Gels for Water Remediation: Current Research and Perspectives
Abstract
:1. Introduction
1.1. Hydrogel Materials
- (i)
- polymer composition, which includes homopolymer hydrogels with a reticulated skeletal structure derived from a single monomer species and copolymer hydrogels based on two or more monomer species.
- (ii)
- physical structure and chemical composition, which can lead to amorphous, semi-crystalline, or crystalline hydrogels.
- (iii)
- types of crosslinking, which are categorized according to the physical or chemical nature of the crosslinking junctions.
- (iv)
- physical appearance: hydrogels can be found in the form of matrices, films, or microspheres, depending on the polymerization method.
- (v)
- electric charge of the network, leading to neutral, ionic, ampholytic (containing both acidic and basic groups), and zwitterionic hydrogels (containing both anionic and cationic groups in each structural unit).
1.2. Aerogels Materials
1.3. Characterization of Gel Materials
2. Applications of Gels in Water Remediation
2.1. Applications of Hydrogels in Water Remediation
2.1.1. Removal of Organic Dyes
- [p-C12][Mal]/[PF6] material removed 71% methyl orange dye after 48 h and 92% rhodamine B after 24 h [32].;
- for rhodamine B dye, removal efficiencies higher than 90% were achieved by [p-C12][Fum]/[PF6] (95% in 6 h), [p-C12][Mal]/[NTf2] (93% in 15 h), and [p-C12][Fum]/[NTf2] (97% in 6 h) materials [32];
- [p-C12][Mal]/[SCN] and [p-C12][Fum]/[SCN] can remove rhodamine B dye of 31% (72 h) and 36% (48 h), respectively [32].
- Gel-A material could remove 23.61 mg/g of Bisphenol A and 19.74 mg/g of methylene blue [36];
- Gel-B removed 20.55 mg/g and 21.6 mg/g of bisphenol A and methylene blue, respectively [36];
- Gel-C presented a slightly decreased adsorption capacity for bisphenol A (18.39 mg/g) compared with Gel-B; however, its adsorption capacity for methylene blue was improved compared to Gel-A hydrogels (24.64 mg/g) [36].
2.1.2. Heavy Metals and Other Contaminants Removal
- -
- increasing pH from 2 to 3 improved the removal efficiency, but further increases led to a decline.
- -
- raising the adsorbent dosage from 0.1 g to 0.4 g enhanced removal efficiency, with no significant changes at 0.5 g.
- -
- equilibrium was reached after 240 min of contact time.
- -
- higher initial chromium (VI) concentrations reduced the removal efficiency to 75%.
- -
- HCl was identified as the most effective desorption agent compared to HNO3 or EDTA.
2.2. Applications of Aerogels in Water Remediation
2.2.1. Organic Dye Removal
2.2.2. Removal of Various Pollutants (Organic Dyes, Antibiotics, Heavy Metals)
3. Adsorption Mechanism of Gels for Water Remediation
4. Critical Analysis of Gel Materials
4.1. Aerogel-Type Materials
4.2. Hydrogel-Type Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- du Plessis, A. Persistent degradation: Global water quality challenges and required actions. One Earth 2022, 5, 129–131. [Google Scholar] [CrossRef]
- Worsening Water Quality Reducing Economic Growth by a Third in Some Countries: World Bank. 2019. Available online: https://www.worldbank.org/en/news/press-release/2019/08/20/worsening-water-quality-reducing-economic-growth-by-a-third-in-some-countries (accessed on 29 August 2024).
- Anantadjaya, S.P.D.; Rahmadani, M.S.; Satiri; Nawangwulan, I.M.; Rachmat, T.A. The economic impact of water pollution. In Proceedings of the 2nd International Conference on Economics, Business and Social Sciences, Malang, Indonesia, 25–26 April 2019; ISBN 978-979-3490-79-3. [Google Scholar]
- Available online: https://www.epa.gov/nutrientpollution/effects-economy (accessed on 29 August 2024).
- Available online: https://www.dni.gov/index.php/gt2040-home/gt2040-deeper-looks/future-of-water (accessed on 29 August 2024).
