Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery
Abstract
:1. Introduction
2. Intersecting Diagnosis with Therapy
3. Biopolymer Gels as Versatile Platforms
4. Properties and Characteristics of Biopolymer Gels
5. Imaging Agents in Theranostic Applications
Imaging Modality | Imaging Agent | Theranostic Application | |
---|---|---|---|
X-ray Imaging | Iodine-based contrast agents | Diagnosis of bone fractures, detection of tumors, and monitoring therapeutic interventions | [46] |
Barium sulfate | Visualization of gastrointestinal tract for diagnosing conditions like ulcers or tumors | ||
Ultrasound Imaging | Microbubble contrast agents | Assessing blood flow, visualizing organs, and guiding interventional procedures | [47] |
Contrast-enhanced ultrasound | Imaging liver lesions, assessing vascularity in tumors, and diagnosing cardiovascular conditions | ||
Magnetic Resonance Imaging | Gadolinium-based contrast agents | Imaging brain, spinal cord, and musculoskeletal system, and detecting tumors and inflammatory processes | [48] |
Superparamagnetic iron oxide nanoparticles | Targeted drug delivery and imaging of inflammation | ||
Fluorescence Imaging | Fluorescent dyes | Visualizing specific molecular targets, biomarkers, or cellular processes with high sensitivity | [49] |
Quantum dots | Multiplexed imaging of molecular targets for personalized medicine | ||
Nuclear Imaging | Fluorodeoxyglucose | Cancer diagnosis and monitoring response to treatment | [50] |
Technetium-99m labeled agents | Imaging myocardial perfusion and diagnosing bone metastases | ||
Copper-64 labeled nanoparticles | Imaging and tracking of stem cell therapy |
6. Importance of Imaging Agents in Theranostics
7. Integration of Imaging Agents with Biopolymer Gels
8. Role of Biopolymer Gels in Real-Time Monitoring
9. Challenges in Conventional Drug Delivery Monitoring
10. Future Outlook and Recommendations
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A sustainable material for food and medical applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Santhamoorthy, M.; Phan, T.T.V.; Kim, S.-C. pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels 2024, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, S.C.; Aguirre, G. Biopolymer micro/nanogel particles as smart drug delivery and theranostic systems. Pharmaceutics 2023, 15, 2060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Xu, J.; Yang, N.; Wang, H.; Li, J.; Zhang, M.; Zhu, M. Engineered Dynamic Hydrogel Niches for the Regulation of Redox Homeostasis in Osteoporosis and Degenerative Endocrine Diseases. Gels 2023, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Altuntaş, E.; Özkan, B.; Güngör, S.; Özsoy, Y. Biopolymer-based nanogel approach in drug delivery: Basic concept and current developments. Pharmaceutics 2023, 15, 1644. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.H. Structural and mechanical properties of biopolymer gels. In Food Polymers, Gels and Colloids; Elsevier: Amsterdam, The Netherlands, 1991; pp. 322–338. [Google Scholar]
- Puccetti, M.; Pariano, M.; Schoubben, A.; Giovagnoli, S.; Ricci, M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024, 201, 107086. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Kim, T.-H.; Ahn, J.-C.; Kim, H.-W.; Kim, S.Y. Highly efficient “theranostics” system based on surface-modified gold nanocarriers for imaging and photodynamic therapy of cancer. J. Mater. Chem. B 2013, 1, 5806–5817. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, S.; Reddy, R.J.; Maheswaran, T.; Asokan, G.; Dany, A.; Anand, B. Theranostics: A treasured tailor for tomorrow. J. Pharm. Bioallied Sci. 2014, 6, S6–S8. [Google Scholar] [CrossRef]
- Lammers, T.; Aime, S.; Hennink, W.E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038. [Google Scholar] [CrossRef]
