Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels
Abstract
:1. Introduction
2. Results and Discussion
2.1. Complexes’ Solubility
2.2. Surface Tension
2.3. FTIR Spectroscopy
2.4. Viscosity of the Solutions
2.5. Rheological Study
2.5.1. Gelation Kinetics
2.5.2. Gel Strength
2.5.3. Gelling and Melting Temperatures
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Gelatin–SDS Solutions
4.3. Characterization
4.3.1. UV-Vis Spectroscopy
4.3.2. Surface Tension
4.3.3. Fourier Transform Infrared (FTIR) Spectroscopy
4.3.4. Viscosity
4.3.5. Rheology
- Isothermal time-dependent rheological behavior: The isothermal time-dependent rheological behavior of the gelatin and gelatin–SDS solutions was studied to assess gelation kinetics and the storage modulus. After 5 min of stabilization at 40 °C (t = 0 min), the hydrogel sample was cooled and held at 23 °C under isothermal conditions during a 60 min-time sweep. The storage and loss modulus variation with time and the storage modulus value at t = 60 min (G’60) were recorded. In addition, a comparison of the time-dependent rheological behavior between gelatin–SDS solutions at 0.225 S/G ratios at its natural pH and those buffered to the pH of the pure gelatin solution was made to assess the influence of the pH variation upon SDS incorporation.
- Temperature-dependent rheological behavior: The temperature-dependent viscoelastic behavior of 10 wt.% and 20 wt.% gelatin hydrogels at different SDS content was investigated to determine the gelling and melting temperatures. For gelling temperature determination, after 5 min of conditioning at 40 °C, the gelatin solutions were allowed to cool from 40 °C to 20 °C at controlled rates of 1 °C/min, 2 °C/min, and 4 °C/min, respectively, at a constant frequency, 1 Hz, shear strain, ɣ = 3–6%, and 0.5 mm gap. The adjustments in strain and the gap setting were necessary to enhance the torque signals and the accuracy of the G’ and G” moduli. For melting temperature determination, the hydrogels were allowed to stabilize for 1000 s (time at which all the hydrogels’ storage modulus had entered the G’ plateau) at 23 °C and were then heated to 40 °C at controlled rates of 1 °C/min, 2 °C/min, and 4 °C/min, respectively, at the same testing conditions mentioned for gelling temperature determination (frequency = 1 Hz, ɣ = 3–6%, and 0.5 mm gap).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pourjabbar, B.; Biazar, E.; Heidari Keshel, S.; Ahani-Nahayati, M.; Baradaran-Rafii, A.; Roozafzoon, R.; Alemzadeh-Ansari, M.H. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue. Int. J. Polym. Mater. Polym. Biomater. 2021, 1–18. [Google Scholar] [CrossRef]
- Ahsan, A.; Tian, W.-X.; Farooq, M.A.; Khan, D.H. An overview of hydrogels and their role in transdermal drug delivery. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 574–584. [Google Scholar] [CrossRef]
- Batista, R.A.; Espitia, P.J.P.; Quintans, J.D.S.S.; Freitas, M.M.; Cerqueira, M.Â.; Teixeira, J.A.; Cardoso, J.C. Hydrogel as an alternative structure for food packaging systems. Carbohydr. Polym. 2019, 205, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Jaipan, P.; Nguyen, A.; Narayan, R.J. Gelatin-based hydrogels for biomedical applications. MRS Commun. 2017, 7, 416–426. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, M.; Hartmann, F.; Drack, M.; Preninger, D.; Wirthl, D.; Gerstmayr, R.; Lehner, L.; Mao, G.; Pruckner, R.; Demchyshyn, S.; et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 2020, 19, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Velasquillo-Martínez, C.; García-Carvajal, Z.Y. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: A review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–20. [Google Scholar] [CrossRef]
