In Situ Aqueous Spice Extract-Based Antifungal Lock Strategy for Salvage of Foley’s Catheter Biofouled with Candida albicans Biofilm Gel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Foley’s Catheter
2.2. Point Inoculation
2.3. MTT Assay
2.4. Colony-Forming Units (CFUs)
2.5. Scanning Electron Microscopy
2.6. Discussion
3. Conclusions
4. Materials and Methods
4.1. Yeast Cultures
4.2. Growth Conditions
4.3. Catheter
4.4. Extract Preparation
4.5. Pre-Inoculum
4.6. In Vitro Induction of Candida albicans Biofilm in Foley’s Catheter and Spice Extract-Based Antifungal Lock Therapy (ALT)
4.7. Point Inoculation
4.8. MTT Assay
4.9. Colony-Forming Units (CFUs)
4.10. Scanning Electron Microscopy
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FC | Foley’s Catheter |
UTI | Urinary Tract Infections |
ALT | Antifungal Lock Therapy |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
CFU | Colony-Forming Unit |
SEM | Scanning Electron Microscopy |
HAI | Hospital Acquired Infections |
CLABSI | Central Line-Associated Bloodstream Infections |
CAUTI | Catheter-Associated Urinary Tract Infections |
VAP | Ventilator-Associated Pneumonia |
SSI | Surgical Site Infections |
DNA | Deoxyribonucleic Acid |
ICU | Intensive Care Unit |
EPS | Extracellular Polysaccharide |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. |
LCMS | Liquid Chromatography Mass Spectrometry |
ATP | Adenosine Triphosphate |
RNA | Ribonucleic Acid |
ROS | Reactive Oxygen Species |
MIC | Minimum Inhibitory Concentration |
TSA | Trypticase Soy Agar |
PBS | Phosphate-Buffered Saline |
LS | Longitudinal Section |
CS | Cross-Section |
References
- Sikora, A.; Zahra, F. Nosocomial Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- D’Incau, S.; Atkinson, A.; Leitner, L.; Kronenberg, A.; Kessler, T.M.; Marschall, J. Bacterial Species and Antimicrobial Resistance Differ between Catheter and Non-Catheter-Associated Urinary Tract Infections: Data from a National Surveillance Network. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e55. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, R.; Yadav, U. Catheter-Associated Urinary Tract Infection: An Overview. J. Basic Clin. Physiol. Pharmacol. 2023, 34, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Rubi, H.; Mudey, G.; Kunjalwar, R. Catheter-Associated Urinary Tract Infection (CAUTI). Cureus 2022, 14, e30385. [Google Scholar] [CrossRef] [PubMed]
- Majumder, M.M.I.; Ahmed, T.; Ahmed, S.; Khan, A.R.; Majumder, M.M.I.; Ahmed, T.; Ahmed, S.; Khan, A.R. Microbiology of Catheter Associated Urinary Tract Infection. In Microbiology of Urinary Tract Infections—Microbial Agents and Predisposing Factors; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Singhal, E.; Singh, R.; Bhardwaj, P.; Kumari, M. Candida Species in Catheter Associated Urinary Tract Infection in IcU Patients at a Tertiary Care Hospital in North India: An Observational Study. J. Med. Sci. Res. 2024, 12, 11–15. [Google Scholar] [CrossRef]
- Tosun Taşar, P.; Karasahin, O.; Karahan, B.; Kiziltunc, S.; Albayrak, A. Candidemia in Older Adults: What Are the Risk Factors for Mortality? Flora Infeks. Hastalik. Klin. Mikrobiyol. Derg. 2022, 27, 261–267. [Google Scholar] [CrossRef]