- Gonçalves, C.; Pereira, P.; Gama, M. Self-assembled hydrogel nanoparticles for drug delivery applications. Materials 2010, 3, 1420–1460. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Preetam, S.; Ghosh, B.; Chakrabarti, T.; Chakrabarti, P.; Samal, S.K.; Thorat, N. Advancement in biopolymer assisted cancer theranostics. ACS Appl. Bio Mater. 2023, 6, 3959–3983. [Google Scholar] [CrossRef] [PubMed]
- Ayeldeen, M.K.; Negm, A.M.; El Sawwaf, M.A. Evaluating the physical characteristics of biopolymer/soil mixtures. Arab. J. Geosci. 2016, 9, 371. [Google Scholar] [CrossRef]
- Terreno, E.; Uggeri, F.; Aime, S. Image guided therapy: The advent of theranostic agents. J. Control. Release 2012, 161, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Jain, S.; Kumar, D.; Soni, S.L.; Sharma, M. A review on theranostics: An approach to targeted diagnosis and therapy. Asian J. Pharm. Res. Dev. 2019, 7, 63–69. [Google Scholar] [CrossRef]
- Burkett, B.J.; Bartlett, D.J.; McGarrah, P.W.; Lewis, A.R.; Johnson, D.R.; Berberoğlu, K.; Pandey, M.K.; Packard, A.T.; Halfdanarson, T.R.; Hruska, C.B. A review of theranostics: Perspectives on emerging approaches and clinical advancements. Radiol. Imaging Cancer 2023, 5, e220157. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Sakib, M.N.; Rashid, T.U. Chitosan based bioactive materials in tissue engineering applications—A review. Bioact. Mater. 2020, 5, 164–183. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, M.; Bikiaris, D.N.; Lamprou, D.A. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics 2022, 14, 1978. [Google Scholar] [CrossRef] [PubMed]
- Carranza, T.; Tejo-Otero, A.; Bengoechea, C.; Guerrero, P.; de la Caba, K. Optimization of Ink Composition and 3D Printing Process to Develop Soy Protein-Based Scaffolds. Gels 2024, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Opriș, O.; Mormile, C.; Lung, I.; Stegarescu, A.; Soran, M.-L.; Soran, A. An overview of biopolymers for drug delivery applications. Appl. Sci. 2024, 14, 1383. [Google Scholar] [CrossRef]
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879–1903. [Google Scholar] [CrossRef]
- Chavda, V.P.; Balar, P.C.; Nalla, L.V.; Bezbaruah, R.; Gogoi, N.R.; Gajula, S.N.R.; Peng, B.; Meena, A.S.; Conde, J.; Prasad, R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS Omega 2023, 8, 37654–37684. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. Int. J. Mol. Sci. 2022, 23, 1415. [Google Scholar] [CrossRef]
- Mercer, I.G.; Italiano, A.N.; Gazaryan, I.G.; Steiner, A.B.; Kazakov, S.V. Degradation Kinetics of Disulfide Cross-Linked Microgels: Real-Time Monitoring by Confocal Microscopy. Gels 2023, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Sousa, I.; Raymundo, A.; Bengoechea, C. Three-Dimensional Printing of Red Algae Biopolymers: Effect of Locust Bean Gum on Rheology and Processability. Gels 2024, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Melo, B.L.; Lima-Sousa, R.; Alves, C.G.; Moreira, A.F.; Correia, I.J.; de Melo-Diogo, D. Chitosan-based injectable in situ forming hydrogels containing dopamine-reduced graphene oxide and resveratrol for breast cancer chemo-photothermal therapy. Biochem. Eng. J. 2022, 185, 108529. [Google Scholar] [CrossRef]
- Attama, A.A.; Nnamani, P.O.; Onokala, O.B.; Ugwu, A.A.; Onugwu, A.L. Nanogels as target drug delivery systems in cancer therapy: A review of the last decade. Front. Pharmacol. 2022, 13, 874510. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet. 2011, 2, 367. [Google Scholar]
- Dispinar, T.; Van Camp, W.; De Cock, L.J.; De Geest, B.G.; Du Prez, F.E. Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering. Macromol. Biosci. 2012, 12, 383–394. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, C.; Wang, C.; Xiao, Y.; Lin, W. An overview on collagen and gelatin-based cryogels: Fabrication, classification, properties and biomedical applications. Polymers 2021, 13, 2299. [Google Scholar] [CrossRef]