- Weerasundara, L.; Gabriele, B.; Figoli, A.; Ok, Y.S.; Bundschuh, J. Hydrogels: Novel materials for contaminant removal in water—A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1970–2014. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S. Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chem. Eng. J. 2022, 439, 135756. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Y.; Li, J.; Gao, X. Review of carbon dot–hydrogel composite material as a future water-environmental regulator. Int. J. Biol. Macromol. 2024, 269, 131850. [Google Scholar] [CrossRef]
- Le, V.T.; Joo, S.W.; Berkani, M.; Mashifana, T.; Kamyab, H.; Wang, C.Q.; Vasseghian, Y. Sustainable cellulose-based hydrogels for water treatment and purification. Ind. Crops Prod. 2023, 205, 117525. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere 2023, 331, 138743. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Kumar, R.; Kaushal, D.; Chauhan, V.; Thakur, S.; Shandilya, P.; Sharma, P.P. Gum acacia based hydrogels and their composite for waste water treatment: A review. Int. J. Biol. Macromol. 2024, 262, 129914. [Google Scholar] [CrossRef] [PubMed]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Kandel, D.R.; Kim, J.T.; Siengchin, S.; Lee, J.W. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr. Polym. 2024, 323, 121339. [Google Scholar] [CrossRef]
- Zubair, N.A.; Abouzari-Lotf, E.; Mahmoud Nasef, M.; Abdullah, E.C. Aerogel-based materials for adsorbent applications in material domains. E3S Web Conf. 2019, 90, 01003. [Google Scholar] [CrossRef]
- Ihsanullah, I.; Sajid, M.; Khan, S.; Bilal, M. Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: Progress, challenges, and prospects. Sep. Purif. Technol. 2022, 291, 120923. [Google Scholar] [CrossRef]
- Garg, S.; Singh, S.; Shehata, N.; Sharma, H.; Samuel, J.; Khan, N.A.; Ramamurthy, P.C.; Singh, J.; Mubashir, M.; Bokhari, A.; et al. Aerogels in wastewater treatment: A review. J. Taiwan Inst. Chem. Eng. 2023; 105299, in press. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for water treatment: A review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Nikolić, L.B.; Zdravković, A.S.; Nikolić, V.D.; Ilić-Stojanović, S.S. Synthetic hydrogels and their Impact on health and environment. In Cellulose-Based Superabsorbent Hydrogels; Springer: Cham, Switzerland, 2018; pp. 1–29. [Google Scholar]
- Liu, C.; Li, Z.; Li, B.; Zhang, H.; Han, J. Montmorillonite-based aerogels assisted environmental remediation. Appl. Clay Sci. 2023, 236, 106887. [Google Scholar] [CrossRef]
- Shao, B.B.; Xu, Y.T.; Liu, Z.F.; Wu, T.; Pan, Y.; Zhang, X.S.; He, M.; Ge, L.; Lu, Y.; Liu, Y.; et al. Application of carbon aerogel-based materials in persulfate activation for water treatment: A review. J. Clean. Prod. 2023, 384, 135518. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Nguyen, D.T.C.; Tran, T.V. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. Chemosphere 2024, 362, 142654. [Google Scholar] [CrossRef]
- Gao, B.; Feng, X.B.; Zhang, Y.F.; Zhou, Z.X.; Wei, J.F.; Qiao, R.; Bi, F.K.; Liu, N.; Zhang, X.D. Graphene-based aerogels in water and air treatment: A review. Chem. Eng. J. 2024, 484, 149604. [Google Scholar] [CrossRef]
- Baimenov, A.; Daulbayev, C.; Poulopoulos, S.G.; Mochalin, V.N. MXene filled hydrogel and aerogel composites. Mater. Today, 2024; in press. [Google Scholar] [CrossRef]
- Neethu, T.M.; Dubey, P.K.; Kaswala, A.R. Prospects and Applications of Hydrogel Technology in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3155–3162. [Google Scholar] [CrossRef]