- Torres-García, R.; Flores-Estrada, J.; Cauich-Rodríguez, J.V.; Flores-Reyes, M.; Flores-Merino, M. V Design of a polyacrylamide and gelatin hydrogel as a synthetic extracellular matrix. Int. J. Polym. Mater. Polym. Biomater. 2020, 1–12. [Google Scholar] [CrossRef]
- You, F.; Wu, X.; Chen, X. 3D printing of porous alginate/gelatin hydrogel scaffolds and their mechanical property characterization. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 299–306. [Google Scholar] [CrossRef]
- Poursamar, S.A.; Hatami, J.; Lehner, A.N.; Da Silva, C.L.; Ferreira, F.C.; Antunes, A.P.M. Potential application of gelatin scaffolds prepared through in situ gas foaming in skin tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 315–322. [Google Scholar] [CrossRef]
- Sonawane, R.O.; Patil, S.D. Gelatin–κ-carrageenan polyelectrolyte complex hydrogel compositions for the design and development of extended-release pellets. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 812–823. [Google Scholar] [CrossRef]
- Otzen, D. Protein-surfactant interactions: A tale of many states. Biochim. Biophys. Acta-Proteins Proteom. 2011, 1814, 562–591. [Google Scholar] [CrossRef] [PubMed]
- Howe, A.M.; Wilkins, A.G.; Goodwin, J.W. The Interactions Between Gelatin and Surfactants—A Rheological Study. J. Photogr. Sci. 1992, 40, 234–243. [Google Scholar] [CrossRef]
- Touhami, Y.; Rana, D.; Neale, G.; Hornof, V. Study of Polymer–Surfactant Interactions via Surface Tension Measurements. Colloid Polym. Sci. 2001, 279, 297–300. [Google Scholar] [CrossRef]
- Derkach, S.R. Interfacial layers of complex-forming ionic surfactants with gelatin. Adv. Colloid Interface Sci. 2015, 222, 172–198. [Google Scholar] [CrossRef]
- Misra, P.K.; Meher, J.; Maharana, S. Investigation on the gelatin-surfactant interaction and physiochemical characteristics of the mixture. J. Mol. Liq. 2016, 224, 900–908. [Google Scholar] [CrossRef]
- Dias, S.V.E.; Züge, L.C.B.; Santos, A.F.; Scheer, A.D.P. Effect of surfactants and gelatin on the stability, rheology, and encapsulation efficiency of W1/O/W2 multiple emulsions containing avocado oil. J. Food Process Eng. 2018, 41, e12684. [Google Scholar] [CrossRef]
- Deng, L.; Kang, X.; Liu, Y.; Feng, F.; Zhang, H. Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem. 2017, 231, 70–77. [Google Scholar] [CrossRef]
- Lin, L.-H.; Chen, K.-M. Preparation and surface activity of gelatin derivative surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 8–14. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharya, S. Food Gels: Gelling Process and New Applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Kim, J.; Thomas, R.R. Interfacial rheological studies of gelatin-sodium dodecyl sulfate complexes adsorbed at the air-water interface. Langmuir 2005, 21, 617–621. [Google Scholar] [CrossRef]
- Dreja, M.; Heine, K.; Tieke, B.; Junkers, G. Effects of functionalized latex particles and anionic surfactants on the flow behavior of aqueous gelatin dispersions. J. Colloid Interface Sci. 1997, 191, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hou, J.; Li, M.; Wang, J.; Kaplan, D.L.; Lu, S. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater. 2012, 8, 2185–2192. [Google Scholar] [CrossRef]
- Sovilj, V.; Milanovic, J.; Petrovic, L. Influence of gelatin-sodium stearoyl lactylate interaction on the rheological properties of gelatin gels. Colloids Surf. A Physicochem. Eng. Asp. 2013, 417, 211–216. [Google Scholar] [CrossRef]