- Alshamrani, M. Broad-spectrum theranostics and biomedical application of functionalized nanomaterials. Polymers 2022, 14, 1221. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural polymer-based hydrogels: From polymer to biomedical applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Mazuki, N.; Saadiah, M.; Fuzlin, A.; Khan, N.; Samsudin, A. Basic Aspects and Properties of Biopolymers; The Royal Society of Chemistry: London, UK, 2022. [Google Scholar]
- ALSamman, M.T.; Sánchez, J. Chitosan-and alginate-based hydrogels for the adsorption of anionic and cationic dyes from water. Polymers 2022, 14, 1498. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Qi, X.; Chen, Y.; Wu, Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm. J. 2019, 27, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Dong, A.; Song, J.; Chen, X. Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery. J. Control. Release 2019, 297, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Alaswad, S.O.; Mahmoud, A.S.; Arunachalam, P. Recent advances in biodegradable polymers and their biological applications: A brief review. Polymers 2022, 14, 4924. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review. BioMed Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef] [PubMed]
- Kasban, H.; El-Bendary, M.; Salama, D. A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 2015, 4, 37–58. [Google Scholar]
- Hsu, J.C.; Nieves, L.M.; Betzer, O.; Sadan, T.; Noël, P.B.; Popovtzer, R.; Cormode, D.P. Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1642. [Google Scholar] [CrossRef] [PubMed]
- Methachan, B.; Thanapprapasr, K. Polymer-based materials in cancer treatment: From therapeutic carrier and ultrasound contrast agent to theranostic applications. Ultrasound Med. Biol. 2017, 43, 69–82. [Google Scholar] [CrossRef]
- Jeong, Y.; Hwang, H.S.; Na, K. Theranostics and contrast agents for magnetic resonance imaging. Biomater. Res. 2018, 22, 20. [Google Scholar] [CrossRef]
- Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Crișan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.-G.; Andrieș, G.; Căinap, C.; Chiș, V. Radiopharmaceuticals for PET and SPECT imaging: A literature review over the last decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Schwaiger, M.C.; Gambhir, S.S.; Hricak, H. Imaging approaches to optimize molecular therapies. Sci. Transl. Med. 2016, 8, 355ps316. [Google Scholar] [CrossRef]
- Ou, X.; Chen, X.; Xu, X.; Xie, L.; Chen, X.; Hong, Z.; Bai, H.; Liu, X.; Chen, Q.; Li, L. Recent development in x-ray imaging technology: Future and challenges. Research 2021, 2021, 9892152. [Google Scholar] [CrossRef] [PubMed]
- Chan, V.; Perlas, A. Basics of ultrasound imaging. In Atlas of Ultrasound-Guided Procedures in Interventional Pain Management; Springer: New York, NY, USA, 2011; pp. 13–19. [Google Scholar]
- Van Geuns, R.-J.M.; Wielopolski, P.A.; de Bruin, H.G.; Rensing, B.J.; Van Ooijen, P.M.; Hulshoff, M.; Oudkerk, M.; de Feyter, P.J. Basic principles of magnetic resonance imaging. Prog. Cardiovasc. Dis. 1999, 42, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007, 18, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, S.; Zannetti, A.; Fonti, R.; Pace, L.; Salvatore, M. Nuclear imaging in cancer theranostics. Q. J. Nucl. Med. Mol. Imaging 2007, 51, 152–163. [Google Scholar] [PubMed]
- Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in nuclear medicine: Emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wu, F. Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2012, 2, 1040. [Google Scholar] [CrossRef]
- De La Vega, J.C.; Häfeli, U.O. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications. Contrast Media Mol. Imaging 2015, 10, 81–95. [Google Scholar] [CrossRef]