- Porto, A.P.M.; Borges, I.C.; Buss, L.; Machado, A.; Bassetti, B.R.; Cocentino, B.; Bicalho, C.S.; Carrilho, C.M.D.M.; Rodrigues, C.; Neto, E.A.S.; et al. Healthcare-Associated Infections on the Intensive Care Unit in 21 Brazilian Hospitals during the Early Months of the Coronavirus Disease 2019 (COVID-19) Pandemic: An Ecological Study. Infect. Control Hosp. Epidemiol. 2023, 44, 284–290. [Google Scholar] [CrossRef]
- Jain, M.; Dogra, V.; Mishra, B.; Thakur, A.; Loomba, S.L.; Bhargava, A. Candiduria in Catheterized Intensive Care Unit Patients: Emerging Microbiological Trends. Indian J. Pathol. Microbiol. 2011, 54, 552–555. [Google Scholar] [CrossRef]
- Obaid, N.A.; Almarzoky Abuhussain, S.; Mulibari, K.K.; Alshanqiti, F.; Malibari, S.A.; Althobaiti, S.S.; Alansari, M.; Muneef, E.; Almatrafi, L.; Alqarzi, A.; et al. Antimicrobial-Resistant Pathogens Related to Catheter-Associated Urinary Tract Infections in Intensive Care Units: A Multi-Center Retrospective Study in the Western Region of Saudi Arabia. Clin. Epidemiol. Glob. Health 2023, 21, 101291. [Google Scholar] [CrossRef]
- Mishra, N.; Kumari, D.; Mishra, A. Prevalence of Candida Species in Urinary Tract Infections from a Tertiary Care Hospital at Lucknow, Uttar Pradesh, India: A Retrospective Study. Natl. J. Lab. Med. 2022, 11, MO16–MO19. [Google Scholar] [CrossRef]
- Al-Berfkani, M.I.; Allu, M.A.; Mousa, S.A. The Effect of Climate Temperature and Daily Water Intake on the Diversity of Uropathogens Causing Urinary Tract Infections in Adult Hospital Patients. Diyala J. Med. 2016, 11, 62–69. [Google Scholar]
- Ionescu, A.C.; Brambilla, E.; Sighinolfi, M.C.; Mattina, R. A New Urinary Catheter Design Reduces In-Vitro Biofilm Formation by Influencing Hydrodynamics. J. Hosp. Infect. 2021, 114, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Geng, H.; Bai, J.; Feng, J.; Xu, N.; Liu, Y.; Liu, X.; Liu, G. Characterization of Cervical Canal and Vaginal Bacteria in Pregnant Women with Cervical Incompetence. Front. Microbiol. 2022, 13, 986326. [Google Scholar] [CrossRef] [PubMed]
- Slate, A.J.; Clarke, O.E.; Kerio, M.; Nzakizwanayo, J.; Patel, B.A.; Jones, B.V. Infection Responsive Coatings to Reduce Biofilm Formation and Encrustation of Urinary Catheters. J. Appl. Microbiol. 2023, 134, lxad121. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Karicheri, R.; Nath, D. The Burden of Catheter Associated Urinary Tract Infection by Candida albicans and Non Albicans with Emphasis on Biofilm Formation and Antifungal Sensitivity Pattern. Int. J. Health Sci. 2022, 6, 2356–2363. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Palmer, S.C.; Cho, Y.; Mudge, D.W.; Strippoli, G.F.M.; Craig, J.C.; Johnson, D.W.; Htay, H. Peritoneal Dialysis: Infections. Evid.-Based Nephrol. 2022, 2, 138–155. [Google Scholar] [CrossRef]
- Couttenier, E.; Bachellier-Bassi, S.; d’Enfert, C.; Villard, C. Bending Stiffness of Candida albicans Hyphae as a Proxy of Cell Wall Properties. Lab Chip 2022, 22, 3898–3909. [Google Scholar] [CrossRef]
- Qiang, L.; Guo, J.; Han, Y.; Jiang, J.; Su, X.; Liu, H.; Qi, Q.; Han, L. A Novel Anti Candida albicans Drug Screening System Based on High-Throughput Microfluidic Chips. Sci. Rep. 2019, 9, 8087. [Google Scholar] [CrossRef]
