable Rare Earth-Based Layered Double Hydroxide Embedded Chitosan Hydrogel Beads for Enhanced Phosphate Removal from Aqueous Solution: Performance, Mechanisms and Applicability. J. Water Process Eng. 2024, 59, 104989. [Google Scholar] [CrossRef]
- Rahmatpour, A.; Alijani, N.; Alizadeh, A.H. Preparation of Chitosan-Based Ternary Nanocomposite Hydrogel Film by Loading Graphene Oxide Nanosheets as Adsorbent for Enhanced Methylene Blue Dye Removal. Int. J. Biol. Macromol. 2023, 253, 126585. [Google Scholar] [CrossRef]
- Singh, S.; Shauloff, N.; Jelinek, R. Solar-Enabled Water Remediation via Recyclable Carbon Dot/Hydrogel Composites. ACS Sustain. Chem. Eng. 2019, 7, 13186–13194. [Google Scholar] [CrossRef]
- Pal, P.; Syed, S.S.; Banat, F. Gelatin-Bentonite Composite as Reusable Adsorbent for the Removal of Lead from Aqueous Solutions: Kinetic and Equilibrium Studies. J. Water Process Eng. 2017, 20, 40–50. [Google Scholar] [CrossRef]
- Viscusi, G.; Lamberti, E.; Gorrasi, G. Design of Sodium Alginate/Soybean Extract Beads Loaded with Hemp Hurd and Halloysite as Novel and Sustainable Systems for Methylene Blue Adsorption. Polym. Eng. Sci. 2022, 62, 129–144. [Google Scholar] [CrossRef]
- Shahinpour, A.; Tanhaei, B.; Ayati, A.; Beiki, H.; Sillanpää, M. Binary Dyes Adsorption onto Novel Designed Magnetic Clay-Biopolymer Hydrogel Involves Characterization and Adsorption Performance: Kinetic, Equilibrium, Thermodynamic, and Adsorption Mechanism. J. Mol. Liq. 2022, 366, 120303. [Google Scholar] [CrossRef]
- Baigorria, E.; Fraceto, L.F. Low-Cost Biosorbent Hybrid Hydrogels for Paraquat Remediation of Water. J. Water Process Eng. 2022, 49, 103088. [Google Scholar] [CrossRef]
- Tie, L.; Zhang, W.; Deng, Z. Ferrous Ion-Induced Cellulose Nanocrystals/Alginate Bio-Based Hydrogel for High Efficiency Tetracycline Removal. Sep. Purif. Technol. 2024, 328, 125024. [Google Scholar] [CrossRef]
- Bora, A.; Sarmah, D.; Karak, N. Biobased Biodegradable Hydrogel Containing Modified Cellulosic Nanofiber-ZnO Nanohybrid as Efficient Metal Ions Removers with Recyclable Capacity. J. Clean. Prod. 2023, 430, 139748. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Zhang, X.; Guo, H.; Cao, X.; Lou, Z.; Zhang, W.; Wang, C. A Novel Lignin Hydrogel Supported NZVI for Efficient Removal of Cr(VI). Chemosphere 2022, 301, 134781. [Google Scholar] [CrossRef]
- Yang, L.; Bao, L.; Dong, T.; Xie, H.; Wang, X.; Wang, H.; Wu, J.; Hao, C. Adsorption Properties of Cellulose/Guar Gum/Biochar Composite Hydrogel for Cu2+, Co2+ and Methylene Blue. Int. J. Biol. Macromol. 2023, 242, 125021. [Google Scholar] [CrossRef] [PubMed]
- Kamel, S.; El-Gendy, A.A.; Hassan, M.A.; El-Sakhawy, M.; Kelnar, I. Carboxymethyl Cellulose-Hydrogel Embedded with Modified Magnetite Nanoparticles and Porous Carbon: Effective Environmental Adsorbent. Carbohydr. Polym. 2020, 242, 116402. [Google Scholar] [CrossRef]
- Pan, X.; Ji, J.; Zhang, N.; Xing, M. Research Progress of Graphene-Based Nanomaterials for the Environmental Remediation. Chin. Chem. Lett. 2020, 31, 1462–1473. [Google Scholar] [CrossRef]
- Rasheed, T. Magnetic Nanomaterials: Greener and Sustainable Alternatives for the Adsorption of Hazardous Environmental Contaminants. J. Clean. Prod. 2022, 362, 132338. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, T.A. Clay-Hydrogel Nanocomposites for Adsorptive Amputation of Environmental Contaminants from Aqueous Phase: A Review. J. Environ. Chem. Eng. 2021, 9, 105575. [Google Scholar] [CrossRef]
- Ielo, I.; Giacobello, F.; Castellano, A.; Sfameni, S.; Rando, G.; Plutino, M.R. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol–Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2022, 8, 26. [Google Scholar]
- Rando, G.; Sfameni, S.; Galletta, M.; Drommi, D.; Cappello, S.; Plutino, M.R. Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022, 27, 4856. [Google Scholar] [CrossRef] [PubMed]
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Functional Silane-Based Nanohybrid Materials for the Development of Hydrophobic and Water-Based Stain Resistant Cotton Fabrics Coatings. Nanomaterials 2022, 12, 3404. [Google Scholar] [CrossRef] [PubMed]
- Abou Elmaaty, T.M.; Elsisi, H.; Elsayad, G.; Elhadad, H.; Plutino, M.R. Recent Advances in Functionalization of Cotton Fabrics with Nanotechnology. Polymers 2022, 14, 4273. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.M.; Frazar, E.M.; Klaus, M.V.X.; Paul, P.; Hilt, J.Z. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv. Healthc. Mater. 2022, 11, 2101820. [Google Scholar] [CrossRef]
- Sfameni, S.; Hadhri, M.; Rando, G.; Drommi, D.; Rosace, G.; Trovato, V.; Plutino, M.R. Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics 2023, 11, 19. [Google Scholar] [CrossRef]
- Sfameni, S.; Rando, G.; Galletta, M.; Ielo, I.; Brucale, M.; De Leo, F.; Cardiano, P.; Cappello, S.; Visco, A.; Trovato, V.; et al. Design and Development of Fluorinated and Biocide-Free Sol–Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022, 8, 538. [Google Scholar] [CrossRef]
- Trovato, V.; Rosace, G.; Colleoni, C.; Sfameni, S.; Migani, V.; Plutino, M.R. Sol-Gel Based Coatings for the Protection of Cultural Heritage Textiles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 777, 12007. [Google Scholar] [CrossRef]
- Soltani, S.; Emadi, R.; Javanmard, S.H.; Kharaziha, M.; Rahmati, A. Shear-Thinning and Self-Healing Nanohybrid Alginate-Graphene Oxide Hydrogel Based on Guest-Host Assembly. Int. J. Biol. Macromol. 2021, 180, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Das, P.; Bhowal, A.; Bhattachariee, C. Synthesis of Hybrid Hydrogel Nano-Polymer Composite Using Graphene Oxide, Chitosan and PVA and Its Application in Waste Water Treatment. Environ. Technol. Innov. 2020, 18, 100664. [Google Scholar] [CrossRef]
- Kaniewska, K.; Karbarz, M.; Katz, E. Nanocomposite Hydrogel Films and Coatings—Features and Applications. Appl. Mater. Today 2020, 20, 100776. [Google Scholar] [CrossRef]
- Wahid, F.; Zhao, X.-J.; Jia, S.-R.; Bai, H.; Zhong, C. Nanocomposite Hydrogels as Multifunctional Systems for Biomedical Applications: Current State and Perspectives. Compos. Part B Eng. 2020, 200, 108208. [Google Scholar] [CrossRef]
- Rosace, G.; Guido, E.; Colleoni, C.; Brucale, M.; Piperopoulos, E.; Milone, C.; Plutino, M.R. Halochromic Resorufin-GPTMS Hybrid Sol-Gel: Chemical-Physical Properties and Use as PH Sensor Fabric Coating. Sensors Actuators B Chem. 2017, 241, 85–95. [Google Scholar] [CrossRef]
- Pereira, A.G.B.; Rodrigues, F.H.A.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R. Recent Advances on Composite Hydrogels Designed for the Remediation of Dye-Contaminated Water and Wastewater: A Review. J. Clean. Prod. 2021, 284, 124703. [Google Scholar] [CrossRef]