- Perera, R.H.; Hernandez, C.; Zhou, H.; Kota, P.; Burke, A.; Exner, A.A. Ultrasound imaging beyond the vasculature with new generation contrast agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Nathanael, A.J.; Oh, T.H. Biopolymer coatings for biomedical applications. Polymers 2020, 12, 3061. [Google Scholar] [CrossRef] [PubMed]
- Kučuk, N.; Primožič, M.; Knez, Ž.; Leitgeb, M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int. J. Mol. Sci. 2023, 24, 3188. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Yan, Y.; Palanisamy, C.P.; Jayaraman, S.; Natarajan, P.M.; Umapathy, V.R.; Gopathy, S.; Roy, J.R.; Sadagopan, J.C.; Thalamati, D. Materials-based drug delivery approaches: Recent advances and future perspectives. Green Process. Synth. 2024, 13, 20230094. [Google Scholar] [CrossRef]
- Vashist, A.; Raymond, A.D.; Chapagain, P.; Nair, M.P.; Runowicz, C.D. Polyols and Polyol-Based Hydrogels with Anti-Cancer Activity. U.S. Patent No. 11,969,438, 30 April 2024. [Google Scholar]
- Newman, D.K.; Spero, M.A.; Martins-Green, M.; Coates, J.D. Wound Prevention and/or Treatment and Related Compounds, Matrices, Compositions, Methods and Systems. U.S. Patent No. US20210322462A1, 21 October 2021. [Google Scholar]
- Loadman, P.; Falconer, R.; Gill, J.; Rao, J.; Daldrup-Link, H.E. Tumour-Targeted Theranostic. U.S. Patent No. 10,201,622B2, 12 February 2019. [Google Scholar]
- Steinmetz, N.F. Polydopamine Decorated Tobacco Mosaic Theranostic Virus Nanoparticles. U.S. Patent No. 11,529,430A1, 20 December 2022. [Google Scholar]
- Dravid, V.P.; Sharma, S.; Tomita, T.; Viola, K.L.; Klein, W.L. Magnetic Nanostructures As Theranostic Agents. U.S. Patent No. 9,095,629, 4 August 2015. [Google Scholar]
- Perez Figueroa, J.M.; Santra, S. Synthesis of Hyperbranched Amphiphylic Polyester and Theranostic Nanoparticles Thereof. U.S. Patent No. 2016O2564O2A1, 8 September 2016. [Google Scholar]
- Kumar, R.; Sridhar, S.; Wilfred, N.; Cormack, R.; Makrigiorgos, G. Biopolymer-Nanoparticle Composite Implant for Tumor Cell Tracking. U.S. Patent No. US20170209601A1, 27 July 2017. [Google Scholar]
- Wu, X.Y.; Shalviri, A.; Cai, P. Polymeric Nanoparticles Useful in Theranostics. U.S. Patent No. US10233277B2, 19 March 2019. [Google Scholar]
- Körhegyi, Z.; Rózsa, D.; Hajdu, I.; Bodnár, M.; Kertesz, I.; Kerekes, K.; Kun, S.; Kollar, J.; Varga, J.; Garai, I. Synthesis of 68Ga-labeled biopolymer-based nanoparticle imaging agents for positron-emission tomography. Anticancer Res. 2019, 39, 2415–2427. [Google Scholar] [CrossRef] [PubMed]
- Stanisz, M.; Klapiszewski, Ł.; Jesionowski, T. Recent advances in the fabrication and application of biopolymer-based micro-and nanostructures: A comprehensive review. Chem. Eng. J. 2020, 397, 125409. [Google Scholar] [CrossRef]
- Jin, M.; Yu, D.-G.; Geraldes, C.F.; Williams, G.R.; Bligh, S.A. Theranostic fibers for simultaneous imaging and drug delivery. Mol. Pharm. 2016, 13, 2457–2465. [Google Scholar] [CrossRef]
- Laffleur, F.; Keckeis, V. Advances in drug delivery systems: Work in progress still needed? Int. J. Pharm. 2020, 590, 119912. [Google Scholar] [CrossRef]
- Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Jóźwik-Pruska, J.; Dziuba, R.; Bednarowicz, A. Biopolymer composites with sensors for environmental and medical applications. Materials 2022, 15, 7493. [Google Scholar] [CrossRef]
- Chiu, I.; Yang, T. Biopolymer-based intelligent packaging integrated with natural colourimetric sensors for food safety and sustainability. Anal. Sci. Adv. 2024, 5, e202300065. [Google Scholar] [CrossRef] [PubMed]
- Abdullah; Cai, J.; Hafeez, M.A.; Wang, Q.; Farooq, S.; Huang, Q.; Tian, W.; Xiao, J. Biopolymer-based functional films for packaging applications: A review. Front. Nutr. 2022, 9, 1000116. [Google Scholar] [CrossRef] [PubMed]