- Maurer, M.; Gresnigt, M.S.; Last, A.; Wollny, T.; Berlinghof, F.; Pospich, R.; Cseresnyes, Z.; Medyukhina, A.; Graf, K.; Gröger, M.; et al. A Three-Dimensional Immunocompetent Intestine-on-Chip Model as in Vitro Platform for Functional and Microbial Interaction Studies. Biomaterials 2019, 220, 119396. [Google Scholar] [CrossRef]
- Claudel, J.; De Araujo, A.L.A.; Nadi, M. Lab-on-a-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance. Sensors 2019, 19, 3366. [Google Scholar] [CrossRef]
- Tresso, K.A.; dos Santos, B.N.; Braga, F.T.M.M.; Margatho, A.S.; Mendes, K.D.S.; Silveira, R.C.d.C.P. Lock Therapy in Prevention and Treatment of Catheter-Associated Bloodstream Infection: Integrative Review. Acta Paul. Enferm. 2023, 36, eAPE01221. [Google Scholar] [CrossRef]
- Fakhim, H.; Vaezi, A.; Morovati, H.; Bandegani, A.; Abbasi, K.; Emami, S.; Nasiry, D.; Hashemi, S.M.; Ahangarkani, F.; Badali, H. In-Vivo Efficiency of the Novel Azole Compounds (ATTAF-1 and ATTAF-2) against Systemic Candidiasis in a Murine Model. J. Med. Mycol. 2023, 33, 101437. [Google Scholar] [CrossRef] [PubMed]
- Petraitiene, R.; Petraitis, V.; Zaw, M.H.; Hussain, K.; Ricart Arbona, R.J.; Roilides, E.; Walsh, T.J. Combination of Systemic and Lock-Therapies with Micafungin Eradicate Catheter-Based Biofilms and Infections Caused by Candida albicans and Candida parapsilosis in Neutropenic Rabbit Models. J. Fungi 2024, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- van der Sluijs, A.v.E.; Eekelschot, K.Z.A.J.; Frakking, F.N.J.; Haas, P.J.A.; Boer, W.H.; Abrahams, A.C. Salvage of the Peritoneal Dialysis Catheter in Candida peritonitis Using Amphotericin B Catheter Lock. Perit. Dial. Int. 2021, 41, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Mullins, C.; Beaulac, K.; Sylvia, L. Drug-Induced Liver Injury (DILI) With Micafungin: The Importance of Causality Assessment. Ann. Pharmacother. 2020, 54, 526–532. [Google Scholar] [CrossRef]
- Kovács, R.; Majoros, L. Antifungal Lock Therapy: An Eternal Promise or an Effective Alternative Therapeutic Approach? Lett. Appl. Microbiol. 2022, 74, 851–862. [Google Scholar] [CrossRef]
- Wunnoo, S.; Paosen, S.; Lethongkam, S.; Sukkurd, R.; Waen-ngoen, T.; Nuidate, T.; Phengmak, M.; Voravuthikunchai, S.P. Biologically Rapid Synthesized Silver Nanoparticles from Aqueous Eucalyptus camaldulensis Leaf Extract: Effects on Hyphal Growth, Hydrolytic Enzymes, and Biofilm Formation in Candida albicans. Biotechnol. Bioeng. 2021, 118, 1578–1592. [Google Scholar] [CrossRef]
- Li, W.R.; Shi, Q.S.; Dai, H.Q.; Liang, Q.; Xie, X.B.; Huang, X.M.; Zhao, G.Z.; Zhang, L.X. Antifungal Activity, Kinetics and Molecular Mechanism of Action of Garlic Oil against Candida albicans. Sci. Rep. 2016, 6, 22805. [Google Scholar] [CrossRef]
- Ashrit, P.; Sadanandan, B.; Shetty, K.; Vaniyamparambath, V. Polymicrobial Biofilm Dynamics of Multidrug-Resistant Candida albicans and Ampicillin-Resistant Escherichia coli and Antimicrobial Inhibition by Aqueous Garlic Extract. Antibiotics 2022, 11, 573. [Google Scholar] [CrossRef]