- Gulrez, S.K.H.; Saphwan Al-Assaf, S.; Phillips, G.O. Hydrogels: Methods of Preparation, Characterisation and Applications. Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications; InTech: London, UK, 2011. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Di Nitto, A.; Papi, M.; Parolini, O.; Falconi, M.; Teti, G.; Muttini, A.; Lattanzi, W.; Palmieri, V.; Ciasca, G.; et al. Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites. Colloids Surf. B Biointerfaces 2021, 207, 111989. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhang, B.; Cai, C.Y.; Zhang, K.M.; Wang, Y.; Wang, Y.; Yang, Y.M.; Wu, Y.G.; Ba, X.W.; Hoogenboom, R. Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications. Nat. Commun. 2024, 15, 2055. [Google Scholar] [CrossRef]
- Zhao, W.T.; Zhu, J.; Wei, W.; Ma, L.R.; Zhu, J.J.; Xie, J.M. Comparative study of modified/non-modified aluminum and silica aerogels for anionic dye adsorption performance. RSC Adv. 2018, 8, 29129–29140. [Google Scholar] [CrossRef]
- Yi, B.; Li, T.J.; Yang, B.G.; Chen, S.R.; Zhao, J.Y.; Zhao, P.C.; Zhang, K.Y.; Wang, Y.; Wang, Z.K.; Bian, L.M. Surface hydrophobization of hydrogels via interface dynamics-induced network reconfiguration. Nat. Commun. 2024, 15, 239. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, X.; Yan, H.; Lin, Q. Comparative Study of Physicochemical Properties of Alginate Composite Hydrogels Prepared by the Physical Blending and Electrostatic Assembly Methods. Gels 2022, 8, 799. [Google Scholar] [CrossRef]
- Shiri, M.; Hosseinzadeh, M.; Shiri, S.; Javanshir, S. Adsorbent based on MOF-5/cellulose aerogel composite for adsorption of organic dyes from wastewater. Sci. Rep. 2024, 14, 15623. [Google Scholar] [CrossRef]
- Marullo, S.; Rizzo, C.; Dintcheva, N.T.; Giannici, F.; D’Anna, F. Ionic liquids gels: Soft materials for environmental remediation. J. Colloid Interface Sci. 2018, 517, 182–193. [Google Scholar] [CrossRef]
- Roa, K.; Tapiero, Y.; Thotiyl, M.O.; Sánchez, J. Hydrogels Based on Poly([2-(acryloxy)ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers 2021, 13, 2265. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Feng, X.; Xu, B.; Du, C.; Zhang, E.; Shan, M.; Zhang, Y. Novel porous hydrogel beads based on amidoxime modified polymer of intrinsic microporosity for efficient cationic dye removal. Microporous Mesoporous Mater. 2024, 377, 113218. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Phromsatit, T.; Boonyuen, S.; Andou, Y. Synthesis of silver nanoparticles/porphyrin/reduced graphene oxide hydrogel as dye adsorbent for wastewater treatment. FlatChem 2020, 23, 100174. [Google Scholar] [CrossRef]
- Hou, N.; Wang, R.; Wang, F.; Bai, J.H.; Jiao, T.F.; Bai, Z.H.; Zhang, L.X.; Zhou, J.X.; Peng, Q.M. Self-assembled hydrogels constructed via host-guest polymers with highly efficient dye removal capability for wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019, 579, 123670. [Google Scholar] [CrossRef]
- Moharrami, P.; Motamedi, E. Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresour. Technol. 2020, 313, 123661. [Google Scholar] [CrossRef]
- Peng, N.; Hu, D.N.; Zeng, J.; Li, Y.; Liang, L.; Chang, C.Y. Superabsorbent Cellulose-Clay Nanocomposite Hydrogels for Highly Efficient Removal of Dye in Water. ACS Sustain. Chem. Eng. 2016, 4, 7217–7224. [Google Scholar] [CrossRef]
- Han, D.X.; Zhao, H.J.; Gao, L.L.; Qin, Z.H.; Ma, J.M.; Han, Y.; Jiao, T.F. Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127355. [Google Scholar] [CrossRef]
- Far, B.F.; Naimi-Jamal, M.R.; Jahanbakhshi, M.; Khalafvandi, S.A.; Alian, M.; Jahromi, D.R. Decontamination of Congo red dye from aqueous solution using nanoclay/chitosan-graft-gelatin nanocomposite hydrogel. J. Mol. Liq. 2024, 395, 123839. [Google Scholar] [CrossRef]
- de Araujo, C.M.B.; Ghislandi, M.G.; Rios, A.G.; da Costa, G.R.B.; do Nascimento, B.F.; Filipe, A.; Ferreira, P.; Sobrinho, M.A.D.; Rodrigues, A.E. Wastewater treatment using recyclable agar-graphene oxide biocomposite hydrogel in batch and fixed-bed adsorption column: Bench experiments and modeling for the selective removal of organics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128357. [Google Scholar] [CrossRef]