- Ielo, I.; Giacobello, F.; Sfameni, S.; Rando, G.; Galletta, M.; Trovato, V.; Rosace, G.; Plutino, M.R. Nanostructured Surface Finishing and Coatings: Functional Properties and Applications. Materials 2021, 14, 2733. [Google Scholar] [CrossRef] [PubMed]
- AbouElmaaty, T.; Abdeldayem, S.A.; Ramadan, S.M.; Sayed-Ahmed, K.; Plutino, M.R. Coloration and Multi-Functionalization of Polypropylene Fabrics with Selenium Nanoparticles. Polymers 2021, 13, 2483. [Google Scholar] [CrossRef]
- Elmaaty, T.A.; Raouf, S.; Sayed-Ahmed, K.; Plutino, M.R. Multifunctional Dyeing of Wool Fabrics Using Selenium Nanoparticles. Polymers 2022, 14, 191. [Google Scholar] [CrossRef]
- Parsa, S.M.; Norouzpour, F.; Shoeibi, S.; Shahsavar, A.; Aberoumand, S.; Said, Z.; Guo, W.; Ngo, H.H.; Ni, B.-J.; Afrand, M.; et al. A Comprehensive Study to Find the Optimal Fraction of Nanoparticle Coated at the Interface of Solar Desalination Absorbers: 5E and GHGs Analysis in Different Seasons. Sol. Energy Mater. Sol. Cells 2023, 256, 112308. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, X.; Zhang, F.; Lei, F.; Li, P.; Wang, K.; Jiang, J. Preparation and Application of Galactomannan-Based Green Hydrogels Initiated by Lignin-Ag NPs. Mater. Today Commun. 2023, 34, 105256. [Google Scholar] [CrossRef]
- Raptopoulou, C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials 2021, 14, 310. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, Y.; Zhang, J.; Tang, L.; Luo, L.; Zeng, G. Iron Containing Metal–Organic Frameworks: Structure, Synthesis, and Applications in Environmental Remediation. ACS Appl. Mater. Interfaces 2017, 9, 20255–20275. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, X.; Li, J.; Zeng, P.; Song, Y.; Yu, H. Roles of Defects and Linker Exchange in Phosphate Adsorption on UiO-66 Type Metal Organic Frameworks: Influence of Phosphate Concentration. Chem. Eng. J. 2021, 405, 126681. [Google Scholar] [CrossRef]
- Kajjumba, G.W.; Marti, E.J. A Review of the Application of Cerium and Lanthanum in Phosphorus Removal during Wastewater Treatment: Characteristics, Mechanism, and Recovery. Chemosphere 2022, 309, 136462. [Google Scholar] [CrossRef] [PubMed]
- Kunhikrishnan, A.; Rahman, M.A.; Lamb, D.; Bolan, N.S.; Saggar, S.; Surapaneni, A.; Chen, C. Rare Earth Elements (REE) for the Removal and Recovery of Phosphorus: A Review. Chemosphere 2022, 286, 131661. [Google Scholar] [CrossRef] [PubMed]
- Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. Materials 2018, 11, 295. [Google Scholar] [CrossRef]
- Mohamed, E.N.; Abd-Elhamid, A.I.; El-Bardan, A.A.; Soliman, H.M.A.; Mohy-Eldin, M.S. Development of Carboxymethyl Cellulose-Graphene Oxide Biobased Composite for the Removal of Methylene Blue Cationic Dye Model Contaminate from Wastewater. Sci. Rep. 2023, 13, 14265. [Google Scholar] [CrossRef]
- Sfameni, S.; Del Tedesco, A.; Rando, G.; Truant, F.; Visco, A.; Plutino, M.R. Waterborne Eco-Sustainable Sol–Gel Coatings Based on Phytic Acid Intercalated Graphene Oxide for Corrosion Protection of Metallic Surfaces. Int. J. Mol. Sci. 2022, 23, 12021. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Jiang, Z.; Shangguan, J.; Qing, T.; Zhang, P.; Feng, B. Applications of Carbon Dots in Environmental Pollution Control: A Review. Chem. Eng. J. 2021, 406, 126848. [Google Scholar] [CrossRef]
- González-González, R.B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Bilal, M.; Iqbal, H.M.N. Decontamination of Emerging Pharmaceutical Pollutants Using Carbon-Dots as Robust Materials. J. Hazard. Mater. 2022, 423, 127145. [Google Scholar] [CrossRef] [PubMed]
- Sakdaronnarong, C.; Sangjan, A.; Boonsith, S.; Kim, D.C.; Shin, H.S. Recent Developments in Synthesis and Photocatalytic Applications of Carbon Dots. Catalysts 2020, 10, 320. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. What Is Clay? A New Definition of “Clay” Based on Plasticity and Its Impact on the Most Widespread Soil Classification Systems. Appl. Clay Sci. 2018, 161, 57–63. [Google Scholar] [CrossRef]
- Ielo, I.; Galletta, M.; Rando, G.; Sfameni, S.; Cardiano, P.; Sabatino, G.; Drommi, D.; Rosace, G.; Plutino, M.R. Design, Synthesis and Characterization of Hybrid Coatings Suitable for Geopolymeric-Based Supports for the Restoration of Cultural Heritage. IOP Conf. Ser. Mater. Sci. Eng. 2020, 777, 012003. [Google Scholar] [CrossRef]
- Bujdák, J. Adsorption Kinetics Models in Clay Systems. The Critical Analysis of Pseudo-Second Order Mechanism. Appl. Clay Sci. 2020, 191, 105630. [Google Scholar] [CrossRef]
- Ewis, D.; Ba-Abbad, M.M.; Benamor, A.; El-Naas, M.H. Adsorption of Organic Water Pollutants by Clays and Clay Minerals Composites: A Comprehensive Review. Appl. Clay Sci. 2022, 229, 106686. [Google Scholar] [CrossRef]
- Asgar, H.; Jin, J.; Miller, J.; Kuzmenko, I.; Gadikota, G. Contrasting Thermally-Induced Structural and Microstructural Evolution of Alumino-Silicates with Tubular and Planar Arrangements: Case Study of Halloysite and Kaolinite. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 613, 126106. [Google Scholar] [CrossRef]
- Lampropoulou, P.; Papoulis, D. Halloysite in Different Ceramic Products: A Review. Materials 2021, 14, 5501. [Google Scholar] [CrossRef]
- Lvov, Y.; Wang, W.; Zhang, L.; Fakhrullin, R. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds. Adv. Mater. 2016, 28, 1227–1250. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Wu, T.; Wu, H.; Zeng, B.; Zeng, S.; Chen, T.; Wang, X.; Lu, Z.; Yuan, C.; Balaji, K.; et al. Nanohybrid Silver Nanoparticles@halloysite Nanotubes Coated with Polyphosphazene for Effectively Enhancing the Fire Safety of Epoxy Resin. Chem. Eng. J. 2021, 407, 127087. [Google Scholar] [CrossRef]
- Trovato, V.; Sfameni, S.; Ben Debabis, R.; Rando, G.; Rosace, G.; Malucelli, G.; Plutino, M.R. How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges. Inorganics 2023, 11, 306. [Google Scholar] [CrossRef]
- He, Y.; Xu, W.; Tang, R.; Zhang, C.; Yang, Q. PH-Responsive Nanovalves Based on Encapsulated Halloysite for the Controlled Release of a Corrosion Inhibitor in Epoxy Coating. RSC Adv. 2015, 5, 90609–90620. [Google Scholar] [CrossRef]
- Khatoon, N.; Chu, M.Q.; Zhou, C.H. Nanoclay-Based Drug Delivery Systems and Their Therapeutic Potentials. J. Mater. Chem. B 2020, 8, 7335–7351. [Google Scholar] [CrossRef] [PubMed]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F. Hydrophobically Modified Halloysite Nanotubes as Reverse Micelles for Water-in-Oil Emulsion. Langmuir 2015, 31, 7472–7478. [Google Scholar] [CrossRef] [PubMed]
- Giacobello, F.; Ielo, I.; Belhamdi, H.; Plutino, M.R. Geopolymers and Functionalization Strategies for the Development of Sustainable Materials in Construction Industry and Cultural Heritage Applications: A Review. Materials 2022, 15, 1725. [Google Scholar] [CrossRef] [PubMed]