- Sadanandan, B.; Prerna, L.; Humtsoe, H.M.A. Antibacterial Activity of Garlic against Bacillus subtilis. Int. Rev. Appl. Biotechnol. Biochem. 2014, 2, 107–119. [Google Scholar]
- El-Baz, A.M.; Mosbah, R.A.; Goda, R.M.; Mansour, B.; Sultana, T.; Dahms, T.E.S.; El-Ganiny, A.M. Back to Nature: Combating Candida albicans Biofilm, Phospholipase and Hemolysin Using Plant Essential Oils. Antibiotics 2021, 10, 81. [Google Scholar] [CrossRef]
- Kumar, G.; Madka, V.; Pathuri, G.; Ganta, V.; Rao, C.V. Molecular Mechanisms of Cancer Prevention by Gooseberry (Phyllanthus emblica). Nutr. Cancer 2022, 74, 2291–2302. [Google Scholar] [CrossRef] [PubMed]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral Potential of Garlic (Allium sativum) and Its Organosulfur Compounds: A Systematic Update of Pre-Clinical and Clinical Data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, A.; Das, B.S.; Sahoo, A.; Jena, B.; Patnaik, G.; Giri, S.; Chattopadhyay, D.; Bhattacharya, D. Deciphering the Antibiofilm, Antibacterial, and Antioxidant Potential of Essential Oil from Indian Garlic and Its Phytocompounds Against Foodborne Pathogens. Curr. Microbiol. 2024, 81, 245. [Google Scholar] [CrossRef] [PubMed]
- Somayeh, S.M.; Samaneh, M.A.; Pedram, E.; Zahra, M.; Maliheh, N. Anti-Bacterial Property and Cytotoxicity of Allium sativum and Myrtus communis Extracts Against Nosocomial Bacterial Infections. Iran. J. Toxicol. 2023, 17, 71–78. [Google Scholar]
- Li, Z.; Li, Z.; Yang, J.; Lu, C.; Li, Y.; Luo, Y.; Cong, F.; Shi, R.; Wang, Z.; Chen, H.; et al. Allicin Shows Antifungal Efficacy against Cryptococcus neoformans by Blocking the Fungal Cell Membrane. Front. Microbiol. 2022, 13, 1012516. [Google Scholar] [CrossRef]
- Kuda, T.; Iwai, A.; Yano, T. Effect of Red Pepper Capsicum annuum Var. Conoides and Garlic Allium sativum on Plasma Lipid Levels and Cecal Microflora in Mice Fed Beef Tallow. Food Chem. Toxicol. 2004, 42, 1695–1700. [Google Scholar] [CrossRef]
- Tavares, L.; Santos, L.; Zapata Noreña, C.P. Bioactive Compounds of Garlic: A Comprehensive Review of Encapsulation Technologies, Characterization of the Encapsulated Garlic Compounds and Their Industrial Applicability. Trends Food Sci. Technol. 2021, 114, 232–244. [Google Scholar] [CrossRef]
- Oosthuizen, C.B.; Reid, A.M.; Lall, N. Garlic (Allium sativum) and Its Associated Molecules, as Medicine. In Medicinal Plants for Holistic Health and Well-Being; Academic Press: Cambridge, MA, USA, 2018; pp. 277–295. [Google Scholar] [CrossRef]
- Pandey, V.K.; Srivastava, S.; Ashish; Dash, K.K.; Singh, R.; Dar, A.H.; Singh, T.; Farooqui, A.; Shaikh, A.M.; Kovacs, B. Bioactive Properties of Clove (Syzygium aromaticum) Essential Oil Nanoemulsion: A Comprehensive Review. Heliyon 2024, 10, e22437. [Google Scholar] [CrossRef]
- Moradi, E.; Rakhshandeh, H.; Rahimi Baradaran, V.; Ghadiri, M.; Hasanpour, M.; Iranshahi, M.; Askari, V.R. HPLC/MS Characterization of Syzygium aromaticum L. and Evaluation of Its Effects on Peritoneal Adhesion: Investigating the Role of Inflammatory Cytokines, Oxidative Factors, and Fibrosis and Angiogenesis Biomarkers. Physiol. Rep. 2023, 11, e15584. [Google Scholar] [CrossRef]