- Lv, A.; Lv, X.; Xu, X.; Chen, Y.; Zhang, J.; Shao, Z.-B. Tailored multifunctional composite hydrogel based on chitosan and quaternary ammonium ionic liquids@montmorillonite with different chain lengths for effective removal of dyes and 4-nitrophenol. Sep. Purif. Technol. 2024, 342, 127019. [Google Scholar] [CrossRef]
- Rahul; Jindal, R. Efficient removal of toxic dyes malachite green and fuchsin acid from aqueous solutions using Pullulan/CMC hydrogel. Polymer 2024, 307, 127203. [Google Scholar] [CrossRef]
- Jaymand, M. Biosorptive removal of cationic dyes from ternary system using a magnetic nanocomposite hydrogel based on modified tragacanth gum. Carbohydr. Polym. Technol. Appl. 2024, 7, 100403. [Google Scholar] [CrossRef]
- Altaleb, H.A. Effective removal of hazardous cationic dye from polluted water using sulfonated copolymer hydrogel: Synthesis, nonlinear isotherm, and kinetics investigation. J. Saudi Chem. Soc. 2024, 28, 101852. [Google Scholar] [CrossRef]
- Jana, S.; Ray, J.; Mondal, B.; Pradhan, S.S.; Tripathy, T. pH responsive adsorption/desorption studies of organic dyes from their aqueous solutions by katira gum-cl-poly(acrylic acid-co-N-vinyl imidazole) hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2018, 553, 472–486. [Google Scholar] [CrossRef]
- Lamkhao, S.; Tandorn, S.; Rujijanagul, G.; Randorn, C. A practical approach using a novel porous photocatalyst/hydrogel composite for wastewater treatment. Mater. Today Sustain. 2023, 23, 100482. [Google Scholar] [CrossRef]
- Das, T.; Patel, D.K. Efficient removal of cationic dyes using lemon peel-chitosan hydrogel composite: RSM-CCD optimization and adsorption studies. Int. J. Biol. Macromol. 2024, 275, 133561. [Google Scholar] [CrossRef]
- Huaman, M.A.L.; Manco, A.E.Q.; López, F.; Carrasco, R.L.A.; Chacón, A.M.L.; Khan, S. Removal of methylene blue dye from water with Fe3O4/poly(HEMA-co-AMPS) magnetic hydrogels. Results Chem. 2024, 7, 101454. [Google Scholar] [CrossRef]
- Azzeddine, T.; Marrane, S.E.; Goudali, O.; El Kaim Billah, R.; Boudouma, A.; Chaouiki, A.; Soufiane, A.; Agunaou, M.; Bahsis, L. Simple and modified chitosan gel beads from a natural source as a bio-sorbent for water defluoridation: Experimental and computational perspectives. Inorg. Chem. Commun. 2024, 167, 112752. [Google Scholar] [CrossRef]
- Jaques, L.L.; Malheiro, W.C.; Jensen, A.T.; Machado, F. Insights into the synthesis of hydrogels containing glycerol-based macromonomers for wastewater treatment: Focus on the efficient extraction of caffeine and mercury. J. Environ. Chem. Eng. 2024, 12, 111811. [Google Scholar] [CrossRef]
- Li, M.; Zhang, P.; Mao, J.; Li, J.; Zhang, Y.; Xu, B.; Zhou, J.; Cao, Q.; Xiao, H. Construction of cellulose-based hybrid hydrogel beads containing carbon dots and their high performance in the adsorption and detection of mercury ions in water. J. Environ. Manag. 2024, 359, 121076. [Google Scholar] [CrossRef]
- Chu, Q.K.; Liu, Z.X.; Feng, F.; Chen, D.L.; Qin, J.; Bai, Y.F.; Feng, Y. A novel bio-based fluorescent N, P-CDs@CMC/PEI composite hydrogel for sensitive detection and efficient capture of toxic heavy metal ions. J. Hazard. Mater. 2024, 474, 134757. [Google Scholar] [CrossRef]
- Thiyagarajan, M.; Pazhanisamy, P.; Gomathi, T.; Radha, E.; Vijayakumar, S. Chromium adsorption studies of CaCO3 intercalated N-tert-amyl acrylamide-co-acrylamide/AMPS hydrogels. Inorg. Chem. Commun. 2024, 166, 112598. [Google Scholar] [CrossRef]
- Ouass, A.; Kadiri, L.; Hsissou, R.; El Amri, A.; Lebkiri, I.; Abbou, B.; Lebkiri, A.; Rifi, E.H. Efficient removal of chromium (III) ions from aqueous solutions using sodium polyacrylate hydrogel powder: Characterization, kinetics, and regeneration studies. Inorg. Chem. Commun. 2024, 166, 112601. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y. Removal of heavy metal ion by floatable hydrogel and reusability of its waste material in photocatalytic degradation of organic dyes. J. Environ. Chem. Eng. 2021, 9, 105316. [Google Scholar] [CrossRef]