- Hirlekar, S.; Ray, D.; Aswal, V.K.; Prabhune, A.; Nisal, A.; Ravindranathan, S. Silk Fibroin-Sodium Dodecyl Sulfate Gelation: Molecular, Structural, and Rheological Insights. Langmuir 2019, 35, 14870–14878. [Google Scholar] [CrossRef]
- Abed, M.A.; Bohidar, H.B. Surfactant induced softening in gelatin hydrogels. Eur. Polym. J. 2005, 41, 2395–2405. [Google Scholar] [CrossRef]
- Griffiths, P.C.; Cheung, A.Y.F. Interaction between surfactants and gelatin in aqueous solutions. Mater. Sci. Technol. 2002, 18, 591–599. [Google Scholar] [CrossRef]
- Henriquez, M.; Abuin, E.; Lissi, E. Interactions of ionic surfactants with gelatin in fluid solutions and the gel state studied by fluorescence techniques, potentiometry, and measurements of viscosity and gel strength. Colloid Polym. Sci. 1993, 271, 960–966. [Google Scholar] [CrossRef]
- Ao, M.; Xu, G.; Kang, W.; Meng, L.; Gong, H.; Zhou, T. Surface rheological behavior of gelatin/ionic liquid-type imidazolium gemini surfactant mixed systems. Soft Matter 2011, 7, 1199–1206. [Google Scholar] [CrossRef]
- Šišáková, M.; Asaumi, Y.; Uda, M.; Seike, M.; Oyama, K.; Higashimoto, S.; Hirai, T.; Nakamura, Y.; Fujii, S. Dodecyl sulfate-doped polypyrrole derivative grains as a light-responsive liquid marble stabilizer. Polym. J. 2020, 52, 589–599. [Google Scholar] [CrossRef]
- Clar, J.G.; Silvera Batista, C.A.; Youn, S.; Bonzongo, J.-C.J.; Ziegler, K.J. Interactive Forces between Sodium Dodecyl Sulfate-Suspended Single-Walled Carbon Nanotubes and Agarose Gels. J. Am. Chem. Soc. 2013, 135, 17758–17767. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Okonkwo, O.S.; Zurakowski, D.; Kohane, D.S. Synergy between chemical permeation enhancers and drug permeation across the tympanic membrane. J. Control. Release 2018, 289, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Knox, W.J.; Parshall, T.O. The interaction of sodium dodecyl sulfate with gelatin. J. Colloid Interface Sci. 1970, 33, 16–23. [Google Scholar] [CrossRef]
- Onesippe, C.; Lagerge, S. Study of the complex formation between sodium dodecyl sulphate and gelatin. Colloids. Surf. A Physicochem. Eng. Asp. 2009, 337, 61–66. [Google Scholar] [CrossRef]
- Buron, C.; Filiatre, C.; Membrey, F.; Foissy, A.; Argillier, J.F. Interactions between gelatin and sodium dodecyl sulphate: Binding isotherm and solution properties. Colloid. Polym. Sci. 2004, 282, 446–453. [Google Scholar] [CrossRef]
- Ortiz-Zarama, M.A.; Camacho-Diaz, B.H.; Jiménez-Aparicio, A.R.; Solorza-Feria, J. Effect of sodium dodecyl sulfate on the physical properties of gelatin/multi-walled carbon nanotubes solutions and films. Rev. Mex. Ing. Quim. 2017, 16, 307–319. [Google Scholar]
- Kronberg, B.; Holmberg, K.; Lindman, B. Surface Chemistry of Surfactants and Polymers; John Wiley & Sons, Ltd.: Chichester, UK, 2014. [Google Scholar]
- Greener, J.; Contestable, B.A.; Bale, M.D. Interaction of Anionic Surfactants with Gelatin: Viscosity Effects. Macromolecules 1987, 20, 2490–2498. [Google Scholar] [CrossRef]
- Malik, W.U.; Ashraf, S.M. Viscometric studies on the interaction of sodium dodecyl sulphate with transfusion gelatin. Kolloid-Z. Und Z. Für Polym. 1970, 237, 309–310. [Google Scholar] [CrossRef]
- Kronberg, B.; Holmberg, K.; Lindman, B. Types of surfactants, their synthesis, and applications. Surf. Chem. Surfactants Polym. 2014, 295–304. [Google Scholar] [CrossRef]
- George, J.; Sudheesh, P.; Reddy, P.N.; Sreejith, L. Studies on the interaction of SDS with gelatin in presence of urea derivatives. J. Dispers. Sci. Technol. 2010, 31, 44–49. [Google Scholar] [CrossRef]
- ToolBox, E. Surface Tension. Available online: https://www.engineeringtoolbox.com/surface-tension-d_962.html (accessed on 23 May 2020).
