Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hydrogel Preparacion and Characterization
2.2. Antimicrobial Assay
2.3. Cytotoxicity and Biocompatibility Assays
2.3.1. Protein Adsorption Assay
2.3.2. Cell Adherent Number
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Hydrogel Preparation
4.3. Hydrogel Characterization
4.4. Antimicrobial Assay
4.5. Protein Adsorption
4.6. Cell Culture
4.7. Cell Morphology
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wichterle, O.; Lim, D. hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Jagur-Grodzinski, J. Polymeric gels and hydrogels for biomedical and pharmaceutical appliations. Polym. Adv. Technol. 2010, 21, 27–47. [Google Scholar] [CrossRef]
- Hoang, T.T.; Lee, Y.; Ryu, S.B.; Sung, H.J.; Park, K.D. Oxidezed cyclodextrin-functionalized injectable gelatin hydrogels as a new platform for tissue-adhesive hydrophobic drug delivery. RSC Adv. 2017, 7, 34053–34062. [Google Scholar] [CrossRef]
- Lai, C.F.; Li, J.S.; Fang, Y.T.; Chien, C.J.; Lee, C.H. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC Adv. 2018, 8, 4006–4013. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Das, D.; Pal, S. Modified biopolymer-dextrin based crosslinked hydrogels: Application in controlled drug delivery. RSC Adv. 2015, 5, 25014–25050. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Silva, L.P. Current trends and challangers in biofabrication using biomaterials and nanomaterials: Future perspectives for 3D/4D bioprinting. In 3D and 4D Printing in Biomedical Applications: Process Engineering and Additive Manufacturing; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; Chapter 15; pp. 373–421. [Google Scholar]
- Mancha-Sanchez, E.; Gomez-Blanco, J.C.; Lopez-Nieto, E.; Casado, J.; Macias-Garcia, A.; Diaz-Diez, M.A.; Carrasco-Amador, J.P.; Torrejon-Martin, D. Hydrogels for bioprinting: A systematic review of hydrogels syntehsis, bioprinting parameters, and bioprinted structures behavior. Front. Bioeng. Biotechnol. 2020, 8, 776. [Google Scholar] [CrossRef]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef]
- Lloyd, L.L.; Kennedy, J.F.; Methacanon, P.; Paterson, M.; Knill, C.J. Carbohydrate polymers as wound management aids. Carbohydr. Polym. 1998, 3, 315–322. [Google Scholar] [CrossRef]
- Svensoon, A.; Nicklasson, E.; Harrah, T.; Panilailis, B.; Kaplan, D.L.; Briiberg, M.; Gatenholm, P. Bacterial cellulose as potential scaffold for tissue engineering of cartilage. Biomaterials 2005, 26, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Reyes-Valdes, M.H.; Benavides-Mendoza, A.; Ramirez-Rodriguez, H.; Villereal-Quintanilla, J.A. Biologia e importancia del sotol (Dasylirion spp). Parte II: Ecofisiologia, usos e interrogantes. Planta 2013, 17, 16–20. [Google Scholar]
- Reyes-Valdes, M.H.; Benavides-Mendoza, A.; Ramirez-Rodriguez, H.; Villereal-Quintanilla, J.A. Biologia e importancia del sotol (Dasylirion spp). Parte I:Sistematica, genética y reproduccion. Planta 2012, 14, 11–13. [Google Scholar]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the pharmacological effects of vitis vinifera (Grape) and its bioactive constituents: An update. Phyther Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef]
- Lopes, L.A.A.; dos Santos Rodriguez, J.B.; Magnani, M.; de Souza, E.L.; de Siqueira-Junior, J.P. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 2017, 107, 193–197. [Google Scholar] [CrossRef]
- Schuwirth, B.S.; Borovinskaya, M.A.; Cathy, W.; Hau, C.W.; Vila-Sanjurjo, A.; Holton, J.M.; Doudna Cate, J.H. Structures of the bacterials ribosome at 3.5 Å resolution. Science 2005, 310, 827–834. [Google Scholar] [CrossRef]
- Gupta, M.; Dey, S.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumber, B. grape seed extract: Having a potential health benefits. J. Food Sci. Technol. 2020, 57, 1205–1215. [Google Scholar] [CrossRef]