- Rando, G.; Sfameni, S.; Hadhri, M.; Mezzi, A.; Brucale, M.; De Luca, G.; Piperopolus, E.; Milone, C.; Drommi, D.; Rosace, G.; et al. Methyl Red-Loaded Halloysite Nanotubes-Based Silica Coatings for Long-Lasting (Durable) Dyeing of Polyester Fabrics. Surf. Interfaces 2024, Submitted. [Google Scholar]
- Trovato, V.; Mezzi, A.; Brucale, M.; Abdeh, H.; Drommi, D.; Rosace, G.; Plutino, M.R. Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors. Polymers 2022, 14, 2788. [Google Scholar] [CrossRef]
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Super-Hydrophobicity of Polyester Fabrics Driven by Functional Sustainable Fluorine-Free Silane-Based Coatings. Gels 2023, 9, 109. [Google Scholar] [CrossRef]
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman, F.B.; Haque, S.; Rashid, T.U.; Kabir, S.M. Cellulose-Based Hydrogels for Wastewater Treatment: A Concise Review. Gels 2021, 7, 30. [Google Scholar] [CrossRef]
- Hassanisaadi, M.; Saberi Riseh, R.; Rabiei, A.; Varma, R.S.; Kennedy, J.F. Nano/Micro-Cellulose-Based Materials as Remarkable Sorbents for the Remediation of Agricultural Resources from Chemical Pollutants. Int. J. Biol. Macromol. 2023, 246, 125763. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, C.; Yang, Z.; Wu, G.; Liu, G.; Kong, Z. Recent Advances in Lignin-Based Porous Materials for Pollutants Removal from Wastewater. Int. J. Biol. Macromol. 2021, 187, 880–891. [Google Scholar] [CrossRef]
- Tosco, T.; Petrangeli Papini, M.; Cruz Viggi, C.; Sethi, R. Nanoscale Zerovalent Iron Particles for Groundwater Remediation: A Review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Ren, J.; Woo, Y.C.; Yao, M.; Lim, S.; Tijing, L.D.; Shon, H.K. Nanoscale Zero-Valent Iron (NZVI) Immobilization onto Graphene Oxide (GO)-Incorporated Electrospun Polyvinylidene Fluoride (PVDF) Nanofiber Membrane for Groundwater Remediation via Gravity-Driven Membrane Filtration. Sci. Total Environ. 2019, 688, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Lee, Y.-C.; Mines, P.D.; Huh, Y.S.; Andersen, H.R. Nanoscale Zero-Valent Iron (NZVI) Synthesis in a Mg-Aminoclay Solution Exhibits Increased Stability and Reactivity for Reductive Decontamination. Appl. Catal. B Environ. 2014, 147, 748–755. [Google Scholar] [CrossRef]
- Lu, L.; Yu, W.; Wang, Y.; Zhang, K.; Zhu, X.; Zhang, Y.; Wu, Y.; Ullah, H.; Xiao, X.; Chen, B. Application of Biochar-Based Materials in Environmental Remediation: From Multi-Level Structures to Specific Devices. Biochar 2020, 2, 1–31. [Google Scholar] [CrossRef]
- Akl, Z.F.; Zaki, E.G.; ElSaeed, S.M. Green Hydrogel-Biochar Composite for Enhanced Adsorption of Uranium. ACS Omega 2021, 6, 34193–34205. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-Responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Ali, A.; Shabeer, M.; Shah, M.N.; Haq, F.; Iqbal, M.; Ullah, R.; Khan, F.U. Manufactures of Bio-Degradable and Bio-Based Polymers for Bio-Materials in the Pharmaceutical Field. J. Appl. Polym. Sci. 2022, 139, e52624. [Google Scholar] [CrossRef]
- Shaibie, N.A.; Ramli, N.A.; Mohammad Faizal, N.D.F.; Srichana, T.; Mohd Amin, M.C.I. Poly(N-Isopropylacrylamide)-Based Polymers: Recent Overview for the Development of Temperature-Responsive Drug Delivery and Biomedical Applications. Macromol. Chem. Phys. 2023, 224, 2300157. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y. A Novel PH/Temperature-Responsive Hydrogel Based on Tremella Polysaccharide and Poly(N-Isopropylacrylamide). Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124270. [Google Scholar] [CrossRef]
- Mittal, H.; Al Alili, A.; Alhassan, S.M.; Naushad, M. Advances in the Role of Natural Gums-Based Hydrogels in Water Purification, Desalination and Atmospheric-Water Harvesting. Int. J. Biol. Macromol. 2022, 222, 2888–2921. [Google Scholar] [CrossRef]
- El-Husseiny, H.M.; Mady, E.A.; Hamabe, L.; Abugomaa, A.; Shimada, K.; Yoshida, T.; Tanaka, T.; Yokoi, A.; Elbadawy, M.; Tanaka, R. Smart/Stimuli-Responsive Hydrogels: Cutting-Edge Platforms for Tissue Engineering and Other Biomedical Applications. Mater. Today Bio 2022, 13, 100186. [Google Scholar] [CrossRef] [PubMed]
- Bratek-Skicki, A. Towards a New Class of Stimuli-Responsive Polymer-Based Materials—Recent Advances and Challenges. Appl. Surf. Sci. Adv. 2021, 4, 100068. [Google Scholar] [CrossRef]
- Xian, C.; Yuan, Q.; Bao, Z.; Liu, G.; Wu, J. Progress on Intelligent Hydrogels Based on RAFT Polymerization: Design Strategy, Fabrication and the Applications for Controlled Drug Delivery. Chinese Chem. Lett. 2020, 31, 19–27. [Google Scholar] [CrossRef]
- Yuan, Z.; Ding, J.; Zhang, Y.; Huang, B.; Song, Z.; Meng, X.; Ma, X.; Gong, X.; Huang, Z.; Ma, S.; et al. Components, Mechanisms and Applications of Stimuli-Responsive Polymer Gels. Eur. Polym. J. 2022, 177, 111473. [Google Scholar] [CrossRef]
- Beaudoin, G.; Lasri, A.; Zhao, C.; Liberelle, B.; De Crescenzo, G.; Zhu, X.-X. Making Hydrophilic Polymers Thermoresponsive: The Upper Critical Solution Temperature of Copolymers of Acrylamide and Acrylic Acid. Macromolecules 2021, 54, 7963–7969. [Google Scholar] [CrossRef]
- Işıkver, Y.; Saraydın, D. Smart Hydrogels: Preparation, Characterization, and Determination of Transition Points of Crosslinked N-Isopropyl Acrylamide/Acrylamide/Carboxylic Acids Polymers. Gels 2021, 7, 113. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-Isopropylacrylamide)-Based Smart Hydrogels: Design, Properties and Applications. Prog. Mater. Sci. 2021, 115, 100702. [Google Scholar] [CrossRef]
- Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S. Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of PH, Light, Ionic Strength and Magnetic Field. Cancers 2021, 13, 1164. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Heydarpour, R.; Tehrani, Z.M. Multi-Stimuli-Responsive Hydrogels and Their Medical Applications. New J. Chem. 2021, 45, 15705–15717. [Google Scholar] [CrossRef]
- Shahi, S.; Roghani-Mamaqani, H.; Talebi, S.; Mardani, H. Chemical Stimuli-Induced Reversible Bond Cleavage in Covalently Crosslinked Hydrogels. Coord. Chem. Rev. 2022, 455, 214368. [Google Scholar] [CrossRef]
- Srivastava, N.; Choudhury, A.R. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind. Eng. Chem. Res. 2023, 62, 841–866. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, X.; Tang, X.; Peng, L.; Zhang, H.; Zhang, S.; Hu, Q.; Li, J. A Dual PH- and Temperature-Responsive Hydrogel Produced in Situ Crosslinking of Cyclodextrin-Cellulose for Wound Healing. Int. J. Biol. Macromol. 2023, 253, 126693. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Jiang, Q.; Wang, J.; Cao, S.; Qiu, Y.; Wang, H.; Liao, Y.; Xie, X. A Triple-Stimuli Responsive Supramolecular Hydrogel Based on Methoxy-Azobenzene-Grafted Poly(Acrylic Acid) and β-Cyclodextrin Dimer. Polymer 2021, 221, 123617. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Zhao, T.; Zhang, C.; Wang, L.; He, N.; Kong, Q.; Wang, X. Transient Regulation of Gel Properties by Chemical Reaction Networks. Chem. Commun. 2023, 59, 9818–9831. [Google Scholar] [CrossRef]