- Haleema Shahin, D.H.; Sultana, R.; Farooq, J.; Taj, T.; Khaiser, U.F.; Alanazi, N.S.A.; Alshammari, M.K.; Alshammari, M.N.; Alsubaie, F.H.; Asdaq, S.M.B.; et al. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr. Issues Mol. Biol. 2022, 44, 2887–2902. [Google Scholar] [CrossRef]
- Boonpisuttinant, K.; Ruksiriwanich, W.; Chutoprapat, R.; Udompong, S.; Kansawang, R.; Sangsee, J.; Chompoo, W.; Samothai, K.; Srisut, R. Assessment of in Vitro Anti-Skin Ageing Activities of Giant Indian Gooseberry (Phyllanthus indofischeri Bennet) Extracts for Dermatological Health and Aesthetic Applications. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Feneley, R.C.L.; Hopley, I.B.; Wells, P.N.T. Urinary Catheters: History, Current Status, Adverse Events and Research Agenda. J. Med. Eng. Technol. 2015, 39, 459–470. [Google Scholar] [CrossRef]
- Farrag, H.A.; El, A.; Ali, H.; Farrag, H.A.; El-Dien, A.; Hosny, M.S.; Hagras, S.A.A. Elimination and Prevention of Microbial Colonization of Central Venous Catheters Using Antibiotic Lock Technique and NonLeachable Form of Catheter Surface Incorporated Antibiotic b Elimination and Prevention of Microbial Colonization of Central Venous Catheters Using Antibiotic Lock Technique and Non-Leachable Form of Catheter Surface Incorporated Antibiotic by Gamma Radiation. Artic. IOSR J. Pharm. Biol. Sci. 2014, 9, 28–37. [Google Scholar] [CrossRef]
- Freire, M.P.; Pierrotti, L.C.; Zerati, A.E.; Benites, L.; Da Motta-Leal Filho, J.M.; Ibrahim, K.Y.; Araujo, P.H.; Abdala, E. Role of Lock Therapy for Long-Term Catheter-Related Infections by Multidrug-Resistant Bacteria. Antimicrob. Agents Chemother. 2018, 62, e00569-18. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.S.; Lee, J.Y.; Song, J.H.; Peck, K.R. In Vitro Evaluation of Antibiotic Lock Technique for the Treatment of Candida albicans, C. Glabrata, and C. Tropicalis Biofilms. J. Korean Med. Sci. 2010, 25, 1722–1726. [Google Scholar] [CrossRef]
- Kovács, R.; Nagy, F.; Tóth, Z.; Bozó, A.; Balázs, B.; Majoros, L. Synergistic Effect of Nikkomycin Z with Caspofungin and Micafungin against Candida albicans and Candida parapsilosis Biofilms. Lett. Appl. Microbiol. 2019, 69, 271–278. [Google Scholar] [CrossRef]
- Öncu, S. In Vitro Effectiveness of Antifungal Lock Solutions on Catheters Infected with Candida Species. J. Infect. Chemother. 2011, 17, 634–639. [Google Scholar] [CrossRef]
- Sadanandan, B.; Vijayalakshmi, V.; Ashrit, P.; Babu, U.V.; Kumar, L.M.S.; Sampath, V.; Shetty, K.; Joglekar, A.P.; Awaknavar, R. Aqueous Spice Extracts as Alternative Antimycotics to Control Highly Drug Resistant Extensive Biofilm Forming Clinical Isolates of Candida albicans. PLoS ONE 2023, 18, e0281035. [Google Scholar] [CrossRef]
- Dabur, R.; Gupta, A.; Mandal, T.K.; Singh, D.D.; Bajpai, V.; Gurav, A.M.; Lavekar, G.S. Antimicrobial Activity of Some Indian Medicinal Plants. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 313. [Google Scholar] [CrossRef]
- Sampaio, A.d.G.; Gontijo, A.V.L.; Lima, G.d.M.G.; de Oliveira, M.A.C.; Lepesqueur, L.S.S.; Koga-Ito, C.Y. Ellagic Acid–Cyclodextrin Complexes for the Treatment of Oral Candidiasis. Molecules 2021, 26, 505. [Google Scholar] [CrossRef]