- Ezike, T.C.; Okpala, U.S.; Onoja, U.L.; Nwike, C.P.; Ezeako, E.C.; Okpara, O.J.; Okoroafor, C.C.; Eze, S.C.; Kalu, O.L.; Odoh, E.C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9, e17488. [Google Scholar] [CrossRef]
- Phutane, P.; Telange, D.; Agrawal, S.; Gunde, M.; Kotkar, K.; Pethe, A. Biofunctionalization and applications of polymeric nanofibers in tissue engineering and regenerative medicine. Polymers 2023, 15, 1202. [Google Scholar] [CrossRef] [PubMed]
S. No. | Patent Number | Material Used | Purpose | Remarks | Ref. |
---|---|---|---|---|---|
1. | US11969438B1 | Vegetable oil-derived polyol | Anti-cancer activity | Provides compositions and methods for selectively treating a cancer or tumor utilizing an effective amount of a vegetable oil-derived polyol or hydrogel particles comprising a vegetable oil-derived polyol; it provides a method of targeting and imaging various tumors and/or tumor-associated macrophages | [58] |
2. | US20210322462A1 | Polyvinyl alcohol (PVA), collagen-chitosan | Wound prevention and/or treatment | The composition is embedded in a hydrogel made of polyvinyl alcohol (PVA), collagen-chitosan, alginates, carbopol gels, and alginate matrices for slow release | [59] |
3. | US10201622B2 | Gelatin, casein, dextran, PEG, PVP | Theranostic applications | Nanoparticles coated with polymers like gelatin, casein, dextran, PEG, and PVP addressed the theranostic applications | [60] |
4. | US11529430B2 | Chitosan, polylactic acid, polyglycolic acid, and copolymers | Contrast agent | Gadolinium DOTA nanoparticles decorated with polydopamine and as a photothermal agent to kill cancer cells | [61] |
5. | US9095629B2 | PEG and nitro-DOPA | Magnetic nanoparticles | As contrast agent and for better targeting of the MNPs | [62] |
6. | US8372944B1 | Hyperbranched polyester and hyperbranched polyester amine | Polymeric nanoparticles as theranostic agent | Polymeric nanoparticles coated with HBPE for fluoroscence and delivery of therapeutic drug | [63] |
7. | US10799604B2 | Polyethylene glycol, polyacrylic acid, polyacrylamide, poly(N-isopropylacrylamide), hyaluronic acid, and combinations thereof | Implant for tumor cell tracking | A method of treating cancer is provided by implanting one or more brachytherapy spacers or fiducial markers including the matrix material and an anti-cancer therapeutic agent dispersed within the matrix material | [64] |
8. | US20190233567A1 | Polymethacrylic acid grafted starch | Therapeutics and/or signal molecules | PMAA-g-St-DTPA-Gd nanoparticles could provide different relaxivity at different pH values suggesting their potential use in detection of pH deviations from normal physiological pH 7.4 in tumor tissue or infectious lesions by MR imaging; to deliver therapeutic agent as loaded cargo of the nanoparticles for treatment of any of the following: a neurodegenerative disorder, a neuropsychiatric disorder | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirvankar, P.; Agrawal, S.; Chambhare, N.; Agrawal, R. Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels 2024, 10, 535. https://doi.org/10.3390/gels10080535
Jirvankar P, Agrawal S, Chambhare N, Agrawal R. Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels. 2024; 10(8):535. https://doi.org/10.3390/gels10080535
Chicago/Turabian StyleJirvankar, Pranita, Surendra Agrawal, Nikhita Chambhare, and Rishabh Agrawal. 2024. "Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery" Gels 10, no. 8: 535. https://doi.org/10.3390/gels10080535
APA StyleJirvankar, P., Agrawal, S., Chambhare, N., & Agrawal, R. (2024). Harnessing Biopolymer Gels for Theranostic Applications: Imaging Agent Integration and Real-Time Monitoring of Drug Delivery. Gels, 10(8), 535. https://doi.org/10.3390/gels10080535