- Wang, K.; Ren, J.; Yang, S.; Wang, H. Hydrogel-Based Motors. Adv. Mater. Technol. 2021, 6, 2100158. [Google Scholar] [CrossRef]
- Trovato, V.; Sfameni, S.; Rando, G.; Rosace, G.; Libertino, S.; Ferri, A.; Plutino, M.R. A Review of Stimuli-Responsive Smart Materials for Wearable Technology in Healthcare: Retrospective, Perspective, and Prospective. Molecules 2022, 27, 5709. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Matsunaga, Y.T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. [Google Scholar] [CrossRef]
- Puoci, F.; Saturnino, C.; Trovato, V.; Iacopetta, D.; Piperopoulos, E.; Triolo, C.; Bonomo, M.G.; Drommi, D.; Parisi, O.I.; Milone, C.; et al. Sol-Gel Treatment of Textiles for the Entrapping of an Antioxidant/Anti-Inflammatory Molecule: Functional Coating Morphological Characterization and Drug Release Evaluation. Appl. Sci. 2020, 10, 2287. [Google Scholar] [CrossRef]
- Hoogenboom, R. Temperature-Responsive Polymers: Properties, Synthesis, and Applications. In Smart Polymers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 13–44. [Google Scholar]
- Zhang, K.; Xue, K.; Loh, X.J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7, 77. [Google Scholar] [CrossRef]
- Dou, Q.Q.; Liow, S.S.; Ye, E.; Lakshminarayanan, R.; Loh, X.J. Biodegradable Thermogelling Polymers: Working towards Clinical Applications. Adv. Healthc. Mater. 2014, 3, 977–988. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Zolfagharian, A.; Bodaghi, M. 4D Bioprinting of Smart Polymers for Biomedical Applications: Recent Progress, Challenges, and Future Perspectives. React. Funct. Polym. 2022, 179, 105374. [Google Scholar] [CrossRef]
- Namgung, H.; Jo, S.; Lee, T.S. Fluorescence Modulation of Conjugated Polymer Nanoparticles Embedded in Poly(N-Isopropylacrylamide) Hydrogel. Polymers 2021, 13, 4315. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.; Cha, C. Refined Control of Thermoresponsive Swelling/Deswelling and Drug Release Properties of Poly(N-Isopropylacrylamide) Hydrogels Using Hydrophilic Polymer Crosslinkers. J. Biomater. Sci. Polym. Ed. 2016, 27, 1698–1711. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-Y.; Zhao, Y.; Kim, C.; Alsaid, Y.; Khodambashi, R.; Peet, M.; Fisher, R.; Marvi, H.; Berman, S.; Aukes, D. Highly Stretchable Self-Sensing Actuator Based on Conductive Photothermally-Responsive Hydrogel. Mater. Today 2021, 50, 35–43. [Google Scholar] [CrossRef]
- Safakas, K.; Saravanou, S.-F.; Iatridi, Z.; Tsitsilianis, C. Thermo-Responsive Injectable Hydrogels Formed by Self-Assembly of Alginate-Based Heterograft Copolymers. Gels 2023, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Kocak, G.; Tuncer, C.; Bütün, V. PH-Responsive Polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Hemmatpour, H.; Haddadi-Asl, V.; Roghani-Mamaqani, H. Synthesis of PH-Sensitive Poly (N,N-Dimethylaminoethyl Methacrylate)-Grafted Halloysite Nanotubes for Adsorption and Controlled Release of DPH and DS Drugs. Polymer 2015, 65, 143–153. [Google Scholar] [CrossRef]
- Hemmatpour, H.; Haddadi-Asl, V.; Khanipour, F.; Stuart, M.C.A.; Lu, L.; Pei, Y.; Roghani-Mamaqani, H.; Rudolf, P. Mussel-Inspired Grafting PH-Responsive Brushes onto Halloysite Nanotubes for Controlled Release of Doxorubicin. Eur. Polym. J. 2022, 180, 111583. [Google Scholar] [CrossRef]
- Culver, H.R.; Clegg, J.R.; Peppas, N.A. Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. Acc. Chem. Res. 2017, 50, 170–178. [Google Scholar] [CrossRef]
- Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M.J.; Huang, Y.; Chen, T. Bioinspired Anisotropic Hydrogel Actuators with on–off Switchable and Color-tunable Fluorescence Behaviors. Adv. Funct. Mater. 2018, 28, 1704568. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, X.; Tan, G.; Tian, L.; Liu, D.; Liu, Y.; Yang, X.; Pan, W. A Novel PH-Induced Thermosensitive Hydrogel Composed of Carboxymethyl Chitosan and Poloxamer Cross-Linked by Glutaraldehyde for Ophthalmic Drug Delivery. Carbohydr. Polym. 2017, 155, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. Injectable Antibacterial Conductive Hydrogels with Dual Response to an Electric Field and PH for Localized “Smart” Drug Release. Acta Biomater. 2018, 72, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Bi, W.; Liu, H. PH-Responsive Magnetic Graphene Oxide/Poly (NVI-Co-AA) Hydrogel as an Easily Recyclable Adsorbent for Cationic and Anionic Dyes. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 588, 124393. [Google Scholar] [CrossRef]
- Sharma, G.; Thakur, B.; Kumar, A.; Sharma, S.; Naushad, M.; Stadler, F.J. Atrazine Removal Using Chitin-Cl-Poly (Acrylamide-Co-Itaconic Acid) Nanohydrogel: Isotherms and PH Responsive Nature. Carbohydr. Polym. 2020, 241, 116258. [Google Scholar] [CrossRef]
- Rando, G.; Sfameni, S.; Milone, M.; Mezzi, A.; Brucale, M.; Notti, A.; Plutino, M.R. Smart Pillar[5]Arene-Based PDMAEMA/PES Beads for Selective Dye Pollutants Removal: Design, Synthesis, Chemical-Physical Characterization, and Adsorption Kinetic Studies. Adv. Funct. Mater. 2023, Submitted. [Google Scholar] [CrossRef]
- Wang, W.; Hu, J.; Zhang, R.; Yan, C.; Cui, L.; Zhu, J. A PH-Responsive Carboxymethyl Cellulose/Chitosan Hydrogel for Adsorption and Desorption of Anionic and Cationic Dyes. Cellulose 2021, 28, 897–909. [Google Scholar] [CrossRef]
- Avais, M.; Chattopadhyay, S. Waterborne PH Responsive Hydrogels: Synthesis, Characterization and Selective PH Responsive Behavior around Physiological PH. Polymer 2019, 180, 121701. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, A.; Jiang, H.; Song, S.H.; Zhou, J.; Ziaie, B. A Wireless Chemical Sensing Scheme Using Ultrasonic Imaging of Silica-Particle-Embedded Hydrogels (Silicagel). Sensors Actuators B Chem. 2018, 259, 552–559. [Google Scholar] [CrossRef]
- Genovese, M.E.; Caputo, G.; Nanni, G.; Setti, C.; Bustreo, M.; Perotto, G.; Athanassiou, A.; Fragouli, D. Light Responsive Silk Nanofibers: An Optochemical Platform for Environmental Applications. ACS Appl. Mater. Interfaces 2017, 9, 40707–40715. [Google Scholar] [CrossRef] [PubMed]
- Roghani-Mamaqani, H.; Tajmoradi, Z. Photoresponsive Polymers. Smart Stimuli-Responsive Polym. Film. Gels; Wiley-VCH GmbH: Weinheim, Germany, 2022; Chapter 2; pp. 53–134. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Liu, C.-S.; Tian, Y.; Wang, J.; Xin, S.; Sheng, X. An Eco-Friendly Photo-Responsive Hyaluronic Acid-Based Supramolecular Polysaccharide Hybrid Hydrogels for Plant Growth Regulation and Heavy Metal Ions Adsorption. Int. J. Biol. Macromol. 2023, 242, 125194. [Google Scholar] [CrossRef] [PubMed]