- Li, Y.; Xie, L.Y.; Qu, G.; Zhang, H.; Dai, Y.M.; Tan, J.L.; Zhong, J.R.; Zhang, Y.F. Efficient treatment of palladium from wastewater by acrolein cross-linked chitosan hydrogels: Adsorption, kinetics, and mechanisms. Int. J. Biol. Macromol. 2024, 254, 127850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Li, L.S.Z.; Li, Y.P.; Liu, Y.H.; Chen, Y.R.; Li, H.; Li, M.L.; Xu, F.T.; Liu, Y.Q. Preparation of a double-network hydrogel based on wastepaper and its application in the treatment of wastewater containing copper(ii) and methylene blue. RSC Adv. 2021, 11, 18131–18143. [Google Scholar] [CrossRef] [PubMed]
- Kamal, K.K.; Hassan, M.A.; Kamel, S.; El-Sayed, N.S. Efficient removal of Cd2+ ions and methylene blue from aqueous solutions by polyanionic sodium alginate-derived hydrogel. Surf. Interfaces 2024, 51, 104596. [Google Scholar] [CrossRef]
- Jafarigol, E.; Ghotli, R.A.; Hajipour, A.; Pahlevani, H.; Salehi, M.B. Tough dual-network GAMAAX hydrogel for the efficient removal of cadmium and nickle ions in wastewater treatment applications. J. Ind. Eng. Chem. 2021, 94, 352–360. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, Y.; Zhao, H.; Zhou, X.; Liu, X. Heavy Metal Removal from Wastewater Using Poly(Gamma-Glutamic Acid)-Based Hydrogel. Gels 2024, 10, 259. [Google Scholar] [CrossRef]
- Mu, R.H.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environ. Technol. Innov. 2020, 20, 101107. [Google Scholar] [CrossRef]
- Zhang, H.P.; Tang, P.F.; Yang, K.; Wang, Q.Y.; Feng, W.; Tang, Y.H. PAA/TiO2@C composite hydrogels with hierarchical pore structures as high efficiency adsorbents for heavy metal ions and organic dyes removal. Desalination 2023, 558, 116620. [Google Scholar] [CrossRef]
- Sun, J.H.; Hu, R.M.; Zhao, X.X.; Liu, T.; Bai, Z.S. A novel chitosan/cellulose phosphonate composite hydrogel for ultrafast and efficient removal of Pb(II) and Cu(II) from wastewater. Carbohydr. Polym. 2024, 336, 122104. [Google Scholar] [CrossRef]
- Niu, H.Y.; Li, J.C.; Li, J.S.; Yi, C.; Niu, C.G. Preparation, properties and applications of porous hydrogels containing thiol groups for heavy metal removal. J. Environ. Chem. Eng. 2023, 11, 110983. [Google Scholar] [CrossRef]
- Ma, M.Y.; Ke, X.; Wang, T.; Li, J.; Ye, H.P. A novel double-network hydrogel made from electrolytic manganese slag and polyacrylic acid-polyacrylamide for removal of heavy metals in wastewater. J. Hazard. Mater. 2024, 462, 132722. [Google Scholar] [CrossRef]
- Yang, L.Z.; Bao, L.; Zhong, Y.; Hao, C.; Chen, J.J.; Wu, J.B.; Wang, X.H. Fabrication of in situ metal-organic framework grown on sodium lignosulphonate hydrogel for removal of Pb2+, methylene blue and crystal violet from aqueous solution. J. Clean. Prod. 2024, 434, 139831. [Google Scholar] [CrossRef]
- Zhang, S.P.; Ding, J.; Tian, D.Y.; Su, W.H.; Liu, F.F.; Li, Q.L.; Lu, M.H. Preparation of novel poly(sodium p-styrenesulfonate)/sodium alginate hydrogel incorporated with MOF-5 nanoparticles for the adsorption of Pb(II) and tetracycline. J. Mol. Struct. 2024, 1300, 137313. [Google Scholar] [CrossRef]
- Yang, H.M.; Wang, S.C.; Liu, Y.X.; Hu, Y.; Shen, W.B. ZIF-67 grows in chitosan-rGO hydrogel beads for efficient adsorption of tetracycline and norfloxacin. Sep. Purif. Technol. 2024, 330, 125208. [Google Scholar] [CrossRef]
- Ghazy, O.; Hamed, M.G.; Breky, M.; Borai, E.H. Synthesis of magnetic nanoparticles-containing nanocomposite hydrogel and its potential application for simulated radioactive wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126613. [Google Scholar] [CrossRef]