- Umlong, I.M.; Ismail, K. Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 8–14. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoque, M.S.; Benjakul, S.; Prodpran, T. Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. J. Food Eng. 2010, 96, 66–73. [Google Scholar] [CrossRef]
- Kamyar, S.; Ahmad, M.; Zin, W.; Yunus, W.; Ibrahim, N.; Jokar, M.; Darroudi, M. Synthesis and Characterization of Silver/Polylactide Nanocomposites. World Acad. Sci. Eng. Technol. 2010, 64, 28–32. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll. 2014, 35, 644–652. [Google Scholar] [CrossRef]
- Viana, R.; Silva, A.; Pimentel, A. Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants. Adv. Phys. Chem. 2012, 2012, 903272. [Google Scholar] [CrossRef] [Green Version]
- Ludmila, A.; Dyshlyuk, L. Study of viscosity of aqueous solutions of natural polysaccharides. Sci. Evol. 2016, 1, 11–19. [Google Scholar]
- Mezger, T.G. The Rheology Handbook, 4th ed.; European Coatings Library: Hanover, Germany, 2014. [Google Scholar]
- Songchotikunpan, P.; Tattiyakul, J.; Supaphol, P. Extraction and electrospinning of gelatin from fish skin. Int. J. Biol. Macromol. 2008, 42, 247–255. [Google Scholar] [CrossRef]
- Landrock, A.H. Handbook of Plastic Foams: Types, Properties, Manufacture and Applications; Landrock, A.H., Ed.; William Andrew Publishing: Norwich, NY, USA, 1995; ISBN 9780815513575. [Google Scholar]
- Joly-Duhamel, C.; Hellio, D.; Ajdari, A.; Djabourov, M. All gelatin networks: 2. The master curve for elasticity. Langmuir 2002, 18, 7158–7166. [Google Scholar] [CrossRef]
- Fonkwe, L.G.; Narsimhan, G.; Cha, A.S. Characterization of gelation time and texture of gelatin and gelatin-polysaccharide mixed gels. Food Hydrocoll. 2003, 17, 871–883. [Google Scholar] [CrossRef]
- Ross-Murphy, S.B. Structure and rheology of gelatin gels. Imaging Sci. J. 1997, 33, 2622–2627. [Google Scholar] [CrossRef]
- Joly-Duhamel, C.; Hellio, D.; Djabourov, M. All gelatin networks: 1. Biodiversity and physical chemistry. Langmuir 2002, 18, 7208–7217. [Google Scholar] [CrossRef]
- Bhakta, A.; Ruckenstein, E. Decay of standing foams: Drainage, coalescence and collapse. Adv. Colloid Interface Sci. 1997, 70, 1–124. [Google Scholar] [CrossRef]
- Clint, J.H. Surfactant Aggregation; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Magdassi, S.; Kamyshny, A. Surface Activity of Proteins: Chemical and Physicochemical Modifications; Magdassi, S., Ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Osorio, F.A.; Bilbao, E.; Bustos, R.; Alvarez, F. Effects of concentration, bloom degree, and pH on gelatin melting and gelling temperatures using small amplitude oscillatory rheology. Int. J. Food Prop. 2007, 10, 841–851. [Google Scholar] [CrossRef]
- Pang, Z.; Deeth, H.; Sopade, P.; Sharma, R.; Bansal, N. Rheology, texture and microstructure of gelatin gels with and without milk proteins. Food Hydrocoll. 2014, 35, 483–493. [Google Scholar] [CrossRef]
- Van Den Bulcke, A.I.; Bogdanov, B.; De Rooze, N.; Schacht, E.H.; Cornelissen, M.; Berghmans, H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 2000, 1, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Haug, I.J.; Draget, K.I.; Smidsrød, O. Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll. 2004, 18, 203–213. [Google Scholar] [CrossRef]
- Gornall, J.L.; Terentjev, E.M. Helix-coil transition of gelatin: Helical morphology and stability. Soft Matter 2008, 4, 544–549. [Google Scholar] [CrossRef] [PubMed]
- GMIA. Gelatin Handbook. 2012. Available online: https://nitta-gelatin.com/wp-content/uploads/2018/02/GMIA_Gelatin-Handbook.pdf (accessed on 15 November 2021).