- Muddineti, O.S.; Kumari, P.; Ghosh, B.; Torchilin, V.P.; Biswas, S. D-α-Tocopheryl Succinate/Phosphatidyl Ethanolamine Conjugated Amphiphilic Polymer-Based Nanomicellar System for the Efficient Delivery of Curcumin and to Overcome Multiple Drug Resistance in Cancer. ACS Appl. Mater. Interfaces 2017, 9, 16778–16792. [Google Scholar] [CrossRef] [PubMed]
- Basuki, A. Sustainable Strategies Selection in SMEs Using MCDM Approach. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 58, p. 2007. [Google Scholar]
- Wu, Q.; Niu, M.; Chen, X.; Tan, L.; Fu, C.; Ren, X.; Ren, J.; Li, L.; Xu, K.; Zhong, H. Biocompatible and Biodegradable Zeolitic Imidazolate Framework/Polydopamine Nanocarriers for Dual Stimulus Triggered Tumor Thermo-Chemotherapy. Biomaterials 2018, 162, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Wen, H.; Lv, H.; Li, T.; Tang, R.; Liu, L.; Jiang, J.; Wang, S.; Duan, J. Intelligent Hydrogel with Both Redox and Thermo-Response Based on Cellulose Nanofiber for Controlled Drug Delivery. Carbohydr. Polym. 2022, 278, 118943. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hou, X.; Pan, Y.; Wang, L.; Xiao, H. Redox-Responsive Carboxymethyl Cellulose Hydrogel for Adsorption and Controlled Release of Dye. Eur. Polym. J. 2020, 123, 109447. [Google Scholar] [CrossRef]
- Kilic Boz, R.; Aydin, D.; Kocak, S.; Golba, B.; Sanyal, R.; Sanyal, A. Redox-Responsive Hydrogels for Tunable and “On-Demand” Release of Biomacromolecules. Bioconjug. Chem. 2022, 33, 839–847. [Google Scholar] [CrossRef]
- Liubimtsev, N.; Kösterke, T.; Che, Y.; Appelhans, D.; Gaitzsch, J.; Voit, B. Redox-Sensitive Ferrocene Functionalised Double Cross-Linked Supramolecular Hydrogels. Polym. Chem. 2022, 13, 427–438. [Google Scholar] [CrossRef]
- Guo, T.; Wang, W.; Song, J.; Jin, Y.; Xiao, H. Dual-Responsive Carboxymethyl Cellulose/Dopamine/Cystamine Hydrogels Driven by Dynamic Metal-Ligand and Redox Linkages for Controllable Release of Agrochemical. Carbohydr. Polym. 2021, 253, 117188. [Google Scholar] [CrossRef] [PubMed]
- Mirhadi, E.; Mashreghi, M.; Faal Maleki, M.; Alavizadeh, S.H.; Arabi, L.; Badiee, A.; Jaafari, M.R. Redox-Sensitive Nanoscale Drug Delivery Systems for Cancer Treatment. Int. J. Pharm. 2020, 589, 119882. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, H. Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers. Polym. Rev. 2020, 60, 114–143. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Yang, S.; Zhang, C.; Ullah, Z. Recent Research Progress on the Stimuli-Responsive Smart Membrane: A Review. Nanotechnol. Rev. 2023, 12, 20220538. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Zheng, J.; Chen, G.; Wang, W.; Miao, Y.; Zhu, N.; Cong, Y.; Fu, J. Erasable, Rewritable, and Reprogrammable Dual Information Encryption Based on Photoluminescent Supramolecular Host–Guest Recognition and Hydrogel Shape Memory. Adv. Mater. 2023, 35, 2301300. [Google Scholar] [CrossRef]
- Wang, S.; Ong, P.J.; Liu, S.; Thitsartarn, W.; Tan, M.J.B.H.; Suwardi, A.; Zhu, Q.; Loh, X.J. Recent Advances in Host-Guest Supramolecular Hydrogels for Biomedical Applications. Chem.—Asian J. 2022, 17, e202200608. [Google Scholar] [CrossRef] [PubMed]
- Libertino, S.; Plutino, M.R.; Rosace, G. Design and Development of Wearable Sensing Nanomaterials for Smart Textiles. AIP Conf. Proc. 2018, 1990, 020016. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.-F.; Sun, W.-Q.; Lin, R.-L.; Ye, M.-F.; Liu, J.-X. Supramolecular Host–Guest Hydrogel Based on γ-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence. ACS Appl. Mater. Interfaces 2023, 15, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shen, H.; Hu, X.; Li, Y.; Li, Z.; Xu, J.; Song, X.; Zeng, H.; Yuan, Q. A Targeted “Capture” and “Removal” Scavenger toward Multiple Pollutants for Water Remediation Based on Molecular Recognition. Adv. Sci. 2016, 3, 1500289. [Google Scholar] [CrossRef]
- Yang, S.; Sarkar, S.; Xie, X.; Li, D.; Chen, J. Application of Optical Hydrogels in Environmental Sensing. ENERGY Environ. Mater. 2023, 7, e12646. [Google Scholar] [CrossRef]
- Fu, L.; Yu, A.; Lai, G. Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. Chemosensors 2021, 9, 282. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, H.-R.; Wen, J.-Y.; Wang, Y.-L.; Liang, T.; Cheng, C.-J. A Novel Ion-Responsive Photonic Hydrogel Sensor for Portable Visual Detection and Timely Removal of Lead Ions in Water. Mater. Adv. 2022, 3, 5393–5405. [Google Scholar] [CrossRef]
- Biswakarma, D.; Dey, N.; Bhattacharya, S. Hydrogel Nanocomposite Towards Optical Sensing of Spermine in Biomedical and Real-Life Food Samples and Remediation of Toxic Dyes from Wastewater. Langmuir 2023, 39, 11610–11620. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, Z.; Yuan, B.; Li, X.; Li, S.; Thang Nguyen, T.; Guo, M.; Guo, Z. Fluorescent Carbon Dots Crosslinked Cellulose Nanofibril/Chitosan Interpenetrating Hydrogel System for Sensitive Detection and Efficient Adsorption of Cu (II) and Cr (VI). Chem. Eng. J. 2022, 430, 133154. [Google Scholar] [CrossRef]
- Sotolářová, J.; Vinter, Š.; Filip, J. Cellulose Derivatives Crosslinked by Citric Acid on Electrode Surface as a Heavy Metal Absorption/Sensing Matrix. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 628, 127242. [Google Scholar] [CrossRef]
- Katowah, D.F.; Ismail, S.H.; Sadek, A.H.; Rahman, M.M. Ultrasensitive QCM Sensor Development for Monitoring of Methyl Orange Dye in Aqueous Phase Based on Novel Cross-Linked Chitosan/PVA/GO/Ce-ZnO Nanocomposite Film. Mater. Sci. Eng. B 2023, 297, 116804. [Google Scholar] [CrossRef]
- Xiong, S.; Marin, L.; Duan, L.; Cheng, X. Fluorescent Chitosan Hydrogel for Highly and Selectively Sensing of P-Nitrophenol and 2, 4, 6-Trinitrophenol. Carbohydr. Polym. 2019, 225, 115253. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, D.; Kaur, H.; Renu; Garg, T.; Abhivyakti; Kumar, V.; Tikoo, K.; Singh, B.; Kaushik, A.; Singhal, S. A Novel Psidium Guajava and Cerium-MOF Based Dual-Responsive Bio-Composite for the Synchronous Adsorptive Removal and Fluorescence Detection of Tetracycline Antibiotics. Process Saf. Environ. Prot. 2024, 187, 1295–1310. [Google Scholar] [CrossRef]
- Kestwal, R.M.; Bagal-Kestwal, D.; Chiang, B.-H. Fenugreek Hydrogel–Agarose Composite Entrapped Gold Nanoparticles for Acetylcholinesterase Based Biosensor for Carbamates Detection. Anal. Chim. Acta 2015, 886, 143–150. [Google Scholar] [CrossRef]
- Wongniramaikul, W.; Kleangklao, B.; Boonkanon, C.; Taweekarn, T.; Phatthanawiwat, K.; Sriprom, W.; Limsakul, W.; Towanlong, W.; Tipmanee, D.; Choodum, A. Portable Colorimetric Hydrogel Test Kits and On-Mobile Digital Image Colorimetry for On-Site Determination of Nutrients in Water. Molecules 2022, 27, 7287. [Google Scholar] [CrossRef]