- Khanna, S.; Roy, S.; Bagchi, M.; Sen, C.K. Upreggulation of oxidant-induced VGF expression in culture keratocytes by grape seed proanthocyanidin extract. Free Radic. Bio Med. 2001, 31, 38–42. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Foroozan, M.; Houshmand, G.; Mosavi, Z.B.; Bahadoram, M.; Maram, N.S. thee topical effect of grape seed extract 2% cream on surgery wound healing. Glob. J. Health Sci. 2014, 7, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Carrillo, K.L.; Nakasone, K.; Sugita, S.; Tagaya, M.; Kobayashi, T. Effects of sodium hypochlorite on agave tequilana weber bagasse fibers used to elaborate cyto and compatible hydrogel films. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari-Nicoli, S.; Gabrielli, P.; et al. Grape seeds: Chromatographic profile of fatty acids and phenolic compunds and qualitative analysis by FTIR-ATR spectroscopy. Foods 2020, 9, 10. [Google Scholar] [CrossRef]
- Kennedy, J.K.; Rivera, Z.S.; White, C.A.; Lloyd, L.L.; Warner, F.P. Molecular weight characterization of underivatised cellulose by GPC. Cellul. Chem. Technol. 1990, 24, 319–325. [Google Scholar]
- Dabetic, N.; Todorovic, V.; Malenovic, A.; Sobajic, S.; Markovic, B. Optimization of extraction and HPLC-MS/MS profiling of phenolic compunds from red greed seed extracts using conventional and deep eutectic solvents. Antioxidants 2022, 11, 1595. [Google Scholar] [CrossRef]
- Kuhnert, S.; Lehmann, L.; Winterhalter, P. Rapid characterization of grape seed extracts by novel HPLC method on a diol stationary phase. J. Funct. Foods 2015, 15, 225–232. [Google Scholar] [CrossRef]
- Cruz-Medina, R.; Ayala-Hernandez, D.A.; Vaga-Rios, A.; Lopez-Martinez, E.I.; Mendoza-Duarte, M.A.; Estrada-Monje, A.; Zaragoza-Contreras, E.A. Curing of cellulose hydrogles by UV radiation for mechanical reinforcement. Polymers 2021, 13, 2342. [Google Scholar] [CrossRef]
- Astrini, N.; Anah, L.; Haryono, A. Crosllinking parameter on the preparation of cellulose based hydrogel with divinylsulfone. Procedia Chem. 2012, 4, 275–281. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, X.; Huo, M.; Zhai, X.; Li, F.; Zhong, C. Preparation and characterization of novel bacterial cellulose/chitosan bio-hydrogel. Nanomater. Nanotechnol. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Roy, S.; Kim, H.C.; Panicker, P.S.; Rhim, J.W.; Kim, J. Cellulose nanofiber-based nanocomposite films reinforced with zinc oxide and grapefruit seed extract. Nanomaterials 2021, 11, 877. [Google Scholar] [CrossRef]
- Ji, X.; Xu, Z.; Xia, X.; Wei, Z.; Zhang, J.; Xia, G.; Ji, X. Cellulose/grape-seed extract composite films with high transparency and ultraviolet shielding performance fabricated from old cotton textiles. Polymers 2023, 15, 1451. [Google Scholar] [CrossRef]
- Paz-Zarza, V.M.; Mangwani-Mordani, S.; Martinez-Maoldonada, A.; Alvarez-Hernandez, D.; Solano-Galvez, S.G.; Vazquez-Lopez, R. Pseudomonas aeroginosa: Patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev. Chil. Infectologia 2019, 36, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Wauven, C.V.; Pierard, A.; Kley-Raymann, M.; Hass, D. Pseudomonas aeroginosa mutans affected in anaerobic growth on arginine: Evidence for a four-gene cluster encoding the arginine deiminase pathway. J. Bacteriol. 1984, 160, 918–934. [Google Scholar]
- Strateva, T.; Yordanov, D. Pseudomonas aeruginosa—A phenomenon of bacterial ressitance. J. Med. Microbiol. 2009, 58, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Periera, S.G.; Rosa, A.C.; Cardoso, O. Virulence factors as predective tolos for drug resistance in Pseudomonas aeruginosa. Virulence 2015, 6, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, M.; Ohta, T.; Uchiyama, I.; Baba, T.; Yuzawa, H.; Kobayashi, I. Whole genome sequencing of methicillin-resistant Staphylococcus aureous. Lancet 2001, 357, 1225–1240. [Google Scholar] [CrossRef]
- Wann, E.R.; Gurusiddappa, S.; Hook, M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J. Biol. Chem. 2000, 275, 13863–13871. [Google Scholar] [CrossRef]
- Nabera, C.K. Staphylococcus aureus bacteremia: Epidemiology, pathophysiology, and management strategies. Clin. Infect. Dis. 2009, 48, 231–237. [Google Scholar] [CrossRef]