- Zuidema, J.M.; Rivet, C.J.; Gilbert, R.J.; Morrison, F.A. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2014, 102, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
IR Band Assignment | Wavenumber (cm−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5 wt.% Gelatin S/G | 20 wt.% Gelatin S/G | |||||||||
NS 1 | 0.019 | 0.0375 | 0.075 | 0.15 | NS 1 | 0.019 | 0.0375 | 0.075 | 0.15 | |
Amide-A | 3343 | 3317 | 3317 | 3294 | 3314 | 3381 | 3342 | 3330 | 3329 | 3365 |
Amide-B | 3073 | 3080 | 3080 | 3079 | 3081 | 3072 | 3077 | 3078 | 3078 | 3077 |
Amide-I | 1651 | 1660 | 1660 | 1666 | 1662 | 1653 | 1663 | 1663 | 1664 | 1648 |
Amide-II | 1538 | 1551 | 1552 | 1547 | 1545 | 1539 | 1543 | 1546 | 1541 | 1540 |
Asymmetric CH3 stretching | 2959 | 2959 | 2960 | 2957 | 2957 | 2958 | 2958 | 2958 | 2957 | 2957 |
Symmetric CH3 strecthing | 2878 | 2879 | 2878 | 2878 | 2878 | 2877 | 2877 | 2877 | 2878 | 2873 |
Asymmetric CH2 stretching | 2941 | 2938 | 2936 | 2938 | 2929 | 2931 | 2931 | 2933 | 2931 | 2926 |
Symmetric CH2 stretching | 2848 | 2856 | 2856 | 2855 | 2854 | 2848 | 2855 | 2855 | 2857 | 2856 |
Asymmetric SO2 vibration | 1235 | 1241 | 1241 | 1240 | 1237 | 1236 | 1239 | 1238 | 1237 | 1237 |
S/G Ratio | 5 wt.% Gelatin | 10 wt.% Gelatin | 20 wt.% Gelatin | ||||||
---|---|---|---|---|---|---|---|---|---|
wt.% | G’60 (Pa) | tanδ60 | wt.% | G’60 (Pa) | tanδ60 | wt.% | G’60 (Pa) | tanδ60 | |
- | 0 | 407 ± 32 | 0.01 | 0 | 3054 ± 124 | 0.01 | 0 | 13,117 ± 410 | 0.01 |
0.009375 | 0.04688 | - | - | 0.09375 | - | - | 0.1875 | 14,510 ± 42 | 0.02 |
0.01875 | 0.09375 | 744 ± 23 | 0.11 | 0.1875 | 3963 ± 111 | 0.04 | 0.375 | 16,281 ± 549 | 0.04 |
0.0375 | 0.1875 | 807 ± 36 | 0.11 | 0.375 | 4413 ± 232 | 0.09 | 0.75 | 19,262 ± 329 | 0.08 |
0.05625 | 0.28125 | - | - | 0.5625 | 4590 ± 208 | 0.12 | 1.125 | 18,088 ± 764 | 0.1 |
0.075 | 0.375 | 957 ± 42 | 0.15 | 0.75 | 4544 ± 162 | 0.16 | 1.5 | 16,245 ± 700 | 0.13 |
0.09375 | 0.46875 | 984 ± 42 | 0.17 | 0.9375 | - | - | 1.875 | 16,645 ± 552 | 0.13 |
0.1125 | 0.5625 | 933 ± 16 | 0.18 | 1.125 | - | - | 2.25 | - | - |