- Qiu, X.; Huang, J.; Wang, H.; Qi, Y.; Cui, J.; Hao, J. Multi-Functional Rhodamine-Based Chitosan Hydrogels as Colorimetric Hg2+ Adsorbents and PH-Triggered Biosensors. J. Colloid Interface Sci. 2021, 604, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z.; Gao, R.; Kan, C.; Xu, J. Portable Quantitative Detection of Fe3+ by Integrating a Smartphone with Colorimetric Responses of a Rhodamine-Functionalized Polyacrylamide Hydrogel Chemosensor. Sensors Actuators B Chem. 2021, 340, 129958. [Google Scholar] [CrossRef]
- Li, M.; Shi, Q.; Song, N.; Xiao, Y.; Wang, L.; Chen, Z.; James, T.D. Current Trends in the Detection and Removal of Heavy Metal Ions Using Functional Materials. Chem. Soc. Rev. 2023, 52, 5827–5860. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Tan, Q.; Gao, M.; Chen, G.; Huang, X.; Xu, X.; Li, L.; Wang, J.; Zhang, Y.; et al. Polysaccharide-Based Biopolymer Hydrogels for Heavy Metal Detection and Adsorption. J. Adv. Res. 2023, 44, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Luo, X.; Yang, L.; Chang, Z.; Luo, S. Progress toward Hydrogels in Removing Heavy Metals from Water: Problems and Solutions—A Review. ACS EST Water 2021, 1, 1098–1116. [Google Scholar] [CrossRef]
- Hong, W.; Li, W.; Hu, X.; Zhao, B.; Zhang, F.; Zhang, D. Highly Sensitive Colorimetric Sensing for Heavy Metal Ions by Strong Polyelectrolyte Photonic Hydrogels. J. Mater. Chem. 2011, 21, 17193–17201. [Google Scholar] [CrossRef]
- Fathalla, M.; Selvaganapathy, P.R. Colorimetric Detection of Heavy Metal Ions Using Superabsorptive Hydrogels and Evaporative Concentration for Water Quality Monitoring. ACS EST Water 2022, 2, 658–666. [Google Scholar] [CrossRef]
- Chazaro-Ruiz, L.F.; Olvera-Sosa, M.; Vidal, G.; Rangel-Mendez, J.R.; Palestino, G.; Perez, F.; Zhang, W. Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-Co-Itaconic Acid)/NaOH Composite Hydrogel and Its Potential Application for Electrochemical Detection of Cadmium(II). Biosensors 2020, 10, 147. [Google Scholar] [CrossRef]
- Feng, S.; Hao Ngo, H.; Guo, W.; Woong Chang, S.; Duc Nguyen, D.; Cheng, D.; Varjani, S.; Lei, Z.; Liu, Y. Roles and Applications of Enzymes for Resistant Pollutants Removal in Wastewater Treatment. Bioresour. Technol. 2021, 335, 125278. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Veena, R.; Samuel, M.S.; Selvarajan, E. Immobilization of Laccases and Applications for the Detection and Remediation of Pollutants: A Review. Environ. Chem. Lett. 2021, 19, 521–538. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, T.; Tian, H.; Jin, B.; He, J. Hydrogel-Encapsulated Enzyme Facilitates Colorimetric Acute Toxicity Assessment of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2018, 10, 26705–26712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Lian, M.; Alhadhrami, A.; Huang, M.; Li, B.; Mersal, G.A.M.; Ibrahim, M.M.; Xu, M. Laccase Immobilized on Functionalized Cellulose Nanofiber/Alginate Composite Hydrogel for Efficient Bisphenol A Degradation from Polluted Water. Adv. Compos. Hybrid Mater. 2022, 5, 1852–1864. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Zhang, D.; Wang, J.; Tan, H.; Kong, T. Enzyme-Functionalized Structural Color Hydrogel Particles for Urea Detection and Elimination. J. Clean. Prod. 2021, 315, 128149. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, L.; McClements, D.J.; Qiu, C.; Li, C.; Zhang, Z.; Miao, M.; Tian, Y.; Zhu, K.; Jin, Z. Stimulus-Responsive Hydrogels in Food Science: A Review. Food Hydrocoll. 2022, 124, 107218. [Google Scholar] [CrossRef]
- Hou, X.; Mu, L.; Chen, F.; Hu, X. Emerging Investigator Series: Design of Hydrogel Nanocomposites for the Detection and Removal of Pollutants: From Nanosheets, Network Structures, and Biocompatibility to Machine-Learning-Assisted Design. Environ. Sci. Nano 2018, 5, 2216–2240. [Google Scholar] [CrossRef]
- Sharma, A.K.; Priya; Kaith, B.S.; Singh, A.; Isha; Vipula; Chandel, K. Enzymatic Construction of Quinine Derivative of Dextrin/PVA Based Hybrid Gel Film for the Simultaneous Detection and Removal of Copper and Lead Ions in Real Water Samples. Chem. Eng. J. 2020, 382, 122891. [Google Scholar] [CrossRef]
- González-González, R.B.; Sharma, P.; Singh, S.P.; Américo-Pinheiro, J.H.P.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M.N. Persistence, Environmental Hazards, and Mitigation of Pharmaceutically Active Residual Contaminants from Water Matrices. Sci. Total Environ. 2022, 821, 153329. [Google Scholar] [CrossRef] [PubMed]
- Saviano, L.; Brouziotis, A.A.; Padilla Suarez, E.G.; Siciliano, A.; Spampinato, M.; Guida, M.; Trifuoggi, M.; Del Bianco, D.; Carotenuto, M.; Romano Spica, V.; et al. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023, 28, 6185. [Google Scholar] [CrossRef] [PubMed]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef]
- Nangia, S.; Warkar, S.; Katyal, D. A Review on Environmental Applications of Chitosan Biopolymeric Hydrogel Based Composites. J. Macromol. Sci. Part A 2018, 55, 747–763. [Google Scholar] [CrossRef]
- Karunarathna, M.H.J.S.; Bailey, K.M.; Ash, B.L.; Matson, P.G.; Wildschutte, H.; Davis, T.W.; Midden, W.R.; Ostrowski, A.D. Nutrient Capture from Aqueous Waste and Photocontrolled Fertilizer Delivery to Tomato Plants Using Fe(III)–Polysaccharide Hydrogels. ACS Omega 2020, 5, 23009–23020. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shaghaleh, H.; Hamoud, Y.A.; Zhang, S.; Li, P.; Xu, X.; Liu, H. Synthesis of a PH-Responsive Nano-Cellulose/Sodium Alginate/MOFs Hydrogel and Its Application in the Regulation of Water and N-Fertilizer. Int. J. Biol. Macromol. 2021, 187, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Z.; Jia, X.; Chen, R.; Qin, Y.; Bian, Y.; Sheng, W.; Li, S.; Gao, Z. Stimulus-Responsive Hydrogels: A Potent Tool for Biosensing in Food Safety. Trends Food Sci. Technol. 2023, 131, 91–103. [Google Scholar] [CrossRef]
- Shen, J.-S.; Cai, Q.-G.; Jiang, Y.-B.; Zhang, H.-W. Anion-Triggered Melamine Based Self-Assembly and Hydrogel. Chem. Commun. 2010, 46, 6786–6788. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhai, J.; Li, X.; Zhang, Y.; Li, N.; Xie, X. Hydrogel-Based Optical Ion Sensors: Principles and Challenges for Point-of-Care Testing and Environmental Monitoring. ACS Sensors 2021, 6, 1990–2001. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-X.; Xu, W.; Yang, Z.; Wu, Y.; Pi, F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties, to Functional Applications. Macromol. Rapid Commun. 2022, 43, 2100785. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.-T.; Cheng, C.-Y.; Chen, Y.-S.; Ko, F.-H. A Hydrogel-Based Chemosensor Applied in Conjunction with a Griess Assay for Real-Time Colorimetric Detection of Nitrite in the Environment. Sensors Actuators B Chem. 2022, 369, 132298. [Google Scholar] [CrossRef]