- Dai, Z.R.; Wu, H.A.; Chen, L.J.; Gao, Y.; Li, L.; Ding, D.X. Phytic acid-functionalized polyamidoxime/alginate hydrogel for targeted uranium extraction from acidic wastewater. Carbohydr. Polym. 2024, 339, 122283. [Google Scholar] [CrossRef]
- Yang, J.J.; Nie, J.A.; Bian, L.; Zhang, J.M.; Song, M.X.; Wang, F.; Lv, G.C.; Zeng, L.; Gu, X.B.; Xie, X.; et al. Clay minerals/sodium alginate/polyethylene hydrogel adsorbents control the selective adsorption and reduction of uranium: Experimental optimization and Monte Carlo simulation study. J. Hazard. Mater. 2024, 468, 133725. [Google Scholar] [CrossRef]
- Salahuddin, B.; Aziz, S.; Gao, S.; Hossain, M.S.A.; Billah, M.; Zhu, Z.; Amiralian, N. Magnetic Hydrogel Composite for Wastewater Treatment. Polymers 2022, 14, 5074. [Google Scholar] [CrossRef]
- Jia, J.; Zhu, J.L.; Guo, L.M.; Yu, J.Y.; Li, J.; Li, F.X. Synthesis and characterization of a β-cyclodextrin-MOF-based porous hydrogel for efficient adsorption of Au3+, Ag+, and Pb2+ ions. Sep. Purif. Technol. 2024, 348, 127664. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, Z.; Huang, J.; Ding, Y.; Li, X.; Song, Y.; Wen, G.; Li, X. Bimetallic peroxide nanocatalytic gel for water disinfection. J. Environ. Chem. Eng. 2024, 12, 113015. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, K.; Jun Liao, J. Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Appl. Surf. Sci. 2020, 504, 144377. [Google Scholar] [CrossRef]
- He, Z.; Qin, M.; Han, C.; Bai, X.; Wu, Y.; Yao, D.; Zheng, Y. Pectin/graphene oxide aerogel with bamboo-like structure for enhanced dyes adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129837. [Google Scholar] [CrossRef]
- Yadav, S.; Asthana, A.; Singh, A.K.; Patel, J.; Sreevidya, S.; Carabineiro, S.A.C. Facile preparation of methionine-functionalized graphene oxide/chitosan polymer nanocomposite aerogel for the efficient removal of dyes and metal ions from aqueous solutions. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100743. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Wang, F.; Xie, Y.; Wang, C.; Zhao, J.; Yang, Q.; Chen, Z. Egg yolk/ZIF-8/CLPAA composite aerogel: Preparation, characterization and adsorption properties for organic dyes. J. Solid State Chem. 2021, 299, 122158. [Google Scholar] [CrossRef]
- Tao, E.; Ma, D.; Yang, S.Y.; Hao, X. Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. J. Alloys Compd. 2020, 832, 154833. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Fan, K.; He, H.; Qin, Z. Preparation and adsorption properties of green cellulose-based composite aerogel with selective adsorption of methylene blue. Polymer 2022, 258, 125320. [Google Scholar] [CrossRef]
- Jing, K.; Liu, X.; Liu, T.; Wang, Z.; Hui Liu, H. Facile and green construction of carboxymethyl cellulose-based aerogel to efficiently and selectively adsorb cationic dyes. J. Water Process Eng. 2023, 56, 104386. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.F.; Yao, J. Construction of a hybrid graphene oxide/nanofibrillated cellulose aerogel used for the efficient removal of methylene blue and tetracycline. J. Phys. Chem. Solids 2021, 150, 109839. [Google Scholar] [CrossRef]
- Tang, Z.W.; Lin, X.X.; Chen, Y.L.; Pan, Y.W.; Yang, Y.Q.; Mondal, A.K.; Yu, M.Q.; Wu, H. Preparation of mussel-inspired polydopamine-functionalized TEMPO-oxidized cellulose nanofiber-based composite aerogel as reusable adsorbent for water treatment. Ind. Crops Prod. 2023, 206, 117735. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Q.; Zhang, L.; Pei, L.; Xue, H.; Li, Z. Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels: A study by experimental and statistical physics modeling. J. Environ. Chem. Eng. 2023, 11, 109206. [Google Scholar] [CrossRef]
