Exploiting Urazole’s Acidity for Fabrication of Hydrogels and Ion-Exchange Materials
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm. 2020, 573, 118803. [Google Scholar] [CrossRef]
- Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Kopecek, J. Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Pol. Chem. 2009, 47, 5929–5946. [Google Scholar] [CrossRef]
- Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Park, H.; Park, K. Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. Res. 1999, 44, 53–62. [Google Scholar] [CrossRef]
- Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 1993, 11, 59–84. [Google Scholar] [CrossRef]
- Nicodemus, G.D.; Bryant, S.J. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications. Tissue Eng. Part B Rev. 2008, 14, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Baran, P.S.; Guerrero, C.A.; Corey, E.J. The first method for protection—Deprotection of the indole 2, 3-π bond. Org. Lett. 2003, 11, 1999–2001. [Google Scholar] [CrossRef]
- Ban, H.; Gavrilyuk, J.; Barbas, C.F. Tyrosine bioconjugation through aqueous ene-type reactions: A click-like reaction for tyrosine. J. Am. Chem. Soc. 2010, 132, 1523–1525. [Google Scholar] [CrossRef]
- Billiet, S.; Bruycker, K.D.; Driessen, F.; Goossens, H.; Speybroeck, V.V.; Winne, J.M.; Du Prez, F.E. Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems. Nat. Chem. 2014, 6, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Alzeer, J.; Triemer, T.; Bujalska, A.; Luedtke, N.W. Chemoselective modification of vinyl DNA by triazolinediones. Angew. Chem. 2017, 36, 10990–10993. [Google Scholar] [CrossRef]
- Hanay, S.B.; O’Dwyer, J.; Kimmins, S.D.; de Oliveira, F.C.S.; Haugh, M.G.; O’Brien, F.J.; Cryan, S.A.; Heise, A. Facile Approach to Covalent Copolypeptide Hydrogels and Hybrid Organohydrogels. ACS Macro Lett. 2018, 7, 944–949. [Google Scholar] [CrossRef]
- Houck, H.A.; Blasco, E.; Du Prez, F.E.; Barner-Kowollik, C. Light-Stabilized Dynamic Materials. J. Am. Chem. Soc. 2019, 141, 12329–12337. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Jana, G.; Behera, P.K.; Chattaraj, P.K.; Singha, N.K. Fast “ES-Click” Reaction Involving Furfuryl and Triazolinedione Functionalities toward Designing a Healable Polymethacrylate. Macromolecules 2020, 53, 8313–8323. [Google Scholar] [CrossRef]
- Choghamarani, A.G.; Chenani, Z.; Mallakpour, S. Supported Nitric Acid on Silica Gel and Polyvinyl Pyrrolidone (PVP) as an Efficient Oxidizing Agent for the Oxidation of Urazoles and Bis-urazoles. Synth. Commun. 2009, 39, 4264–4270. [Google Scholar] [CrossRef]
- Zolfigol, M.A.; Zebarjaidan, M.H.; Chehardoli, G.; Mallakpour, S.E.; Shamsipur, M. An efficient method for the oxidation of urazoles with [NO+ crown H(NO3)2−]. Tetrahedron 2001, 57, 1627–1629. [Google Scholar] [CrossRef]
- Rahimi, A.; Habibi, D.; Rostami, A.; Zolfigol, M.A.; Mallakpour, S.E. Laccase-catalyzed, aerobic oxidative coupling of 4-substituted urazoles with sodium arylsulfinates: Green and mild procedure for the synthesis of arylsulfonyl triazolidinediones. Tetrahedron Lett. 2018, 59, 383–387. [Google Scholar] [CrossRef]
- Sato, S.; Hatano, K.; Tsushima, M.; Nakamura, H. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts. Chem. Commun. 2018, 54, 5871–5874. [Google Scholar] [CrossRef]
- Keana, J.F.W.; Guzikowski, A.P.; Ward, D.D.; Morat, C.; Van Nice, F.L. Potent hydrophilic dienophiles synthesis and aqueous stability of several 4 aryl 1 2 4 triazoline 3 5 diones and sulfonated 4 aryl 1 2 4 triazoline 3 5 diones and their immobilization on silica gel. J. Org. Chem. 1983, 48, 2654–2660. [Google Scholar] [CrossRef]