- Willner, I. Stimuli-Controlled Hydrogels and Their Applications. Acc. Chem. Res. 2017, 50, 657–658. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Arotiba, O.A. Synthesis, Swelling and Adsorption Studies of a PH-Responsive Sodium Alginate–Poly(Acrylic Acid) Superabsorbent Hydrogel. Polym. Bull. 2018, 75, 4587–4606. [Google Scholar] [CrossRef]
- Azeem, M.K.; Islam, A.; Khan, R.U.; Rasool, A.; Qureshi, M.A.U.R.; Rizwan, M.; Sher, F.; Rasheed, T. Eco-Friendly Three-Dimensional Hydrogels for Sustainable Agricultural Applications: Current and Future Scenarios. Polym. Adv. Technol. 2023, 34, 3046–3062. [Google Scholar] [CrossRef]
- Vivaldi, F.; Salvo, P.; Poma, N.; Bonini, A.; Biagini, D.; Del Noce, L.; Melai, B.; Lisi, F.; Francesco, F.D. Recent Advances in Optical, Electrochemical and Field Effect PH Sensors. Chemosensors 2021, 9, 33. [Google Scholar] [CrossRef]
- Plutino, M.R.; Guido, E.; Colleoni, C.; Rosace, G. Effect of GPTMS Functionalization on the Improvement of the PH-Sensitive Methyl Red Photostability. Sensors Actuators B 2017, 238, 281–291. [Google Scholar] [CrossRef]
- Sun, X.; Agate, S.; Salem, K.S.; Lucia, L.; Pal, L. Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Appl. Bio Mater. 2021, 4, 140–162. [Google Scholar] [CrossRef] [PubMed]
- Buwalda, S.J. Bio-Based Composite Hydrogels for Biomedical Applications. Multifunct. Mater. 2020, 3, 22001. [Google Scholar] [CrossRef]
- Farris, S.; Schaich, K.M.; Liu, L.; Piergiovanni, L.; Yam, K.L. Development of Polyion-Complex Hydrogels as an Alternative Approach for the Production of Bio-Based Polymers for Food Packaging Applications: A Review. Trends Food Sci. Technol. 2009, 20, 316–332. [Google Scholar] [CrossRef]
- Kasbaji, M.; Mennani, M.; Oubenali, M.; Ait Benhamou, A.; Boussetta, A.; Ablouh, E.-H.; Mbarki, M.; Grimi, N.; El Achaby, M.; Moubarik, A. Bio-Based Functionalized Adsorptive Polymers for Sustainable Water Decontamination: A Systematic Review of Challenges and Real-World Implementation. Environ. Pollut. 2023, 335, 122349. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble Metals in Medicine: Latest Advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Wu, S.; Shi, W.; Li, K.; Cai, J.; Chen, L. Recent Advances on Sustainable Bio-Based Materials for Water Treatment: Fabrication, Modification and Application. J. Environ. Chem. Eng. 2022, 10, 108921. [Google Scholar] [CrossRef]
- Lu, G.; Tian, S.; Li, J.; Xu, Y.; Liu, S.; Pu, J. Fabrication of Bio-Based Amphiphilic Hydrogel Coating with Excellent Antifouling and Mechanical Properties. Chem. Eng. J. 2021, 409, 128134. [Google Scholar] [CrossRef]
- Sudheer, S.; Bandyopadhyay, S.; Bhat, R. Sustainable Polysaccharide and Protein Hydrogel-Based Packaging Materials for Food Products: A Review. Int. J. Biol. Macromol. 2023, 248, 125845. [Google Scholar] [CrossRef]
- Hachimi Alaoui, C.; Réthoré, G.; Weiss, P.; Fatimi, A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int. J. Mol. Sci. 2023, 24, 13493. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, Z.; Li, J.; Gang, H.; Mei, D.; Yin, D.; Deng, R.; Zhu, Y.; Li, X.; Wang, N.; et al. Engineering a Hollow Bowl-like Porous Carbon-Confined Ru–MgO Hetero-Structured Nanopair as a High-Performance Catalyst for Ammonia Borane Hydrolysis. Mater. Horizons 2024, 11, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Bosu, S.; Rajamohan, N.; Sagadevan, S.; Raut, N. Biomass Derived Green Carbon Dots for Sensing Applications of Effective Detection of Metallic Contaminants in the Environment. Chemosphere 2023, 345, 140471. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Qi, P.; Wang, Y.; Liu, Y.; Sui, K. Electrostatic Assembly Construction of Polysaccharide Functionalized Hybrid Membrane for Enhanced Antimony Removal. J. Hazard. Mater. 2021, 410, 124633. [Google Scholar] [CrossRef]
Bio-Polymeric Blend Composition | Nano-Micro-Dopant Agent | Pollutant Treated | Sorption Performances | Ref. |
---|---|---|---|---|
Karaya gum cross-link poly(acrylamide-co-acrylonitrile) | AgNPs | Crystal violet | Initial concentration: 50 mg/L; Adsorption capacity: 1000 mg·g−1 (pH = 8 and temperature 298 K) | [39] |
Guar gum | Ag NPs@ MIL-100(Fe) | Methylene blue, silicone oil, cyclohexane, and canola oil | Initial MB concentration: 40 mg/L; removal: 100% Oil/water separation ability: 99.10% for silicone oil, 97.82% for cyclohexane, and 98.61% for canola oil | [40] |
Chitosan hydrogel beads | La- and Ce-layered double hydroxide | Phosphate | Initial concentration: 200 mg P/L (pH 5); adsorption capacity: LaCa-LDH/CS and CeCa-LDH/CS of 149.5 and 174.6 mg P/g, respectively | [41] |
Chitosan/partially hydrolyzed polyacrylamide | Graphene oxide nanosheets | Methylene blue | Initial concentration: 100 mg/L; adsorption capacity: 476.19 mg·g−1 | [42] |
Chitosan/carboxymethyl cellulose | Carbon dots | Heavy metal ions, detergents, and organic compounds | Contaminants: Cu2+, Ni2+, Ag+, and Cd2+; initial concentration: 0.01 M; removal: >99% | [43] |
Gelatin | Bentonite | Pb(II) | Adsorption capacity: 47.16 mg/g (pH = 5) | [44] |
Alginate/soybean extract | Hemp hurd and halloysite nanotubes | Methylene blue | Adsorption capacity: 49 mg/g | [45] |
κ-carrageenan | Kaolinite and Fe3O4/Al2O3 core–shell nanoparticles | Congo red and Alizarin Red S | Adsorption capacity: 26.9 and 33.5 mg/g for Congo red and Alizarin Red S, respectively | [46] |
Chitosan | Dodecylamine, dellite LVF, and bentonite | Paraquat | Adsorption capacity: 0.98, 0.94, and 0.99 mg/g for dodecylamine, dellite LVF, and bentonite modified chitosan beads | [47] |
Alginate | Cellulose nanocrystals and Fe2+ | Tetracycline | Adsorption capacity: 741.66 mg·g−1 | [48] |
Starch/itaconic acid/acrylic acid | Cellulose nanofibers and zinc oxide nanoparticles | Cu(II) and Fe(II) ions | Adsorption capacity: 122 and 70 mg/g for Cu(II) and Fe(II) ions, respectively | [49] |
Acrylamide-based | Nanoscale Zero-Valent Iron (nZVI) | Cr(VI) | Adsorption capacity: 310.86 mg·g−1 | [50] |
Cellulose and guar gum | Typha angustifolia biochar | Cu2+, Co2+, and methylene blue | Adsorption capacity: 805.45, 772.52, and 598.28 mg·g−1 for Cu2+, Co2+, and methylene blue | [51] |
Carboxymethyl cellulose grafted acrylamide | Porous carbon (from bagasse) and citric acid-modified magnetite | Pb(II) and methylene blue | Adsorption capacity: 294.1 and 222.2 mg/g for Pb-ions and methylene blue, respectively | [52] |
Stimulus | Hydrogel Type | Applications | Mechanism | Example | Ref. |
---|---|---|---|---|---|
Temperature | Thermo-responsive | Medicine Biotechnology | Changes in swelling behavior or sol–gel transition in response to temperature variations | PNIPAM hydrogel PNIPAM-PEG | [138,139,140,141,142] |