- Hu, X.D.; Zhang, T.Y.; Yang, B.; Hao, M.; Chen, Z.J.; Wei, Y.; Liu, Y.B.; Wang, X.X.; Yao, J.B. Water-resistant nanocellulose/gelatin biomass aerogel for anionic/cationic dye adsorption. Sep. Purif. Technol. 2024, 330, 125367. [Google Scholar] [CrossRef]
- Gong, X.-L.; Lu, H.-Q.; Li, K.; Li, W. Effective adsorption of crystal violet dye on sugarcane bagasse–bentonite/sodium alginate composite aerogel: Characterisation, experiments, and advanced modelling. Sep. Purif. Technol. 2022, 286, 120478. [Google Scholar] [CrossRef]
- Li, K.; Lei, Y.; Liao, J.; Yong Zhang, Y. A facile synthesis of graphene oxide/locust bean gum hybrid aerogel for water purification. Carbohydr. Polym. 2021, 254, 117318. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Sharma, O.P.; Ganguly, S.K.; Srivastava, M.; Khatri, O.P. Fruit waste-derived cellulose and graphene-based aerogels: Plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 2022, 608, 2870–2883. [Google Scholar] [CrossRef]
- Wang, Z.; He, X.; Miao, M.; Xin Feng, X. Recyclable adsorbent aerogels by in-situ growth of ZIF-8 on aramid nanofibers/poly(vinyl alcohol) for multiple water pollutants. Sep. Purif. Technol. 2023, 326, 124792. [Google Scholar] [CrossRef]
- Zhao, J.; He, J.; Liu, L.; Shi, S.; Guo, H.; Xie, L.; Chai, X.; Xu, K.; Du, G.; Zhang, L. Self-cross-linking of metal-organic framework (MOF-801) in nanocellulose aerogel for efficient adsorption of Cr (VI) in water. Sep. Purif. Technol. 2023, 327, 124942. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Nie, R.; Li, Y.; Li, Q.; Lei, Y.; Guo, M.; Zhang, Y. Highly efficient adsorption of anionic dyes on a porous graphene oxide nanosheets/chitosan composite aerogel. Ind. Crops Prod. 2024, 220, 119146. [Google Scholar] [CrossRef]
- Ma, L.; Li, D.; Chen, X.; Xu, H.; Tian, Y. A sustainable carbon aerogel from waste paper with exceptional performance for antibiotics removal from water. J. Hazard. Mater. 2024, 474, 134738. [Google Scholar] [CrossRef]
- Hadi Yatimzade, M.; Ahmadpour, A.; Ghahramaninezhad, M.; Moatamed Sabzevar, A. Optimizing the efficient removal of ibuprofen from water environment by magnetic carbon aerogel: Kinetics, isotherms, and thermodynamic studies. J. Mol. Liq. 2024, 408, 125337. [Google Scholar] [CrossRef]
- Lentz, L.; Mayer, D.A.; Dogenski, M.; Ferreira, S.R.S. Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Mater. Chem. Phys. 2022, 283, 125981. [Google Scholar] [CrossRef]
- Yin, J.; Huang, G.; Xiao, H.; Chen, N.; An, C.; Chao, T.C.; Feng, R.; Read, S. Bioinspired and dual-functional nanocellulose aerogels for water disinfection and heavy metal removal. Nano Today 2023, 51, 101918. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Nguyen, K.T.; Le, B.H.; Nghiem, X.T.; La, D.D.; Nguyen, D.K.; Nguyen, H.P.T. Synthesis of magnetic Fe3O4/graphene aerogel for the removal of 2,4-dichlorophenoxyacetic acid herbicide from water. RSC Adv. 2024, 14, 22304–22311. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chen, S.; Luo, Y. Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review. J. Agric. Food Res. 2023, 12, 100552. [Google Scholar] [CrossRef]
- Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020, 284, 102247. [Google Scholar] [CrossRef] [PubMed]
- Ragitha, V.M.; Edison, L.K. Safety Issues, Environmental Impacts, and Health Effects of Biopolymers. In Handbook of Biopolymers; Thomas, S., AR, A., Jose Chirayil, C., Thomas, B., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
Name | Preparation Methods | Preparation Steps | Classification | Ref. | |
---|---|---|---|---|---|
Based on Composition | Based on Drying Gel | ||||
Aerogels | sol-gel | gel preparation | organic | aerogels (super critically dried) | [17] |
gel aging | inorganic | xerogels (ambient pressure-dried) | |||
gel drying | hybrid | cryogels (freeze-dried) | |||