- Laure, W.; De Bruycker, K.; Espeel, P.; Fournier, D.; Woisel, P.; Du Prez, F.E.; Lyskawa, J. Ultrafast Tailoring of Carbon Surfaces via Electrochemically Attached Triazolinediones. Langmuir 2018, 34, 2397–2402. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.G.; Audrieth, L.F. Hydrazine Derivatives of the Carbonic and Thiocarbonic Acids VI. New Synthesis of Urazole. J. Org. Chem. 1955, 20, 603–605. [Google Scholar] [CrossRef]
- Ohashi, S.; Leong, K.; Matyjaszewski, K.; Butler, G.B. Ene reaction of triazolinediones with alkenes. 1. Structure and properties of products. J. Org. Chem. 1980, 45, 3467–3471. [Google Scholar] [CrossRef]
- Bausch, M.J.; David, B.; Dobrowolski, P.; Guadalupe-Fasano, C.; Gostowski, R.; Selmarten, D.; Prasad, V.; Vaughn, A.; Wang, L.H. Proton-transfer chemistry of urazoles and related imides, amides, and diacyl hydrazides. J. Org. Chem. 1991, 56, 5643–5651. [Google Scholar] [CrossRef]
- Mallakpour, S.E.; Karami-Dezcho, B.; Sheikholeslami, B. Polymerization of 1-methyl-2,6-bis[1-(4-phenylurazolyl)]pyrrole dianion with alkyldihalides. Polym. Int. 1998, 45, 98–102. [Google Scholar] [CrossRef]
- Sowerby, R.L. Urazole Compositions Useful as Additives for Functional Fluids. U.S. Patent No. US06/877,637, 23 June 1986. [Google Scholar]
- Adams, D.R.; Barnes, A.F.; Cassidy, F.; Thompson, M. The synthesis of 8,10,12-triazaprostaglandin analogues: 1,2,4-triazolidine-3,5-dione derivatives. J. Chem. Soc. Perkin Trans. 1984, 1, 2061–2067. [Google Scholar] [CrossRef]
- Kolb, V.M.; Dworkin, J.P.; Miller, S.L. Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides. J. Mol. Evol. 1994, 38, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Mu, W.; Chen, Q. Urazole-Au nanocluster as a novel fluorescence probe for curcumin determination and mitochondria imaging. Food Anal. Methods 2019, 12, 1805–1812. [Google Scholar] [CrossRef]
- Hanay, S.B.; Ritzen, B.; Brougham, D.; Dias, A.A.; Heise, A. Exploring Tyrosine-Triazolinedione (TAD) Reactions for the Selective Conjugation and Cross-Linking of N-Carboxyanhydride (NCA) Derived Synthetic Copolypeptides. Macromol. Biosci. 2017, 17, 1700016. [Google Scholar] [CrossRef]
- Hanay, S.B. Triazolinedione Bearing Gels. ChemRxiv 2020. This content is a preprint and has not been peer-reviewed. [Google Scholar]
2-Naphthol Loss a | Active TAD b | ||||
---|---|---|---|---|---|
Batch | (%) | mg | mmol | mmol | mg |
Gel 1 | 26.9 | 5.38 | 0.037 | 0.74 | 76.3 |
Gel 2 | 23.6 | 4.74 | 0.033 | 0.66 | 67.9 |
Gel 3 | 25.8 | 5.18 | 0.036 | 0.72 | 74.2 |
Average | 25.4 | 5.10 | 0.035 | 0.71 | 72.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanay, S.B.; Fallah, A.; Senturk, E.; Yetim, Z.; Afghah, F.; Yilmaz, H.; Culha, M.; Koc, B.; Zarrabi, A.; Varma, R.S. Exploiting Urazole’s Acidity for Fabrication of Hydrogels and Ion-Exchange Materials. Gels 2021, 7, 261. https://doi.org/10.3390/gels7040261
Hanay SB, Fallah A, Senturk E, Yetim Z, Afghah F, Yilmaz H, Culha M, Koc B, Zarrabi A, Varma RS. Exploiting Urazole’s Acidity for Fabrication of Hydrogels and Ion-Exchange Materials. Gels. 2021; 7(4):261. https://doi.org/10.3390/gels7040261
Chicago/Turabian StyleHanay, Saltuk B., Ali Fallah, Efsun Senturk, Zeliha Yetim, Ferdows Afghah, Hulya Yilmaz, Mustafa Culha, Bahattin Koc, Ali Zarrabi, and Rajender S. Varma. 2021. "Exploiting Urazole’s Acidity for Fabrication of Hydrogels and Ion-Exchange Materials" Gels 7, no. 4: 261. https://doi.org/10.3390/gels7040261
APA StyleHanay, S. B., Fallah, A., Senturk, E., Yetim, Z., Afghah, F., Yilmaz, H., Culha, M., Koc, B., Zarrabi, A., & Varma, R. S. (2021). Exploiting Urazole’s Acidity for Fabrication of Hydrogels and Ion-Exchange Materials. Gels, 7(4), 261. https://doi.org/10.3390/gels7040261