- Khounganian, R.M.; Alwakeel, A.; Albadah, A.; Nakshabandi, A.; Alharbi, S.; Almslam, A.S. The Antifungal Efficacy of Pure Garlic, Onion, and Lemon Extracts Against Candida albicans. Cureus 2023, 15, e38637. [Google Scholar] [CrossRef] [PubMed]
- Biernasiuk, A.; Baj, T.; Malm, A. Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. Molecules 2023, 28, 215. [Google Scholar] [CrossRef] [PubMed]
- Rajkowska, K.; Otlewska, A.; Kunicka-Styczyńska, A.; Krajewska, A. Candida albicans Impairments Induced by Peppermint and Clove Oils at Sub-Inhibitory Concentrations. Int. J. Mol. Sci. 2017, 18, 1307. [Google Scholar] [CrossRef] [PubMed]
- Khurana, S.K.; Tiwari, R.; Sharun, K.; Iqbal Yatoo, M.; Gugjoo, M.B.; Dhama, K. Emblica officinalis (Amla) with a Particular Focus on Its Antimicrobial Potentials: A Review. J. Pure Appl. Microbiol. 2019, 13, 1995–2012. [Google Scholar] [CrossRef]
- Tsegay, Z.T.; Mulaw, G. Antimicrobial Activities and Mode of Action of Bioactive Substances from Vegetable and Fruit Byproducts as a Current Option for Valorization. Waste Biomass Valoriz. 2024, 1–28. [Google Scholar] [CrossRef]
- Sahidur, M.R.; Islam, S.; Jahurul, M.H.A. Garlic (Allium sativum) as a Natural Antidote or a Protective Agent against Diseases and Toxicities: A Critical Review. Food Chem. Adv. 2023, 3, 100353. [Google Scholar] [CrossRef]
- Didehdar, M.; Chegini, Z.; Shariati, A. Eugenol: A Novel Therapeutic Agent for the Inhibition of Candida Species Infection. Front. Pharmacol. 2022, 13, 872127. [Google Scholar] [CrossRef]
- Ferreira, J.A.G.; Carr, J.H.; Starling, C.E.F.; De Resende, M.A.; Donlan, R.M. Biofilm Formation and Effect of Caspofungin on Biofilm Structure of Candida Species Bloodstream Isolates. Antimicrob. Agents Chemother. 2009, 53, 4377. [Google Scholar] [CrossRef]
- Sieuwerts, S.; De Bok, F.A.M.; Mols, E.; De Vos, W.M.; Van Hylckama Vlieg, J.E.T. A Simple and Fast Method for Determining Colony Forming Units. Lett. Appl. Microbiol. 2008, 47, 275–278. [Google Scholar] [CrossRef]
- LaFleur, M.D.; Kumamoto, C.A.; Lewis, K. Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells. Antimicrob. Agents Chemother. 2006, 50, 3839–3846. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Long, L.; Kim, H.G.; Ghannoum, M.A. Amphotericin B Lipid Complex Is Efficacious in the Treatment of Candida albicans Biofilms Using a Model of Catheter-Associated Candida Biofilms. Int. J. Antimicrob. Agents 2009, 33, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Latti, P.; Ramanarayanan, S.; Prashant, G.M. Antifungal Efficacy of Spice Extracts against Candida albicans: An In Vitro Study. Indian J. Community Med. 2019, 44, S77–S80. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Roşca, O.M.; Mihalescu, L.; Voşgan, Z.; Lazăr, A. Antifungal Effect of Spice Extracts—Possible Solutions for Biological Preservation of Food. Food Environ. Saf. J. 2018, 17, 103. [Google Scholar]
- El-Mougy, N.S.; Abdel-Kader, M.M. Antifungal Effect of Powdered Spices and Their Extracts on Growth and Activity of Some Fungi in Relation to Damping-off Disease Control. J. Plant Prot. Res. 2007, 47, 267–278. Available online: https://www.plantprotection.pl/Antifungal-effect-of-powdered-spices-and-their-extracts-on-growth-and-activity-of,91115,0,2.html (accessed on 14 December 2024).