Hydrogels | polymerization and crosslinking of multifunctional monomers, copolymerization, free radical polymerization, genetic engineering, irradiation, photo-polymerization, reversible addition-fragmentation chain transfer (RAFT), atom transfer radical polymerization (ATRP), nitroxidemediated polymerization (NMP), etc | first-generation hydrogels
| [18] | ||
second-generation hydrogels
| |||||
third-generation hydrogels
|
Hydrogel Sample | Pollutant | Adsorption Capacity, mg/g |
---|---|---|
MOF-5/PNaSS/SA | lead | 243.6 (288 K) |
239.3 (298 K) | ||
225.2 (308 K) | ||
tetracycline | 209.4 (288 K) | |
201.3 (298 K) | ||
188.4 (308 K) |
Contaminant | Adsorption Capacity of CNF/Alginate vs. Adsorption Capacity of MNP–CNF/Alginate (mg/g) |
---|---|
aluminum | 1.22/22 |
potassium | 6.6/13.2 |
selenium | 14.3/19 |
sodium | 8.8/11.1 |
sulfur | 9.8/13.7 |
vanadium | 11.1/44.4 |
Dye | Gel Materials | Adsorption Capacity | Contact Time (h) | Temperature (K) | Ref. |
---|---|---|---|---|---|
rhodamine B | [p-C12][Fum]/[NTf2] | 97% | 6 | [32] | |
[p-C12][Fum]/[PF6] | 95% | 6 | [32] | ||
[p-C12][Mal]/[NTf2] | 93% | 15 | [32] | ||
[p-C12][Mal]/[PF6] | 92% | 24 | [32] | ||
[p-C12][Fum]/[SCN] | 36% | 48 | [32] | ||
[p-C12][Mal]/[SCN] | 31% | 72 | [32] | ||
SA/AOPIM-1 | 1648.3 mg/g | - | - | [34] | |
quaternary ammonium ionic liquids (DM) | 332.85 mg/g | 298.15 | [42] | ||
TG-cl-PAA/Fe3O4 | 552.6 mg/g | [44] | |||
RGO/Pr2O3 | 226 mg/g | [76] | |||
RGO/Ce2O | 235.7 mg/g | [76] | |||
RGO/Nd2O3 | 243.4 mg/g | [76] | |||
PTGA | 719 mg/g | [77] | |||
meth-GO/CH | 46.511 mg/g | [78] | |||
EY/ZIF-8/CLPAA | 299 mg/g | [79] | |||
methyl orange | [p-C12][Mal]/[PF6] | 71% | 48 | [32] | |
Hy01 | 1379.0 mg/g | [33] | |||
CMCS-PA | 13.62 mg/g | [39] | |||
quaternary ammonium ionic liquids (DM) | 325.42 | 298.15 | [42] | ||
PTGA | 419 mg/g | [77] | |||
EY/ZIF-8/CLPAA | 447 mg/g | [79] | |||
methylene blue | Ag/TPP/rGH | 130.37 mg/g | [35] | ||
quaternary ammonium ionic liquids (DM) | 349.68 mg/g | 298.15 | [42] | ||
Fe3O4/poly(HEMA-co-AMPS) | 445.35 mg/g | [49] | |||
WP/PAM | 1714.5 mg/g | 298 | [58] | ||
WP/PAM | 1734.9 mg/g | 308 | [58] | ||
SAH | 97.5% | [59] | |||
SLS/DTPA@ZIF-8 | 890.90 mg/g | 48 | [67] | ||
GO-MMT/SA | 150.66 mg/g | [80] | |||
CMC/CNF–C | 917.43 mg/g | [81] | |||
CMC/PSA | 925.9 mg/g | 323 | [82] | ||
GO/nanocellulose | 112.2 mg/g | [83] | |||
PDA/TOCNF | 314.6 mg/g | [84] | |||
MCF | 356.97 mg/g | [85] | |||
CGK | 182.6 mg/g | [86] | |||
crystal violet | SLS/DTPA@ZIF-8 | 827.54 mg/g | 48 | [67] | |
meth-GO/CH | 243.902 mg/g | [78] | |||
EY/ZIF-8/CLPAA | 489 mg/g | [79] | |||
SCB–Ben/SA | 839.9 mg/g | [87] | |||
congo red | CMCS-PA | 17.97 mg/g | [39] | ||
CS-g-GEL/BNC | 453.876 mg/g | [40] | |||
MCF | 647.75 mg/g | [85] | |||
CGK | 590.6 mg/g | [86] | |||
malachite green | TG-cl-PAA/Fe3O4 | 642.9 mg/g | [44] | ||
EY/ZIF-8/CLPAA | 2338 mg/g | [79] |
Pollutant | Aerogel Sample | Adsorption Capacity, mg/g |
---|---|---|
Rhodamine B | GO/LBG-1 | 514.5 |
GO/LBG-2 | 468.2 | |
GO/LBG-3 | 288.1 | |
Indigo carmine | GO/LBG-1 | 134.6 |
GO/LBG-2 | 129.8 | |
GO/LBG-3 | 95.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buema, G.; Segneanu, A.-E.; Herea, D.-D.; Grozescu, I. Gels for Water Remediation: Current Research and Perspectives. Gels 2024, 10, 585. https://doi.org/10.3390/gels10090585
Buema G, Segneanu A-E, Herea D-D, Grozescu I. Gels for Water Remediation: Current Research and Perspectives. Gels. 2024; 10(9):585. https://doi.org/10.3390/gels10090585
Chicago/Turabian StyleBuema, Gabriela, Adina-Elena Segneanu, Dumitru-Daniel Herea, and Ioan Grozescu. 2024. "Gels for Water Remediation: Current Research and Perspectives" Gels 10, no. 9: 585. https://doi.org/10.3390/gels10090585
APA StyleBuema, G., Segneanu, A. -E., Herea, D. -D., & Grozescu, I. (2024). Gels for Water Remediation: Current Research and Perspectives. Gels, 10(9), 585. https://doi.org/10.3390/gels10090585