pH | Acid or basic | Medicine Agriculture Environmental monitoring | Changes in swelling behavior or structural conformation in response to changes in pH | PDMAEMA/ crystalline nanocellulose (CNC) | [151] |
Light | Photo-Responsive | Medicine Biotechnology Advanced materials | When exposed to particular light wavelengths, photo-responsive moieties can undergo reversible photoisomerization or photolysis, which can alter the structure and mechanical strength of hydrogels | Polysaccharide hybrid hydrogels (arylazopyrazole-modified hyaluronic acid (HA-AAP), guanidinium functionalized β-cyclodextrin (Guano-CD), and laponite clay (LP) Agarose hydrogel matrix containing gold nanoparticles (AuNPs) covered with polymer poly(methacryloxyethyl trimethyl ammonium chloride [P(METAC)] | [158,160,161] |
Electrochemical | Redox-Responsive | Drug delivery Regenerative medicine Biodetection | Redox-responsive hydrogels respond to changes in the oxidation state of their environment | Carboxymethyl cellulose nanocrystals and L-cysteine-based hydrogel | [163] |
Target molecules | Molecular Recognition-Responsive | Medicine Biotechnology Environmental monitoring Advanced materials | When particular molecules are present, molecular recognition-responsive hydrogels react, providing very focused and selective reactions | Aptamers-functionalized Fe3O4–Ag Janus nanoparticles into cellulose hydrogel | [174] |
Polymeric Blend Composition | Nano-Micro-Dopant Agent/Cross-Linker | Pollutant Detected by Revealing Approach | Results | Ref. |
---|---|---|---|---|
Chitosan | Nitrogen-doped carbon dots and cellulose nanofibrils | Cu(II) and Cr(VI) by fluorescence | Linear range: 50–1000 mg/L and 1–50 mg/L for Cu (II) and Cr (VI), respectively Detection limit: 40.3398 mg/L and 0.7093 mg/L for Cu (II) and Cr (VI), respectively | [179] |
Hydroxyethyl cellulose (HEC) and thermally pre-treated carboxymethyl cellulose (T-CMC) | Citric acid | Pb(II) by electrochemical method | Detection limit: 0.39 mg·L−1 Sensitivity: 9.91 μA·L·mg−1 | [180] |
Chitosan/polyvinyl alcohol | Graphene oxide nanosheets and cerium-doped zinc oxide nanoparticles | Methyl orange by quartz crystal microbalance | Sensitivity: 25 ng Response time: 10 min | [181] |
Chitosan | Naphthalimide derivatives | 2, 4, 6-trinitrophenol (TNP), and/or p-nitrophenol (4-NP) by fluorescence | Limit of detection: 0.28 μM for TNP and 1.20 μM for 4-NP | [182] |
Guava leaf (Psidium guajava) | Cerium-MOF | Doxycycline (DC), minocycline (MC), and tetracycline (TC) | Sorption capacities: 81.30, 75.18, and 63.69 mg/g for DC, MC, and TC, respectively Limit of detection: 94.3 nM, 71.4 nM, and 74.2 nM for DC, MC, and TC, respectively | [183] |
Fenugreek hydrogel-agarose | Acetylcholinesterase and gold nanoparticles | Carbofuran, oxamyl, methomyl, or carbaryl by the photometric dip-strip system | Limit of detection: 2, 21, 113, and 236 nM for carbofuran, oxamyl, methomyl and carbaryl, respectively | [184] |
Poly(vinyl alcohol) | Griess reagent, molybdenum blue-based reagent, and zinc powder entrapped within a tapioca starch film | Nitrite, nitrate, and phosphate by on-mobile digital image colorimetry | Limit of detection: 0.02, 0.04, and 0.14 mg·L−1 for nitrite, nitrate, and phosphate, respectively | [185] |
Chitosan | Rhodamine-modified poly (ethylene glycol) benzaldehyde | Hg(II) and pH by colorimetry | Hg(II) removal rate: 96.5%; Hg(II) initial concentration: 158 mg·L−1 pH variations: from 4.2 to 7.4 | [186] |
Advantages | Limitations |
---|---|
Sustainability and environmental friendliness Bio-based hydrogels can be derived from renewable biomaterials, such as polysaccharides (e.g., cellulose and chitosan) or proteins (e.g., collage and, gelatin), contributing to efforts towards sustainability and circular economy principles [189] | Weak mechanical properties Many bio-based hydrogels have low mechanical strength, which can limit their durability and practical application in dynamic water environments; moreover, continuous swelling and shrinking with changes in environmental conditions (e.g., pH and temperature) can affect their structural integrity and functionality [219] |
Biocompatibility Hydrogels derived from renewable biomaterials are inherently biocompatible, minimizing adverse effects when deployed in aquatic environments or biological treatment systems and not inducing adverse reactions when in contact with biological tissues or fluids [200] | Production costs Bio-based hydrogels can be more expensive to produce than synthetic hydrogels, limiting their economic viability [220] |
Biodegradability Bio-based hydrogels can be broken down into simpler molecules by biological processes over time, reducing the risk of long-term accumulation and minimizing environmental pollution [221] | Chemical stability Biodegradation of bio-based hydrogels exposed to natural environmental conditions may reduce their effectiveness and lifespan [19] |
Stimuli-responsive and smart properties Stimuli-responsive hydrogels undergo reversible changes in their structure, properties, or behavior in response to specific external stimuli, such as changes in temperature, pH, light, or the presence of certain ions or molecules. The high water content of hydrogels enhances analyte diffusion and facilitates sensitive detection of trace contaminants in wastewater samples [208,211,222] | Biofouling Biological fouling that can occur on the hydrogel surface can reduce their sorption/detection performances, particularly in natural water bodies [223,224] |
Adaptability and multifunctionality Hydrogel properties can be tailored to meet specific requirements, including mechanical strength, responsiveness, contaminant sorption, and compatibility with sensor transduction mechanisms [225,226,227] | |
Selectivity Functionalization of bio-based polymeric hydrogels allows for specific sorption/detection of target analytes, such as heavy metals, organic pollutants, and pathogens, amidst complex wastewater matrices [33,228,229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rando, G.; Scalone, E.; Sfameni, S.; Plutino, M.R. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024, 10, 498. https://doi.org/10.3390/gels10080498
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels. 2024; 10(8):498. https://doi.org/10.3390/gels10080498
Chicago/Turabian StyleRando, Giulia, Elisabetta Scalone, Silvia Sfameni, and Maria Rosaria Plutino. 2024. "Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications" Gels 10, no. 8: 498. https://doi.org/10.3390/gels10080498
APA StyleRando, G., Scalone, E., Sfameni, S., & Plutino, M. R. (2024). Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels, 10(8), 498. https://doi.org/10.3390/gels10080498