- Tamada, Y.; Ikada, Y. Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J. Colloid. Inter. Sci. 1993, 155, 334–339. [Google Scholar] [CrossRef]
- Salem, A.K.; Stevents, R.; Pearson, R.G. Interactions of 3T3 fibroblast and endothelial cells with defined pore features. J. Biomed. Mater. Res. 2002, 61, 212–217. [Google Scholar] [CrossRef]
- Lu, B.; Wang, T.; Li, Z.; Dai, F.; Lv, L.; Tang, F.; Yu, K.; Liu, J.; Lan, G. Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma. Int. J. Biol. Macromol. 2016, 82, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Berman, B.; Maderal, A.; Raphael, B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017, 43, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Su, W.; Cheng, M.H. Nonsteroidal ant-inflammatory drugs for wounds: Pain relief or excessive scar formation. Mediat. Inflamm. 2010, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Gomez, L.E.; Martel-Estrada, S.A.; Vargas-Requena, C. Chitosan/Mimosa tenuiflora as potential cellular path for skin regeneration. Int. J. Biol. Macromol. 2016, 93, 1217–1225. [Google Scholar] [CrossRef]
- Tovar-Carrillo, K.L.; Sueyoshi, S.S.; Tagaya, M.; Kobayashi, T. Fibroblast compatibility on scaffold hydrogels prepared from agave tequilana weber bagasse for tissue regeneration. Ind. Eng. Chem. Res. 2013, 52, 11607–11613. [Google Scholar] [CrossRef]
- Zoletti, G.O.; Pereora, E.M.; Schuenck, R.P.; Teiseira, L.M.; Siqueira, J.F.; dos Santos, K.R.N. Characterization of virulence factor son clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res. Microbiol. 2011, 16, 151–158. [Google Scholar] [CrossRef]
Sample | EWC (%) | Elongation (mm) | Tensile Strength (N/mm2) | Shear Viscosity (CP) | Contact Angle | |
---|---|---|---|---|---|---|
6 rpm | 60 rpm | |||||
100/0 | 31 ± 0.882 | 12.67 ± 0.333 | 52.33 ± 0.333 | 410.67 ± 0.667 | 406.67 ± 0.882 | 38.33 ± 0.577 |
90/10 | 32 ± 0.577 | 10.33 ± 0.333 | 50.67 ± 0.667 | 402.67 ± 0.333 | 400.67 ± 0.333 | 37.33 ± 0.577 |
70/30 | 35 ± 0.882 | 8.33 ± 0.333 | 44.67 ± 0.333 | 386.67 ± 0.333 | 387.67 ± 0.333 | 36 ± 0.000 |
50/50 | 37 ± 0.577 | 6.33 ± 0.333 | 40 ± 0.557 | 363.67 ± 0.882 | 362.67 ± 1.202 | 36.33 ± 0.577 |
Sample | S. mutans Colony Number | E. faecalis Colony Number | S. aureus Colony Number | P. aeruginosa Colony Number |
---|---|---|---|---|
Bacteria | 927.67 ± 82.276 | 490.00 ± 86.712 | 156.33 ± 20.502 | 263.00 ± 42.426 |
100/0 | 945.33 ± 14.189 | 709.00 ± 11.533 | 290.67 ± 88.822 | 248.00 ± 1.414 |
90/10 | 90.00 ± 16.823 | 108.00 ± 9.644 | 14.00 ± 2.646 | 261.50 ± 47.376 |
70/30 | 35.67 ± 4.33 | 1.67 ± 0.287 | 1.00 ± 0.2770 | 2.00 ± 0.282 |
50/50 | 0.0 ± 0.000 | 1.67 ± 0.155 | 3.00 ± 0.732 | 0.00 ± 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tovar-Carrillo, K.L.; Trujillo-Morales, L.; Cuevas-González, J.C.; Ríos-Arana, J.V.; Espinosa-Cristobal, L.F.; Zaragoza-Contreras, E.A. Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility. Gels 2024, 10, 606. https://doi.org/10.3390/gels10090606
Tovar-Carrillo KL, Trujillo-Morales L, Cuevas-González JC, Ríos-Arana JV, Espinosa-Cristobal LF, Zaragoza-Contreras EA. Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility. Gels. 2024; 10(9):606. https://doi.org/10.3390/gels10090606
Chicago/Turabian StyleTovar-Carrillo, Karla Lizette, Lizett Trujillo-Morales, Juan Carlos Cuevas-González, Judith Virginia Ríos-Arana, León Francisco Espinosa-Cristobal, and Erasto Armando Zaragoza-Contreras. 2024. "Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility" Gels 10, no. 9: 606. https://doi.org/10.3390/gels10090606
APA StyleTovar-Carrillo, K. L., Trujillo-Morales, L., Cuevas-González, J. C., Ríos-Arana, J. V., Espinosa-Cristobal, L. F., & Zaragoza-Contreras, E. A. (2024). Antibacterial Properties of Grape Seed Extract-Enriched Cellulose Hydrogels for Potential Dental Application: In Vitro Assay, Cytocompatibility, and Biocompatibility. Gels, 10(9), 606. https://doi.org/10.3390/gels10090606