- Thyagaraja, N.; Hosono, A. Effect of Spice Extract on Fungal Inhibition. LWT-Food Sci. Technol. 1996, 29, 286–288. [Google Scholar] [CrossRef]
- Walraven, C.J.; Lee, S.A. Antifungal Lock Therapy. Antimicrob. Agents Chemother. 2012, 57, 1–8. [Google Scholar] [CrossRef]
- Paul Dimondi, V.; Townsend, M.L.; Johnson, M.; Durkin, M. Antifungal Catheter Lock Therapy for the Management of a Persistent Candida albicans Bloodstream Infection in an Adult Receiving Hemodialysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2014, 34, e120–e127. [Google Scholar] [CrossRef]
- Srinivasan, A.; Uppuluri, P.; Lopez-Ribot, J.; Ramasubramanian, A.K. Development of a High-Throughput Candida albicans Biofilm Chip. PLoS ONE 2011, 6, e19036. [Google Scholar] [CrossRef]
- Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. Candida albicans Biofilm Chip (CaBChip) for High-Throughput Antifungal Drug Screening. J. Vis. Exp. 2012, 65, e3845. [Google Scholar] [CrossRef]
- Asghar, W.; Sher, M.; Khan, N.S.; Vyas, J.M.; Demirci, U. Microfluidic Chip for Detection of Fungal Infections. ACS Omega 2019, 4, 7474–7481. [Google Scholar] [CrossRef]
Dilutions | C. albicans M207—CFU/mL | |||||
---|---|---|---|---|---|---|
12 h | 24 h | |||||
Control | Garlic Treated | % Kill | Control | Garlic Treated | % Kill | |
Neat | * Not countable | 1510 | - | 1950 | 560 | 71.28 |
10−1 | 1700 | 300 | 82.35 | 7000 | 1200 | 82.85 |
10−2 | 26,000 | 0 | 100 | 50,000 | 5000 | 90 |
10−3 | 60,000 | 0 | 100 | 220,000 | 10,000 | 95.45 |
10−4 | 200,000 | 0 | 100 | 1,500,000 | 0 | 100 |
Panel 1 | |||||||
Dilutions | 12 h | ||||||
Control | Garlic Treated | % Kill | Clove Treated | % Kill | Gooseberry Treated | % Kill | |
Neat | * Not countable | 90 | - | 270 | - | 280 | - |
10−1 | 12,700 | 200 | 98.42 | 300 | 97.63 | 300 | 97.63 |
10−2 | 20,000 | 1000 | 95 | 1000 | 95 | 1000 | 95 |
10−3 | 90,000 | 0 | 100 | 0 | 100 | 10,000 | 88.88 |
10−4 | 0 | 0 | 100 | 0 | 100 | 0 | 100 |
Panel 2 | |||||||
Dilutions | 24 h | ||||||
Control | Garlic Treated | % Kill | Clove Treated | % Kill | Gooseberry Treated | % Kill | |
Neat | * Not countable | 98 | - | * Not countable | - | * Not countable | - |
10−1 | 15,700 | 50 | 99.68 | 700 | 95.54 | 690 | 95.60 |
10−2 | 110,000 | 100 | 99.90 | 2900 | 97.36 | 4600 | 95.81 |
10−3 | 700,000 | 0 | 100 | 5000 | 99.28 | 5000 | 99.28 |
10−4 | 0 | 0 | 100 | 0 | 100 | 0 | 100 |
Published Literature | Current Study | Reference |
---|---|---|
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [24] |
|
| [71,72] |
|
| [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadanandan, B.; Vijayalakshmi, V.; Shetty, K.; Rathish, A.; Shivkumar, H.; Gundreddy, M.; Narendra, N.K.K.; Devaiah, N.M. In Situ Aqueous Spice Extract-Based Antifungal Lock Strategy for Salvage of Foley’s Catheter Biofouled with Candida albicans Biofilm Gel. Gels 2025, 11, 23. https://doi.org/10.3390/gels11010023
Sadanandan B, Vijayalakshmi V, Shetty K, Rathish A, Shivkumar H, Gundreddy M, Narendra NKK, Devaiah NM. In Situ Aqueous Spice Extract-Based Antifungal Lock Strategy for Salvage of Foley’s Catheter Biofouled with Candida albicans Biofilm Gel. Gels. 2025; 11(1):23. https://doi.org/10.3390/gels11010023
Chicago/Turabian StyleSadanandan, Bindu, Vaniyamparambath Vijayalakshmi, Kalidas Shetty, Adithya Rathish, Harshala Shivkumar, Malavika Gundreddy, Nikhil Kumar Kagganti Narendra, and Nethra Machamada Devaiah. 2025. "In Situ Aqueous Spice Extract-Based Antifungal Lock Strategy for Salvage of Foley’s Catheter Biofouled with Candida albicans Biofilm Gel" Gels 11, no. 1: 23. https://doi.org/10.3390/gels11010023
APA StyleSadanandan, B., Vijayalakshmi, V., Shetty, K., Rathish, A., Shivkumar, H., Gundreddy, M., Narendra, N. K. K., & Devaiah, N. M. (2025). In Situ Aqueous Spice Extract-Based Antifungal Lock Strategy for Salvage of Foley’s Catheter Biofouled with Candida albicans Biofilm Gel. Gels, 11(1), 23. https://doi.org/10.3390/gels11010023