0.125 | 0.625 | - | - | 1.25 | 3745 ± 106 | 0.19 | 2.5 | 14,094 ± 205 | 0.14 |
0.15 | 0.75 | 635 ± 8 | 0.22 | 1.5 | 2960 ± 86 | 0.2 | 3 | 12,216 ± 167 | 0.15 |
0.1875 | 0.9375 | - | - | 1.875 | 2358 ± 86 | 0.21 | 3.75 | - | - |
0.225 | 1.125 | 244 ± 7 | 0.36 | 2.25 | 1757 ± 86 | 0.22 | 4.5 | 8602 ± 7 | 0.15 |
0.25 | 1.25 | - | - | 2.5 | 1688 ± 11 | 0.23 | 5 | - | - |
0.3 | 1.5 | 71 ± 24 | 0.74 | 3 | 978 ± 14 | 0.29 | 6 | - | - |
0.375 | 1.875 | No G’’-G’ cross-over | 3.75 | 449 ± 1 | 0.41 | 7.5 | - | - | |
0.5 | 2.5 | 5 | No G’’-G’ crossover | 10 | - | - |
S/G Ratio | 10 wt.% Gelatin | 20 wt.% Gelatin | ||||
---|---|---|---|---|---|---|
SDS (wt.%) | Tg (°C) | Tm (°C) | SDS (wt.%) | Tg (°C) | Tm (°C) | |
- | 0 | 25.13 ± 0.17 | 32.73 ± 0.12 | 0 | 28.92 ± 0.15 | 34.39 ± 0.01 |
0.01875 | 0.188 | - | - | 0.375 | 30.05 ± 0.66 | 35.15 ± 0.39 |
0.0375 | 0.375 | 25.91 ± 0.17 | 33.92 ± 0.17 | 0.75 | 28.76 ± 0.02 | 35.05 ± 0.01 |
0.05625 | 0.056 | 26.12 ± 0.21 | 34.23 ± 0.19 | 1.125 | - | - |
0.075 | 0.75 | 25.50 ± 0.39 | 34.08 ± 0.05 | 1.5 | 28.25 ± 0.11 | 35.19 ± 0.20 |
0.15 | 1.5 | 23.60 ± 0.04 | 33.19 ± 0.10 | 3 | 27.10 ± 0.07 | 34.20 ± 0.02 |
0.225 | 2.25 | 21.91 ± 0.08 | 31.81 ± 0.07 | 4.5 | 25.29 ± 0.03 | 32.92 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin Torrejon, V.; Deng, Y.; Luo, G.; Wu, B.; Song, J.; Hang, S.; Wang, D. Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels. Gels 2021, 7, 271. https://doi.org/10.3390/gels7040271
Martin Torrejon V, Deng Y, Luo G, Wu B, Song J, Hang S, Wang D. Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels. Gels. 2021; 7(4):271. https://doi.org/10.3390/gels7040271
Chicago/Turabian StyleMartin Torrejon, Virginia, Yanqiu Deng, Guidong Luo, Bingjie Wu, Jim Song, Song Hang, and Dongmei Wang. 2021. "Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels" Gels 7, no. 4: 271. https://doi.org/10.3390/gels7040271
APA StyleMartin Torrejon, V., Deng, Y., Luo, G., Wu, B., Song, J., Hang, S., & Wang, D. (2021). Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels. Gels, 7(4), 271. https://doi.org/10.3390/gels7040271